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Abstract

It is proved that Groves’ scheme is unique on restricted domains which
are smoothly connected, in particular convex domains. This generalizes
earlier uniqueness results by Green and Laffont and Walker. An example
shows that uniqueness may be lost if the domain is not smoothly con-
nected.

1 Introduction

In a classical paper Groves [7] introduced a scheme which induces individuals
to reveal true information about preferences for public decisions under the as-
sumption that preferences are additively separable and linear in money. This
was done in the context of a game of incomplete information with partial com-
munication. When full communication is feasible, Groves and Loeb [8] showed
that the same scheme makes true revelation of preferences a dominant strategy.1

Subsequently, Green and Laffont [5] proved that Groves’ scheme is unique in this
respect when a universal domain of preference profiles (or a domain containing
all continuous profiles) is allowed.

Since Green and Laffont’s proof rests crucially on the assumption of such
a large domain of profiles (cf. Walker [12]), it is conceivable that uniqueness
would be lost when the domain would be further restricted.2 The purpose of the
present paper is to investigate this issue. The main result (Theorem 1) states
that Groves’ scheme will be unique on any domain which is smoothly connected.

∗I am indebted to Claude d’Aspremont, Takao Kobayashi, Jean-Jacques Laffont, Jean-
Francois Mertens, Robert Wilson, and particularly Asad Zaman for discussions on this topic.
This paper was written while the author was a visitor at the Center for Operations Research
and Econometrics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.

1Clarke [4] had earlier proved this result for profile domains which are one-dimensional.

2Compare with Arrow’s impossibility result in social choice theory, which is no longer valid
on restricted domains (Arrow [1]).
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A domain is smoothly connected if for any two preference profiles in the domain
there exists a differentiable deformation of one profile into the other within the
domain (i.e., the domain is a differentiably homotopic class). An example shows
that, in general, smooth connectedness of the domain is indispensable for the
uniqueness result to hold.

An important class of domains which are smoothly connected is the class of
convex domains (Theorem 2). Thus, one may a priori take preferences to be
convex, differentiable, polynomial, etc., without altering the uniqueness result.
This generalizes substantially previous results by Green and Laffont [5, 6] and
Walker.

The outline of the paper is as follows. Section 2 recalls the basic prob-
lem structure, Section 3 contains the uniqueness results, and the final section
contains some concluding remarks.

2 Groves’ Scheme Revisited3

Let D be a set of alternative public decisions containing at least two elements
and N = {1, ..., n} a set of n individuals or agents. Each agent i ∈ N possesses
a utility function ui(z, d) defined over money z ∈ R and public decisions d ∈ D,
which is linearly additively separable in its arguments, so that we can write:

ui(z, d) = z + vi(d), i ∈ N . (1)

We call vi(d) agent i’s valuation function, and it is assumed to belong to a
prescribed set of valuation functions, Vi, called the domain or admissible set of
valuation functions for agent i.

The objective is to choose an efficient public decision from D. If v =
(v1, ..., vn) ∈ V = ×n

i=1Vi are the true valuation functions of the agents, it
follows from (1) that an efficient decision d∗(v) ∈ D must satisfy:

d∗(v) ∈ arg max
d∈D

∑
i∈N

vi(d).4 (2)

We will always assume V and D are such that (2) is well-defined for all v ∈ V .5

Only agent i knows his own valuation function. Hence, decisions must be
made based on what he reports about this valuation function. In a direct rev-
elation mechanism each agent is asked to report his true valuation function
and subsequently a public decision is made according to a decision rule sat-
isfying (2). In order to achieve efficient decisions in this way, agents must
be induced to tell the truth. This may be done by employing a monetary
transfer scheme {ti(w)}i∈N . If the joint reported valuations (or messages) are
w = (w1, ..., wn) ∈ V , this scheme pays individual i ti(w) units of money.

3The terminology is taken from Green and Laffont [5].

4The notation “arg max” means the set of arguments that maximize the objective.

5A sufficient condition would be: all vi’s u.s.c. and D compact in a suitable topology.
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From now on, let us assume we have fixed a particular efficient decision
rule d∗(·) satisfying (2) for all v ∈ V . A transfer scheme which induces each
individual to tell the truth as a dominant strategy (when the public decision
is made according to d∗(·)) is called strongly individually incentive compatible
(s.i.i.c.). Truth will be a dominant strategy for all agents if and only if

vi ∈ arg max
wi∈Vi

vi(d∗(wi, v
i)) + ti(wi, v

i), ∀v ∈ V, ∀i ∈ N.6 (3)

To see that condition (3) can be satisfied by a proper choice of ti’s, observe
first that (2) implies:

vi ∈ arg max
wi∈Vi

∑
j∈N

vj(d∗(wi, v
i)), ∀v ∈ V . (4)

This simply says that truth-telling is socially optimal. Writing

ti(w) =
∑

j∈N\{i}
wj

(
d∗(w)

)
+ hi(w), ∀w ∈ V, ∀i ∈ N, (5)

as we may by choosing hi’s appropriately, we can state (3) equivalently as:

vi ∈ arg max
wi∈Vi

∑
j∈N

vi(d∗(wi, v
i)) + hi(wi, v

i), ∀v ∈ V, ∀i ∈ N . (6)

Compare (4) and (6). It is immediate that (6) is true whenever hi is in-
dependent of wi, since (4) holds by the definition of d∗(·). By choosing the
transfer scheme {ti(w)}i∈N such that hi is independent of wi in (5), that is by
using a Groves’ scheme, the individual and social objective functions, expressed
in terms of messages, coincide. As a result, a Groves’ scheme is s.i.i.c., which
was first proved in Groves and Loeb [8]. The reasoning given above, which uses
the fact that (2) implies (4), is a variant of the argument in Groves and Loeb
and illustrates quite clearly the rationale behind their result. It is also useful in
discussing the uniqueness question, which we now turn to.7

6We use the notation xi = (x1, ..., xi−1, xi+1, ..., xn) and write (x̂i, x
i) =

(x1, ..., xi−1, x̂i, xi+1, ..., xn). Also, V i = ×j∈N\{i}Vj .

7It could be mentioned that if one assumes that the domains Vi are one-dimensional, so that
for any vi ∈ Vi, vi(d) = vi(d; xi) for some parameter value xi ∈ R, then Groves’ scheme is easy
to derive (under suitable differentiability assumptions) from (4) and (6). One may let agents
report their parameter values instead of functions in this case. Let m = (m1, ..., mn) ∈ Rn

be their joint message. Then, if the respective derivatives exist, one gets from (4) and (6) as
first-order conditions:

∂

∂mi
vi(d

∗(mi, x
i); xi) +

∂

∂mi
ti(mi, x

i) = 0, at mi = xi,

∂

∂mi

∑
j∈N

vj(d
∗(mi, x

i); xj) = 0, at mi = xi.
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3 Uniqueness on Restricted Domains

The question of when Groves’ scheme is the only scheme which is s.i.i.c. can,
by the previous discussion, be rephrased as follows: Under what conditions will
consistency of (4) and (6) imply that each hi has to be independent of wi?

It is easy to see that generally consistency will not imply that hi is constant in
wi. For instance, if Vi’s are taken to be discrete domains, easy counterexamples
can be given. Thus, a certain richness of the domains Vi is required. The
following definition will provide the appropriate condition of richness.

Definition 1. The domain V = ×i∈NVi is said to be smoothly connected if for
any two valuation functions vi, v′

i ∈ Vi and any vi ∈ V i, there exists a one
dimensional parameterized family of valuation functions in Vi:

Vi(vi, v
′
i) = {vi(d; yi) ∈ Vi | yi ∈ [0, 1]},

such that for all d ∈ D

vi(d; 0) = vi(d), (i)

vi(d; 1) = v′
i(d), (ii)

∂vi(d; yi)
∂yi

exists for all yi ∈ [0, 1], 8 (iii)

and, moreover, for all yi ∈ [0, 1] and all d in D∗(vi, v
′
i; v

i) = {d ∈ D | d =
d∗(vi(d; yi), vi) for some yi ∈ [0, 1]}, we have∣∣∣∣∂vi(d; yi)

∂yi

∣∣∣∣ ≤ K for some 0 < K < ∞. (iv)

The set D∗(vi, v
′
i; v

i) is the set of public decisions, which according to our
fixed decision function d∗(·) (satisfying (2)), maximize the social objective when
the valuation functions are (vi(d; yi), vi) for some yi ∈ [0, 1]. It is rather in-
nocuous to assume that condition (iv) is satisfied in view of the restriction to

Combining these equations gives:

∂

∂mi
ti(mi, x

i) =
∂

∂mi

∑
j∈N\{i}

vj(d
∗(mi, x

i); xj), at mi = xi.

The unique solution is:

ti(x) =
∑

j∈N\{i}
vj(d

∗(x); xj) + hi(x
i),

i.e., Groves’ scheme.
This approach has been exhibited in more detail in Holmström [9]. Closely related ap-

proaches can be found in Laffont and Maskin [10] and Smets [11].

8At the endpoints yi = 0 or 1 only existence of one-sided derivatives is assumed.
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D∗(vi, v
′
i; v

i), and it may well be that (iv) follows from (i)-(iii), but this question
is still open. Of course, if ∂vi(d; yi)/∂yi is continuous in both arguments that
will be the case.

Our main result is the following.

Theorem 1. If V is smoothly connected, any s.i.i.c. transfer scheme is a
Groves’ scheme.

Proof: Fix vi ∈ V i and let vi, v
′
i ∈ Vi be arbitrary. If we can show that

hi(vi, v
i) = hi(v′

i, v
i) will follow from (4) and (6), the claim has been proved.

Consider the parameterized subdomain Vi(vi, v
′
i) in Definition 1. From (4)

and (6) follows:

yi ∈ arg max
mi∈[0,1]

∑
j∈N\{i}

vj(d̃(mi)) + vi(d̃(mi); yi), (7)

yi ∈ arg max
mi∈[0,1]

∑
j∈N\{i}

vj(d̃(mi)) + vi(d̃(mi); yi) + h̃i(mi), (8)

where we have written:

d̃(mi) ≡ d∗(vi(d;mi), vi),

h̃(mi) ≡ h∗(vi(d;mi), vi).

By the lemma in Appendix A, (7) and (8) imply h̃i(0) = h̃i(1). Hence
hi(vi, v

i) = hi(v′
i, v

i) using the definitions of h̃i(mi) and vi(d;mi).

Remark 1. It is self-evident from the proof that smooth connectedness could be
replaced by piecewise smooth connectedness; i.e., for any vi, v

′
i ∈ Vi there would

exist a sequence of valuation functions v
(0)
i , v

(1)
i , ..., v

(k)
i ∈ Vi such that v

(0)
i =

vi, v
(k)
i = v′

i and each pair (v(t)
i , v

(t+1)
i )would would be smoothly connected.

Remark 2. In Appendix B an example is given which shows that uniqueness
may be lost if the domain is not smoothly connected. In the example condition
(iii) of Definition 1 is violated only at a single point for each d.

The primary example of a smoothly connected domain is a convex domain
as shown below. V is convex if v, v′ ∈ V implies λv + (1 − λ)v′ ∈ V for
all λ ∈ [0, 1]. (This should not be confused with the possible convexity of
preferences themselves, though, of course, all convex preferences constitute a
convex domain.)

Theorem 2. If V is a convex domain, then V is smoothly connected and any
s.i.i.c. transfer scheme is a Groves’ scheme.

Proof: Fix vi, v′
i ∈ Vi and vi ∈ V i. Let the functions

vi(d; yi) = (1 − yi) · vi(d) + yi · v′
i(d), yi ∈ [0, 1], (9)
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define the family Vi(vi, v
′
i) in Definition 1. By convexity this family is contained

in Vi and obviously it satisfies i, ii, and iii. In fact, ∂vi(d; yi)/∂yi = v′
i(d)−vi(d).

It remains to be shown that for some K > 0

|v′
i(d) − vi(d)| ≤ K on D∗(vi, v

′
i; v

i). (10)

Make a contrapositive assumption that no K exists giving (10). Then there
exists a sequence {dk}∞k=1 ⊂ D∗(vi, v

′
i; v

i) such that either v′
i(dk)−vi(dk) → −∞

or +∞. By symmetry it is enough to treat the former case.
Let yk

i be such that dk = d∗(vi(d; yk
i ), vi), and take d ∈ D such that for ∀k∑

j∈N

vj(dk) ≤
∑
j∈N

vj(d).9 (11)

By definition of dk and yk
i ,∑

j∈N

vj(dk)+yk
i ·(v′

i(dk)−vi(dk)) ≥
∑
j∈N

vj(d)+yk
i ·(v′

i(d)−vi(d)), ∀k. (12)

Combining (11) and (12), we get

yk
i · (v′

i(dk) − vi(dk)) ≥ yk
i · (v′

i(d) − vi(d)), ∀k. (13)

Since we assumed v′
i(dk) − vi(dk) → −∞ and yk

i ∈ [0, 1], (13) must imply
the existence of a k0 > 0 such that yk

i = 0 for all k ≥ k0. Hence, dk = dk+1 for
all k ≥ k0, contradicting the assumption that v′

i(dk) − vi(dk) → −∞.

Examples of convex domains are the following:

1. Vi consists of all u.s.c. functions on D.

2. Vi consists of all continuous functions on D.

3. Vi consists of all strictly concave (or concave) functions on a convex subset
of Rt.

4. Vi consists of all concave quadratic utility functions on a convex subset of
Rt.

Thus Green and Laffont’s [5] uniqueness results (case 1 and 2) and Walker’s
uniqueness result (case 3) follow from Theorem 2. Case 4 corresponds to a
recent result by Green and Laffont [6], which is an improvement on Walker’s
result, since the domain in 4 is a subset of the domain in 3.

9We assumed earlier that D and V are such that a d satisfying (11) can be found.
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4 Concluding Remarks

We have shown that only a Groves’ scheme will be s.i.i.c. even when the do-
main of valuation functions is restricted, as long as this domain is smoothly
connected, for instance convex. For all practical purposes this result shows that
one has to be content with Groves’ scheme if s.i.i.c. is desired. Since Groves’
scheme possesses some undesirable properties, notably that the transfers need
not sum up to zero, the result is a negative one. Restricting agents’ admissible
valuation functions to a smaller domain does not usually lead to any new classes
of s.i.i.c. functions, which would possess some additional desirable features.

The methodology employed in this paper could also be used to study the
uniqueness question when the problem is formulated as a game of incomplete
information as was done originally in Groves [7]. Such a formulation would
be called for if agents could not fully communicate their preferences, but it
could also be used to weaken the notion of incentive compatibility and resolve
some of the negative conclusions about Groves’ scheme, as has been shown in
d’Aspremont and Gérard-Varet [2].

In the context of a game of incomplete information the uniqueness result
states that any incentive compatible transfer scheme has to equal a Groves’
scheme in expectation (under appropriate independence assumptions). This was
proved first by d’Aspremont and Gérard-Varet [2, 3] for a somewhat restricted
model and has been generalized in Holmström [9].
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Appendix A

Denote I = [0, 1], I0 = (0, 1).

Lemma 1. Let f : I2 → R and g: I → R satisfy:
(i) y ∈ arg max

m∈I
f(m, y),

(ii) y ∈ arg max
m∈I

f(m, y) + g(m),

(iii)
∣∣∂f(m,y)

∂y

∣∣ ≤ K < ∞ for all m, y ∈ I.
Then g(m) = constant on I.

Proof: Define the functions:

η(y) = f(y, y), η : I → R,

γ(y) = f(y, y) + g(y), γ : I → R,

ϕ(y,m) = f(y,m) − f(m,m), ϕ : I2 → R,

π(y,m) = f(y,m) + g(y) − f(m,m) − g(m), π : I2 → R.

Step 1: η(y), γ(y), g(y) are Lipschitz on I. Take y, y′ ∈ I arbitrary. Suppose
η(y) ≥ η(y′). Then,

0 ≤ η(y) − η(y′) = f(y, y) − f(y, y′) + f(y, y′) − f(y′, y′)
≤ f(y, y) − f(y, y′) ≤ K · |y − y′| .

The last two inequalities follow by (i) and (iii), respectively.
Arguing similarly if η(y) ≤ η(y′), we get

|η(y) − η(y′)| ≤ K · |y − y′| .
Analogously, we can show

|γ(y) − γ(y′)| ≤ K · |y − y′| .
Since g(y) = γ(y) − η(y), the inequalities above imply

|g(y) − g(y′)| ≤ 2K · |y − y′| .
This establishes Step 1.
Step 2: Since η, γ, g are Lipschitz on I, they are a.e. differentiable on I. We

claim g′ = 0 a.e. on I0. By (i) and (ii) we have for any m, y ∈ I,

ϕ(y,m) ≤ 0,
π(y,m) ≤ 0. (A.1)
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From the definitions,

ϕ(y,m)
y − m

=
f(y,m) − f(y, y)

y − m
+

η(y) − η(m)
y − m

, (A.2)

and
π(y,m)
y − m

=
f(y,m) − f(y, y)

y − m
+

γ(y) − γ(m)
y − m

. (A.3)

Letting y be a point where η′(y) and γ′(y) exist, it follows from (iii) that
the limits as m → y in (A.2) and (A.3) exist. Moreover, from (A.1) one gets
(by taking m ↓ y and m ↑ y):

lim
m→y

ϕ(y,m)
y − m

= lim
m→y

π(y,m)
y − m

= 0.

Thus, for a.e. y ∈ I0,

lim
m→y

g(y) − g(m)
y − m

= lim
m→y

π(y,m) − ϕ(y,m)
y − m

= 0.

Step 3 : Since g′ = 0 a.e. on I0 and g is Lipschitz on I, g(y) is a constant on
I.

Appendix B

We give an example for which schemes other than Groves’ are s.i.i.c.
Let n = 2, D = [0, 1], and define Vi’s via the following parametric represen-

tations:

v1(d;x1) =
{

0, if d ≤ x1,
−(d − x1), if d ≥ x1,

x1 ∈ [0, 1];

v2(d;x2) = x2 +
1
2
d, x2 ∈ [0, 1].

The maximizing d is equal to x1, and hence is independent of x2, though
this is not essential. The critical fact is that v1(d;x1) does not have a partial
derivative with respect to x1, at d = x1, (though it has everywhere else), and
this leads to a kink in the social objective at d = x1. It is readily checked
that the following transfer scheme is s.i.i.c. (we can take agents to report x1, x2

rather than the functions themselves):

t1(x) = g1(x) +
1
4
x1,

t2(x) = g2(x).

where (g1, g2) is a Groves’ transfer scheme. Clearly, (t1, t2) is not a Groves’
transfer scheme.
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