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Abstract—Interpreting the predictions of existing Question
Answering (QA) models is critical to many real-world intelligent
applications, such as QA systems for healthcare, education, and
finance. However, existing QA models lack interpretability and
provide no feedback or explanation for end-users to help them
understand why a specific prediction is the answer to a question.
In this research, we argue that the evidences of an answer is
critical to enhancing the interpretability of QA models. Unlike
previous research that simply extracts several sentence(s) in
the context as evidence, we are the first to explicitly define
the concept of evidence as the supporting facts in a context
which are informative, concise, and readable. Besides, we provide
effective strategies to quantitatively measure the informativeness,
conciseness and readability of evidence. Furthermore, we propose
Grow-and-Clip Evidence Distillation (GCED) algorithm to extract
evidences from the contexts by trade-off informativeness, concise-
ness, and readability. We conduct extensive experiments on the
SQuAD and TriviaQA datasets with several baseline models to
evaluate the effect of GCED on interpreting answers to questions.
Human evaluation are also carried out to check the quality
of distilled evidences. Experimental results show that automatic
distilled evidences have human-like informativeness, conciseness
and readability, which can enhance the interpretability of the
answers to questions.

Index Terms—Explainable Question Answering, Evidence Dis-
tillation, Grow-and-Clip, Informative-yet-Concise Evidence

I. INTRODUCTION

Question Answering (QA) is an important task in Natural
Language Processing (NLP) and plays a vital role in many
real-world applications, such as search engines [37], [45],
chatbots [11], [12], [36], and so on. However, most of the
current QA systems focus only on extracting or generating the
correct answers, but lacking reasonable evidences to support
the answers simultaneously. This hurts real users’ confidence
on the answers and limits the utility of QA systems in many
real-world applications that require high interpretability, such
as evidence-based medicine [33], [39], children education [21],
[49] and online consulting. For example, evidences in medical
QA [33], [39] offer key clues of patients’ symptoms for
clinical doctors, assisting them to make correct diagnoses. But
treatment without evidences will hardly be trusted or accepted
by patients. Therefore, evidences are important for providing
humans suggestive references and important clue information
in the real world.

Fig. 1. An example of sentence-level evidence for QA. The evidence is
composed of two sentences with 37 words. The QA-related part is colored
in red with only 16 words, and other parts are considered as noises with 21
words, even longer than the QA-related part.

How to define and extract high-quality evidences is a non-
trivial problem. A direct idea is taking the documents where
the answer comes from as the evidence. But in most cases, a
document is too long to be a satisfying evidence. Hence, recent
research tends to select a few sentences from factual source
text such as Wikipedia [14], [51] or Freebase [10], [28], [54]
as the evidence. For a sample QA-pair shown in Fig. 1, S1 and
S2 represent the evidence for a given QA pair generated by
Min et al. [35]. The QA-related part in this evidence has only
16 words, far shorter than the length of the whole sentence-
level evidence (37 words). Therefore, although sentence-level
evidences are informative which have a better coverage and
contain rich information to support answers, they are still too
coarse-grained with irrelevant parts and may introduce noises.
And noisy information in the evidence will inevitably distract
end-users from the most QA-related part of the evidence,
increasing the difficulty to understand the explanation and
hurting the user-friendliness of the QA system.

Based on the above analysis, we argue that both informative-
ness and conciseness are essential for QA evidences. However,
it is a great challenge to trade-off between informativeness
and conciseness of the evidences, as they are contradictory
to each other. A too informative evidence tends to involve
redundant information, while a too concise evidence might
miss some relevant information. Furthermore, the difficulty is
deteriorated by simultaneously guaranteeing readability of the
evidences, which is necessary for ensuring user-friendliness of
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QA systems. Most previous relevant efforts, such as Schuff et
al. [43], only focus on informativeness of evidences without
considering the conciseness of the evidences. Although human
experts are further employed to write informative-yet-concise
evidences in QA systems [40], it inevitably incurs unaffordable
human cost.

To automatically trade-off between informativeness and
conciseness, and guarantee readability of an evidence, we
propose a novel task of evidence distillation, which aims at
extracting informative-yet-concise evidences from the given
contexts to explain answers. To solve this task, we design a
systematical quantitative framework that evaluates the good-
ness of evidences in terms of informativeness, conciseness,
and readability. Our core idea is that a good evidence shall be
supportive to the answer (informativeness), contains few non-
essential information to answer the question (conciseness), and
easy to understand (readability). Based on the framework, we
further propose a novel Grow-and-Clip Evidence Distillation
(GCED) algorithm to distill the optimal evidence while trickily
balancing between the informativeness and conciseness.

Different from previous solutions, GCED finds the opti-
mal evidence at token-level, which is more fine-gained than
that at sentence-level and allows more flexibility to generate
more informative-yet-concise evidences. It is also noteworthy
to mention that our GCED algorithm has three advantages
compared to previous research: i) our evidence distillation
does not need human annotation; ii) each step is traceable,
which enhances the interpretability of generated evidences for
QA pairs; and iii) the algorithm is applicable to use either
given documents or structured knowledge as the QA source
repository, and domain independent.

We carry out human evaluations to systematically assess the
quality of our generated evidences from two widely acknowl-
edged QA datasets: SQuAD [41], [42] and TriviaQA [27]. The
results verify that our solution is able to find the evidences with
high informativeness, conciseness and readability, which can
explain answers very well. Moreover, if the QA systems have
ground-truth answers in an ideal setting or some applications
(such as searching engine), we can use the ground-truth
answers to distill evidences. These evidences are a form of
concise and readable contexts which can also explain/support
the ground-truth answers.

To summarize, our contributions in this paper are threefold:

• We establish a quantitative framework to evaluate the
goodness (informativeness, conciseness, and readability)
of evidences for QA.

• We propose a novel Grow-and-Clip Evidence Distilla-
tion (GCED) algorithm to distill optimal evidences, with
carefully designed heuristic to keep balance between in-
formativeness, conciseness and readability of the distilled
evidences.

• We systematically evaluate the quality of our distilled
evidences based on ground-truth answers and predicted
answers with human evaluation. Experimental results
demonstrate that the evidences are of good quality (in-

formativeness, conciseness, and readability) in both two
situations.

II. PROBLEM FORMULATION

In this section, we first formulate our problem and introduce
the preliminary concepts used in this paper. Then we present
the quantitative evaluation framework for QA evidences.

A. Evidence Distillation

The evidence distillation task in this research can be
summarized as the following: given a tuple set S =
{(qi, ai, ci, ei)}Ni=1 where N refers to the total number of QA
pairs, evidence distillation aims to take the natural language
question qi, the predicted answer ai as well as the given
contexts ci as the input, and outputs a good evidence ei
which helps to explain why ai is the answer to the question
qi. Compared to the full context ci, the distilled evidence
ei is more concise but preserves essential information for
explaining the answer ai.

A critical research problem in our task is how to evaluate
the goodness of an evidence. We argue that a good evidence
is expected to have the following three characteristics:

• i) Informativeness. A good evidence is informative so that
the input answer can be inferred from the evidence. For
example, the first candidate evidence shown in Fig. 2
contains more relevant information to infer the answer
of this question, such as "duke" and "Battle of
Hastings". It is thus more informative. On the con-
trary, the second candidate evidence only contains limited
information such as "William the Conqueror"
and "led", so we cannot infer the answer from this
evidence. Therefore, it’s not informative.

• ii) Conciseness. A good evidence is expected to be con-
cise which is as short as possible but at least longer than
the answer. For example, the second candidate evidence
shown in Fig. 2 only has 4 words, just one more word
than the answer which have 3 words. Therefore, it’s
considered concise. On the contrary, the third candidate
evidence is quite redundant with 25 words, much longer
than the answer, which is not concise.

• iii) Readability. A good evidence is readable and and (al-
most) grammatically correct, so that it is understandable
by humans. For example, the third candidate evidence
shown in Fig. 2 has clear logic and doesn’t have grammar
mistakes. The meaning is easy to understand, and thus is
considered readable. On the contrary, the first candidate
evidence has grammar mistakes, such as missing a prepo-
sition between "behalf" and "duke", and missing
a verb between "William the Conqueror" and
"Battle of Hastings". Therefore, it’s difficult to
understand with bad readability.

Compared with the three evidences, the fourth candidate
evidence shown in Fig. 2 satisfies all the three characteris-
tics. It contains enough information to answer the question
without redundant noises. It also has better readability without
grammar mistakes, which is easy to understand for humans.



Fig. 2. An example of four candidate evidences for the given QA pair. The
first three are informative or readable or concise. The fourth satisfies all of the
three characteristics (informative and readable and concise), so it’s considered
as a good evidence.

Therefore, the fourth candidate evidence is considered as a
good evidence.

B. Metrics of a Good Evidence

Next, we quantify the three above-mentioned characteristics
in order to measure the goodness of an evidence.

1) Informativeness: The first important characteristic of an
evidence is informativeness. We resort to a QA model, such as
a large-scale pre-trained language model (denoted as PLM ),
to evaluate the informativeness of an evidence.

Principle 1. An evidence is informative if a given answer can
be predicted from this evidence by a QA model.

The evidence is more informative if the input answer is
predicted more accurately from the evidence by the QA model.
PLM is a statistical model that has already been trained by
mountains of data, and has been widely acknowledged as the
foundation of variant NLP tasks, such as reading comprehen-
sion, dialog, etc. In this paper, we use large-RoBERTa [9] as
PLM , which can be easily replaced with other pre-trained
language models (such as BERT [22], etc) without significant
influence on the results. The detailed process is as follows:

• Step 1 (QA model training): In this step, we train a QA
model based on PLM . We first separate the question qi
and the context ci by a special separator [SEP], then
divide the context ci into several segments with a sliding
window to keep the most informative context segment.
Next, we use "padding" to make the length of the
input sequence the same. After that, based on the encoded
question and context, we train a QA model aiming at
minimizing the training loss.

• Step 2 (Answer prediction): In this step, we input the
question qi and the evidence ei into the QA model trained
in the above step to predict a new answer âi. Specifically,
answer prediction is based on the maximum probability

calculated by a Softmax function, and tokens of the
highest two probabilities are taken as the start and the
end of âi.

• Step 3 (Evidence informativeness evaluation): In this
step, we use the predicted answer and the input answer
to evaluate the informativeness of the evidence. Inspired
by Schuff et al. [43], we use the overlap between the
predicted answer âi and the input answer ai to evaluate
the informativeness of the evidence ei. Specifically, we
use F1 score, which is widely used to evaluate the
accuracy of answer prediction in machine reading com-
prehension [42], as the informativeness score I(ei) of the
evidence ei. The procedure is shown in Eq. 1:

Pre(ei) =
Nc(âi, ai)

L(âi)
, Rec(ei) =

Nc(âi, ai)

L(ai)

I(ei) =
2× Pre(ei)×Rec(ei)

Pre(ei) +Rec(ei)

(1)

where NC means the number of common tokens in two
sequences, and L means the length of a sequence.

2) Conciseness: The second important characteristic of an
evidence is conciseness. We directly use the reciprocal of the
length of the evidence to measure its conciseness.

Principle 2. An evidence is concise if it is as short as possible
but at least longer than the answer.

We introduce a conciseness score defined in Eq. 2 to
quantify the conciseness of an evidence. The longer of the
evidence, the lower conciseness score of it. If the length of
the evidence is no longer than the length of the answer, we
discard this evidence.

C(ei) =

{ 1
L(ei)

L(ei) > L(ai)

−∞ L(ei) ≤ L(ai)
(2)

3) Readability: The third important characteristic of an
evidence is readability. Specifically, we use the reciprocal
of the perplexity as the readability score. The perplexity
of an evidence is based on the QA model trained in the
informativeness evaluation. The higher the readability score is,
the better readability of the evidence. The calculating process
of the readability score is shown in Eq. 3:

PPL(ei) = P ((ei)1, (ei)2, · · · , (ei)L)
1
L

= L

√√√√ L∏
j=1

1

p((ei)j |(ei)1, (ei)2, · · · , (ei)j−1)

(3)

R(ei) =
1

PPL(ei)
(4)

where P (ei) and PPL(ei) are the probability of generating
the evidence ei by the QA model and the perplexity of the
evidence ei, respectively.



4) Hybrid score: For the sake of balancing informativeness,
conciseness and readability, we set three weight factors α, β
and γ to derive a Hybrid score H(ei) for the evidence ei:

H(ei) = αI(ei) + βR(ei) + γC(ei) (5)

where α > 0, β > 0 and γ > 0, α+ β + γ = 1. The detailed
value of α, β and γ will be determined by experiments.
H(ei) = 0 means ei is a worst evidence while H(ei) = 1
means ei is a best evidence.

III. METHODS

In this section, we introduce the Grow-and-Clip Evidence
Distillation (GCED) framework and elaborate its major mod-
ules.

A. Algorithm Framework

The overall framework of GCED is displayed in Fig. 3.
It consists of five core modules. Answer-oriented Sentences
Extractor extracts sentences that are semantically related to
a QA pair from the context. The sentences are referred as
answer-oriented sentence(s). Question-relevant Words Selector
selects question-relevant clue words in the answer-oriented
sentences. Weighted Syntactic Parsing Tree Constructor adopts
Lexicalized Probabilistic Context-Free Grammars (L-PCFGs)
and multi-head attention to construct a weighted syntactic
parsing tree for the answer-oriented sentences. Evidence Forest
Constructor adopts dependency parser to discover evidence
segments from the weighted syntactic parsing tree. Optimal
Evidence Distiller adopts Grow-and-Clip strategy based on the
hybrid scores and attention weights to distill a good evidence.

B. Answer-oriented Sentences Extractor (ASE)

Answer-oriented sentence(s) are the minimum sentence sub-
set that has enough information to predict a given answer.
The minimum sentence subset may contain one or several
sentences. The input of this module is the QA pair and one or
more sentences in the context, and the output is the answer-
oriented sentence(s). We use a QA model to select sentences
which are able to predict (that is most semantically related
one) given answer to obtain the answer-oriented sentence(s).
Specifically, we first feed the sentences in the context one at a
time into the QA model to make answer prediction. After that,
the QA model stops accepting sentences when it predicts the
input answer for the first time. Sentences so far are regarded as
the minimum sentence subset that covers enough information,
and are expected to predict the input answer. These sentences
are called the answer-oriented sentence(s). If the QA model
fails to predict the input answer after processing all sentences,
we calculate the overlap between the input answer ai and each
predicted answer ãi by Eq. 1. After that, the sentence subset
with the maximum overlap is taken as the answer-oriented
sentence(s). The detailed process is shown in Fig. 4.

C. Question-relevant Words Selector (QWS)

This module select the question-relevant clue words from
the answer-oriented sentence(s). The words in the answer-
oriented sentence(s) that are semantically relevant with the
significant words in the question are regarded as question-
relevant clue words. Specifically, we first remove insignificant
words in the question. Insignificant words include all question
terms (such as who, where), auxiliary verbs (such as do,
did), functional words (such as conj, art, prep, pron) and
punctuations such as !?,.(). Next, for any remaining word in
the question, if the word and its synonyms, antonyms, sibling
terms sharing the same hypernym (by lookup from WordNet)
appear in the answer-oriented sentence(s), these words are
regarded as the question-relevant clue words [23].

We use the example in Fig. 5) to elaborate the process. The
sample question is "Which NFL team represented
the AFC at Super Bowl 50?". From the significant
words (such as ”NFL”), we find question-relevant clue words
"Football", "AFC", "Broncos", "NFC", "Super",
and "Bowl" in the answer-oriented sentence(s).

D. Weighted Syntactic Parsing Tree Constructor (WSPTC)

This module establishes a relationship among all words
in the answer-oriented sentence(s) with a tree structure. We
first use Lexicalized Probabilistic Context-Free Grammars (L-
PCFGs) Gr = (M,

∑
, R, S) [13], [20] to generate a syntactic

parsing tree. Each node in the tree has an index, which
represents the position of this word in the answer-oriented
sentence(s). Then we associate an attention weight to each
edge in the syntactic parsing tree. We use the attention derived
from the first-layer encoder of PLM as the attention weights.
Specifically, we first derive embeddings of each word in the
answer-oriented sentence(s) from PLM , denoted as ~xi. Then,
we adopt linear transformation to obtain representation of
queries Q, keys K and values V shown in Eq. 6. After that, we
make scaled dot-product attention for heads = 16 times and
calculate self-attention score of each attention head for each
vector pair. We make scale by dk = 64 and normalize with
softmax for Q and K shown in Eq. 7. Finally, we concatenate
outputs of all attention heads to obtain the attention weights
WAttn

i shown in Eq. 8. WQ
t , WK

t , WV
t , Wo are all trainable

parameters.
After that, we annotate the attention weights for all edges of

the syntactic parsing tree to build a weighted syntactic parsing
tree shown in Fig. 6 (a). Higher weights between two nodes
represent more attention from a node to its child node in the
answer-oriented sentence(s).

Q = Wq
~xi,K = Wk

~xi, V = Wv
~xi (6)

Qi
t = QWQ

t ,Ki
t = KWK

t , V i
t = VWV

t , 1 ≤ t ≤ 16

headit = Attention(Qi
t,K

i
t , V

i
t ) = softmax(

Qi
tK

i
t
T

√
dk

)V i
t

(7)

WAttn
i = MultiHead(Qi,Ki, V i)

= Concat(headi1, · · · , headiT )Wo

(8)



Fig. 3. Framework of proposed GCED with five modules: the Answer-oriented Sentences Extractor, the Query-based Words Selector, the Weighted Syntactic
Parsing Tree Constructor, the Evidence Forest Constructor and the Optimal Evidence Distiller.

Fig. 4. Framework of ASE. It represents the answers predicted by different
sentence subsets. Assume there are N sentences in a context, we select
sentence 2 and sentence N from it based on a QA model.

Fig. 5. A sample of selecting question-relevant clue words by QWS. The
first line in Q is a question, and the second line is remaining words after
removing insignificant words. S1 is the answer-oriented sentence(s). Words
colored in red represent related-word-pairs in Q and in S1. Numbers below
words in Q represent their index, and numbers below words in S1 represent
the corresponding words in Q.

E. Evidence Forest Constructor (EFC)

In this part, we use question-relevant clue words, the input
answer and the weighted syntactic parsing tree (T ) to construct
the evidence forest (T E). We find the question-relevant clue
words and answer words from T , and the subtrees induced
from these words as well as their parents in T constitute T E .
For example, in Fig. 6 (b), nodes 3, 5, 7 are question-relevant
clue words, nodes 13 and 15 are answer words. There parents
as well as these nodes constitute two evidence trees (tree with
nodes 2, 3, and tree with nodes 5, 6, 7) and one answer tree
(tree with nodes 13, 14 and 15). These trees compose of the
final evidence forest.

F. Optimal Evidence Distiller (OEC)

Finally, we distill the optimal evidence from the evidence
forest. The evidence forest is still not necessarily to be infor-

mative or readable. OEC is designed to address this issue, that
is keeping a balance between informativeness. conciseness and
readability of the evidences. The input of this module is T and
the evidence forest FE , and the output is the optimal distilled
evidence which is the final output evidence. OEC adopts a
Grow-and-Clip strategy to distill the optimal evidence based
on hybrid scores and attention weights. The Grow-and-Clip
strategy searches for a shortest path in T to connect evidence
trees and the answer trees in the evidence forest (introduced
in Sec. III-E). It consists of two fundamental search opera-
tions: Sequential Grow Searching (SGS) and Sequential Clip
Searching (SCS), as illustrated in Fig. 6(c), (d). The algorithm
of Grow-and-Clip search strategy is illustrated in Algorithm 1.

1) Sequential Growth Searching (SGS): We use SGS to
connect all trees in the evidence forest (FE) to obtain an
informative and readable evidence (Fig. 6 (c)). SGS achieves
this goal by a step-wise growth of a carefully selected optimal
tree in FE . In each iterative step, a parent node that has the
maximal weight with the roots in the current evidence forest
is selected to expand. In this way, we ensure the final evidence
evidence is informative and readable. The detailed procedure
of SGS is as follows and illustrated in Alg. 1 and Example 1.

• Step 1 (Select an optimal tree): We first select the tree
whose root has a maximum weight W attn with its parent
node from the evidence forest FE (shown in line 3 of
Grow Step in Alg. 1). This tree is denoted as Topt. W attn

is calculated in Sec. III-D. A higher attention weight
means more dependence between the root node and its
parent node.

• Step 2 (Update the evidence forest): Next, we merge
Topt with its parent node and sibling subtrees to replace
Topt (shown in line 4 of Grow Step in Alg. 1). Note
that this step will update the evidence forest. This step
ensures the readability as much as possible since the new
Topt only expands to nodes that are closely-related to the
old Topt (i.e., parent node and sibling nodes of the old
root).

• Step 3 (Construct an unclipped evidence tree): We
perform Step 1 and 2 repeatedly on the newly updated
FE until all trees FE are connected. Then an unclipped
evidence tree T E is constructed (shown in line 7 of



Fig. 6. Subfigure (a) to (d) represent the process of the Grow-and-Clip strategy. We use the weighted syntactic parsing tree and the evidence forest to make
SGS and SCS so as to distill the optimal evidence. Subfigure (e) displays a detailed process of distilling the optimal evidence by GCED.

Grow Step in Alg. 1). This unclipped evidence tree is
an informative and readable evidence after ranking its
nodes by indexes.

Example 1 (SGS). In this example (Fig. 6 (e)), there are two
evidence trees (T1 and T2), and one answer tree (T3). The question-
relevant clue words are node 3, 6, 14, 17, 29, 30 (colored in Tiffany
blue) and the input answer words are node 9,10 (colored in Sakura
pink).
• We first select an optimal tree whose root has a maxi-

mum attention weight with its parent node. There are three
roots nodes in the evidence forest: "4-Conference",
"15-Conference" and "31-title". Their attention
weights with their corresponding parent nodes are 0.2767,
0.2037 and 0.3230, respectively. Therefore, T3 rooted at node
31 is selected as Topt (shown in Grow Step line 3 in Alg. 1).

• Then, we select the parent of node 31 to expand. That is
"26-earn". As a result Topt is updated to be the subtree
rooted at node 26. The new Topt as well as T1, T2 is new
evidence forest (shown in Grow Step line 4 in Alg. 1).

• Next, we repeat the above-mentioned steps until all trees in the
evidence forest are connected. Finally, we construct a unclipped
evidence tree whose root is "11-defeated" (shown in Grow
Step line 7 in Alg. 1).

2) Sequential Clip Searching (SCS): We use SCS to remove
redundant subtrees in the unclipped evidence tree to obtain
a concise but still readable evidence (Fig. 6 (d)). SCS uses
the hybrid scores (shown in Eq. 5) to select the subtrees of
the highest priority to prune, keeping the conciseness and
readability of the final evidence. The process of SCS strategy
is as follows and the algorithm is shown in Alg. 1 Clip Step:

• Step 1 (Select a candidate subtree to clip): We first
select a candidate subtrees S in the unclipped evidence
tree T E . Any subtree S of T E that does not appear in the
evidence forest FE is a valid candidate. This ensures that
any question-relevant clue words and answer words will
not be clipped, guaranteeing the informativeness of the
final evidence (shown in line 3 of Clip Step in Alg. 1).

• Step 2 (Clip the worst candidate subtree): If the
selected candidate substree whose removal achieves the
maximum hybrid score (Hmax) of T E , it is pruned.
Note that the entire subtree including all the children
nodes and descendent nodes are deleted to guarantee the
readability of the evidence. If there are more than one
candidate subtrees achieving the highest hybrid score, the
one whose root has a minimum weight (WAttn

min ) with
its parent, will be selected to be pruned. This step is
illustrated in line 4-7 of Clip Step in Alg. 1.

• Step 3 (Construct a clipped evidence tree): Step 2 is
repeated until M times, which is a hyperparameter which
is tuned by experiments. When the repeating procedure
ends, a clipped evidence tree T E is constructed.

Example 2 (SCS). Continue Example 1. We drive a clipped
evidence tree T E from the result of SGS. This clipped evidence
tree is an informative-yet-concise and human-readable evidence after
ranking its nodes by indexes.

• There are four candidate clipped subtrees S (subtrees rooted
at node 32, 20, 22, 25, respectively). The hybrid scores of T E

after removing each subtrees are 0.6439, 0.6572, 0.7006 and
0.6145, respectively. Only the subtree rooted at 22 achieves the
maximum score.

• Next, we clip the subtree Swor rooted at 22. All the descendant
nodes including nodes 23, 24 are removed from T E . After that,
we repeat the above steps to clip other subtrees in the same
way (colored in light gray). In this example, the clip time M is
set to 1 according to experiments.

After finishing Grow-and-Clip, we rearrange nodes
in the final clipped evidence tree T E in terms of
the indexes of nodes to obtain the optimal evidence:
"Football Conference (AFC) champion Denver
Broncos defeated Football Conference (NFC)
champion Carolina Panthers to earn Super
Bowl title.", which is an informative-yet-concise and
human-readable evidence.



Algorithm 1: The Grow-and-Clip strategy

Input : Evidence Forest FE = {T1, · · · , TN},
Weighted Syntactic Parsing Tree T ,
Times of clip M .

Output: Evidence Tree T E .

Grow Step:
1: N ← |FE | // N is the number of trees in FE

2: while N > 1 do
3: Topt ← argmaxTi∈FEW attn

r (FE , T ) // Topt is the
tree whose root has a maximum weight Wattn

r

with its parent in T
4: Topt ← merge Topt with parent node and sibling subtrees
5: N ← |FE | // re-calculate the number of trees

in FE

6: end while
7: T E ← Topt // now we get the unclipped evidence

tree

Clip Step:
1: i←M // how many times we can clip
2: while i > 0 do
3: S ← subtrees(T E)− trees(FE) // S doesn’t

include any trees in FE

4: Swor ← argmaxSi∈S(H(Si, T )) // Swor is the
subtree of maximum hybrid score H

5: T E ← T E − Swor // clip the redundant evidence
tree

6: i← i− 1
7: end while
8: Output T E // now we get the clipped evidence tree

IV. EXPERIMENTS

In this section, we carry out experiments on two reading
comprehension datasets SQuAD and TriviaQA. We adopt nine
fine-tuned QA models on SQuAD and another nine fine-
tuned QA models on TriviaQA to predict answers. Then
we take these predicted answers and also the ground-truth
answers as the input answers to distill evidences, respectively.
Next, we propose a human evaluation protocol to access
informativeness, conciseness and readability of the distilled
evidences on these datasets. Moreover, we use the distilled
evidences as the contexts to investigate whether an off-the-
shelf QA model could benefit from our distilled evidence. In
addition, we carry out ablation study to study the effect of
each component of our GCED algorithm. We also showcase
the effectiveness of distilled evidence through case studies and
conduct error analysis to explore the limits of our approach.

A. Experimental Setup

1) Human evaluation: We conduct human evaluation to
assess informativeness, readability and conciseness of the
distilled evidences. Specifically, we design a scoresheet with
five scales (1-5 scales, 5 is the best) to evaluate the three
characteristics, as shown in Tab. I.

The procedure of human evaluation is as follows: We first
enroll 9 graduate student volunteers (not including authors) as
human raters to rate the distilled evidences according to the

criterion specified in Tab. I. They are kindly to offer their help
without being compensated in any form. We divide them into
three groups, and raters in each group will be distributed with
the same evidences. We randomly select 3,000 QA pairs per
QA model per dataset for them to evaluate. Next, we calculate
Inter-rater agreement of Krippendorff’s Alpha (IRA) shown
in Tab. II to evaluate the rating quality. Some controversial
evidences which have low agreements (<0.7) are discarded.
Finally we average human evaluation of each group to get the
final quality score of the distilled evidences. We set the weight
factor of informativeness, conciseness and readability as the
same.

2) QA models performance: We carry out experiments to
observe the effect of distilled evidences for improving the
performance of QA models. we carry out experiments on
GeForce RTX 3090 GPU. For some QA models with too
many parameters, we use TPU on Google Colab. We use
Stanfordcorenlp and nltk to do syntactic parsing, and use
Pytorch to train QA models. We set the maximum length of
the input sequence as 384 with 64 for the question, 30 for the
answer, 100 for the evidence, and 128 for the sliding windows
in the context. Moreover, we use Adam optimizer with default
parameters, initialize the learning rate and batch size to 5e-5
and 8, respectively, for 3 epochs.

B. Baselines and Metrics

1) Baselines: We select nine fine-tuned QA models on
SQuAD, including BERT [22], RoBERTa [9], SpanBERT [26],
ALBERT [29], XLNet [53], ELECTRA [19], LUKE [50],
T5 [5] and DeBERTa [4]. And select another nine fine-tuned
QA models on TriviaQA, including BERT+BM25 [8], [22],
GraphRetriever [6], Longformer [7], BIGBIRD [3], RAG [30],
PA+PDR [15], [16] and Hard-EM [34], to predict answers in
two situations:

• The input of QA models are the questions and the
contexts, and the output is the answers predicted by
QA models. These predicted answers are used to distill
predicted-answer-based evidences.

• The input of QA models is the questions and the distilled
evidences based on given answers, and the output is the
answers predicted by the QA models. These predicted
answers are used to evaluate the performance of QA
models.

2) Metrics: The metrics includes human evaluation and
machine evaluation shown as follows:

• Human evaluation. We adopt human evaluation, as in-
troduced in Sec. IV-A1, to assess the quality (informative-
ness, conciseness, readability) of the distilled evidences.

• Machine evaluation. We use EM (Exact Match) and F1
(F1 score) to evaluate the performance of QA models
after using the distilled evidences as the contexts. EM
and F1 are same as the metrics introduced in [41],
[42], which measures the percentage of predictions that
match any one of the ground-truth answers exactly and
the average overlap between the predicted answer and the
ground-truth answer, respectively.



TABLE I
A HUMAN EVALUATION SCORESHEET FOR THE DISTILLED EVIDENCES BASED ON INFORMATIVENESS, CONCISENESS AND READABILITY.

Criteria (Scores) Contents

Informativeness

(5) Extremely related to the QA pair, and the input answer can be completely inferred from the evidence.
(4) Generally related to the QA pair, and the input answer can be partly inferred from the evidence.
(3) Generally related to the QA pairs, but the input answer can’t be inferred from the evidence.
(2) Only some details between the evidence and the QA pair are identical, and the input answer can’t be inferred from the evidence.
(1) The evidence is irrelevant with the QA pairs.

Conciseness

(5) Extremely concise.
(4) Generally concise. (1-1.5 longer than the expected evidence).
(3) Containing some redundant information. (1.5-2 longer than the expected evidence)
(2) Containing too much redundant information. (2-3 longer than the expected evidence)
(1) The evidence is the whole document. (>3 longer than the expected evidence)

Readability

(5) Extremely fluent and logical.
(4) Can be understood with a few grammar mistakes (1-2).
(3) Can be understood by some extent, but with many grammar mistakes (>2).
(2) Can not be understood, but some segments are fluent.
(1) Not readable.

TABLE II
INTER-RATER AGREEMENT OF KRIPPENDORFF’S ALPHA IN HUMAN

EVALUATION.

Criteria Group 1 Group 2 Group 3

Informativeness 0.77 0.81 0.76
Conciseness 0.83 0.80 0.75
Readability 0.82 0.77 0.81

Hybrid Score 0.81 0.79 0.78

C. Datasets

We adopt two popular reading comprehension datasets,
SQuAD and TriviaQA, for the evaluation. The statistics of
datasets are shown in Tab. III. Each dataset is divided into
training set (for QA models training) and development set (for
QA models evaluation).

SQuAD [41], [42] have two versions: 1.1 and 2.0, which
are both derived from Wikipedia articles. SQuAD-1.1 consists
of 107,785 question-answer pairs composed from 536 articles
by crowdworkers. SQuAD-2.0 combines the existing questions
in SQuAD-1.1 with 53,775 new unanswerable questions about
the same paragraphs. The answer to every question in SQuAD-
1.1 and 2.0 is a segment of text or a span from the correspond-
ing paragraph.

TriviaQA [27] contains over 650K question-answer-
evidence triples. After removing the triples missing the correct
answer, there remains 95K useful question-answer pairs. The
dataset is constructed from Web search results and Wikipedia
articles. Hence, we have two versions of datasets: TriviaQA-
Web and TriviaQA-Wiki.

D. Main results

Next, we present the main results of our experimental study.
1) Results of human evaluation: The results of human

evaluation for distilled evidences are shown in Tab. IV (on
SQuAD) and Tab. V (on TriviaQA). We make human evalu-
ation for both predicted-answer-based evidences (row 1-9 in

TABLE III
STATISTICS OF TWO DATASETS, SQUAD AND TRIVIAQA.

Dataset Train Dev

SQuAD-1.1 87599 10570
SQuAD-2.0 130319 6078
TriviaQA-Wikipedia 110647 14229
TriviaQA-Web 100000 68621

Tab. IV and Tab. V) and ground-truth-answer-based evidences
(the last row in Tab. IV and Tab. V).

The human evaluation reveals that for both predicted-
answer-based evidences and ground-truth-based evidences, the
quality scores (informativeness, conciseness, readability as
well as the hybrid scores) of distilled evidences are consis-
tently larger than 0.75 across all baseline QA models and
datasets. It suggests that the quality of automatically distilled
evidences is satisfying, which is independent on different
QA models. We also find that on average 78.5% and 87.2%
words have been reduced in the distilled evidences on SQuAD
and TriviaQA datasets, respectively. This further justifies the
conciseness of the evidences. We highlight that there is no
significant difference between human evaluation for predicted-
answer-based evidences and ground-truth-based evidences (the
p-value is > 0.5). The reason is that the distilled evidences aim
at explaining/supporting the input answers whatever the input
answers are predicted by QA models or labeled as ground-truth
answers by crowdworkers. The correctness of the answers
do not affect the quality of the distilled evidences, which
is friendly for humans to understand the source of the input
answers.

2) Performance gain of QA models augmented by ground-
truth-answer-based evidences: In an ideal setting or some
applications (such as searching engine), we have ground-
truth answers, which are ideal sources to distill evidences.
These evidences could also be seen as concise-yet-informative
contexts for a QA model to find the correct answers. If the



TABLE IV
HUMAN EVALUATION FOR PREDICTED-ANSWER-BASED EVIDENCES AND

GROUND-TRUTH-ANSWER-BASED EVIDENCES ON SQUAD-1.1 AND
SQUAD-2.0. THE PREDICTED-ANSWER-BASED EVIDENCES ARE

DISTILLED FROM THE ANSWERS PREDICTED BY THE QA MODELS LISTED
IN THE FIRST COLUMN.

Datasets SQuAD-1.1 SQuAD-2.0

Source I C R H I C R H

BERT-large 0.87 0.82 0.83 0.84 0.88 0.81 0.87 0.85
RoBERTa-500K 0.86 0.89 0.84 0.86 0.85 0.90 0.88 0.88
SpanBERT 0.88 0.86 0.87 0.87 0.85 0.82 0.84 0.84
ALBERT 0.88 0.83 0.86 0.86 0.89 0.84 0.83 0.86
XLNet-large 0.90 0.87 0.88 0.88 0.90 0.89 0.89 0.89
ELECTRA-1.75M 0.91 0.87 0.85 0.88 0.91 0.85 0.88 0.88
LUKE 0.86 0.83 0.85 0.85 0.90 0.86 0.89 0.88
T5 0.89 0.87 0.86 0.87 0.92 0.89 0.88 0.90
DeBERTa-large 0.90 0.86 0.82 0.86 0.89 0.88 0.90 0.89

Ground-truth 0.90 0.89 0.88 0.89 0.91 0.90 0.89 0.90

TABLE V
HUMAN EVALUATION FOR PREDICTED-ANSWER-BASED EVIDENCES AND

GROUND-TRUTH-BASED EVIDENCES ON TRIVIAQA DATASETS. THE
PREDICTED-ANSWER-BASED EVIDENCES ARE DISTILLED BASED ON THE

ANSWERS PREDICTED BY THE FOLLOWING QA MODELS.

Datasets TriviaQA-Web TriviaQA-Wiki

Source I C R H I C R H

BERT+BM25 0.82 0.81 0.80 0.81 0.83 0.82 0.81 0.82
GraphRetriever 0.81 0.82 0.77 0.80 0.77 0.81 0.76 0.78
RoBERTa-base 0.83 0.85 0.80 0.83 0.82 0.78 0.80 0.80
Longformer-base 0.81 0.77 0.79 0.79 0.79 0.76 0.76 0.77
Bigbird-itc 0.77 0.80 0.77 0.78 0.83 0.76 0.78 0.79
ELECTRA-base 0.85 0.86 0.83 0.84 0.81 0.82 0.80 0.81
RAG-Sequence 0.83 0.78 0.79 0.80 0.80 0.84 0.82 0.82
PA+PDR 0.80 0.84 0.82 0.82 0.80 0.82 0.80 0.80
Hard-EM 0.85 0.86 0.81 0.83 0.83 0.80 0.81 0.81

Ground-truth 0.85 0.86 0.84 0.85 0.83 0.84 0.82 0.83

evidence is more concise than the original context, and it
contains essential information to answer a question, then using
the evidence as the input of a QA model (instead of the raw
context) shall improve its performance. Hence, we propose an
experiment to test the performance gain of QA modes which
are augmented by evidence distilled by our solution from the
ground-truth-answers.

The results are shown in Tab. VI (SQuAD) and Tab. VII
(TriviaQA). Results of baselines are from their published
papers except those with asterisks in the upper right corner,
which are missing in the corresponding papers. We retrain
these baselines with asterisks based on the same settings on our
own machine and report their results. We find that it performs
consistently better for all QA models when the contexts are
replaced with the distilled evidences on all tested datasets,
which supports our conjecture.

3) Performance degradation of QA models augmented by
predicted-answer-based evidences: In a more realistic setting,
we have no ground-truth answers, where we need to predict the
answer by a vanilla QA model. However, the evidence distilled
from a wrong predicted answer might be noisy for the question
answering. Using such evidences as the QA contexts is likely

to produce wrong answers. Hence, QA models augmented by
predicted-answer-based evidences are expected to degrade in
their performance. Hopefully, the performance degradation is
minor or acceptable if our evidence distillation solution is
effective to finding effective information from the answer. This
inspires our interest to test the performance degradation of QA
models which are augmented by the evidences distilled by our
solution from the predicted answers.

We randomly substitute δ percentage of ground-truth an-
swers with predicted answers with δ ranging in 0.2, 0.5, 0.8,
1, respectively, to distill evidences. It means some distilled
evidences are based on the ground-truth answers and others
are based on the predicted answers. We then substitute the
contexts with these evidences to retrain QA models. The
results are shown in Fig. 7. It’s obvious to find that the
performance of QA models fed with the predicted-answer-
based evidences as the contexts indeed degrade compared with
that of the vanilla QA models, which confirms our conjecture.
However, for many QA models, even all the evidences come
from predicted answer, only 2-3% performance drop can be
observed on SQuAD datasets. This result suggests our solution
has minor side effects but additionally generates answering
evidence, which are demanded in many real applications. More
performance degradation can be observed on TriviaQA dataset.
Because this dataset is more open and in general is more
challenging, and most State-Of-The-Art QA models have less
than 80% performance (EM & F1).

This could be an interesting research topic in the future
work. Whatever the answer is correct or not, the corre-
sponding evidence provides an informative-yet-concise sum-
marization of the context that explains how this answer was
predicted. In this way, a user can quickly know the information
source of this answer, leading to an explainable and reliable
QA system. For example, given a question "Where was
Albert Einstein born?", if a QA system gives the
answer "Berlin" and the supporting evidence "Albert
Einstein moved to Berlin 50 years old.", the
user will find this QA system is not reliable and he will not
trust this answer.

E. Ablation Study

In this part, we conduct ablation study to further analyze
each component of GCED. Specifically, we use BERT which
is augmented by the ground-truth-based evidences on SQuAD-
2.0 to make analysis. The results are shown in Tab. VIII.

1) Ablation Study on human evaluation: First, when we re-
move QWS and the informativeness score (w/o I), respectively,
we observe that the human informativeness scores (I) decrease.
It indicates that question-relevant clue words in QWS and
PLM in building informativeness scores both extract useful
information which can explain/support the input answers.
Next, we can find that when we remove ASE (w/o ASE),
the clip step (w/o Clip) from the Grow-and-Clip strategy,
and the conciseness score (w/o C), respectively, the human
conciseness scores (C) decrease. It indicates that each of
these three modules can filter out much redundant information



Fig. 7. The performance degradation of QA models augmented by predicted-answer-based evidences (a: SQuAD-1.1, b: SQuAD-2.0, c: TriviaQA-Web and d:
TriviaQA-Wiki). gt: use ground-truth answers to distill evidences; pred: use predicted answers to distill evidences; predx: substitute x% ground-truth answers
with predicted answers to distill evidences.

TABLE VI
COMPARISONS OF NINE BASELINES AND THEIR EVIDENCE-AUGMENTED

VARIANTS ON SQUAD-1.1 AND SQUAD-2.0 DATASETS. THE EVIDENCES
ARE DISTILLED FROM THE GROUND-TRUTH ANSWERS.

Datasets SQuAD-1.1 SQuAD-2.0

Models EM F1 EM F1

BERT-large 84.1 90.9 79.0 81.8
+GCED 88.1 92.3 85.0 90.9

RoBERTa-500K 88.9 94.6 86.5 89.4
+GCED 91.5 95.8 88.7 92.3

SpanBERT 88.8 94.6 85.7 88.7
+GCED 91.2 96.1 89.2 92.9

ALBERT 89.3 94.8 87.4 90.2
+GCED 92.0 96.1 90.6 93.1

XLNet-large 89.7 95.1 87.9 90.6
+GCED 92.8 96.2 90.5 93.5

ELECTRA-1.75M 89.7 94.9 88.0 90.6
+GCED 93.0 95.9 91.6 93.9

LUKE 89.8 95 87.9* 90.5*
+GCED 92.8 96.7 91.4 93.4

T5 90.1 95.6 88.2* 90.8*
+GCED 93.7 97.0 91.8 94.0

DeBERTa-large 90.1 95.5 88.0 90.7
+GCED 93.1 97.1 91.0 93.0

+GCED (average) ↑3.5% ↑1.5% ↑4.1% ↑4.2%

which maintains the conciseness of the distilled evidences.
After that, when we remove grow step (w/o Grow) from the
Grow-and-Clip strategy and the readability score (w/o C) from
the hybrid score, respectively, the human readability scores
(C) decrease. It indicates that both of the grow step and the
readability scores can guarantee the readability of the distilled
evidences. Therefore, human evaluation of each component in
the proposed GCED demonstrates that each component and

TABLE VII
COMPARISONS OF NINE BASELINES AND THEIR EVIDENCE-AUGMENTED

VARIANTS ON TRIVIAQA DATASETS. THE EVIDENCES ARE DISTILLED
FROM THE GROUND-TRUTH ANSWERS.

Datasets TriviaQA-Web TriviaQA-Wiki

Models EM F1 EM F1

BERT+BM25 47.2 56.1* 46.4* 54.7*
+GCED 63.8 70.5 62.1 69.0

GraphRetriever 55.8 64.3* 54.9* 63.4*
+GCED 69.3 75.5 68.2 73.9

RoBERTa-base 69.7* 76.8* 67.6* 74.3
+GCED 80.4 84.8 78.4 82.1

Longformer-base 74.6* 78.6* 72.0* 75.2
+GCED 82.1 86.4 79.8 83.0

Bigbird-itc 77.6* 81.8* 75.7* 79.5
+GCED 85.1 90.4 84.3 89.2

ELECTRA-base 68.9* 75.6* 65.4 73.8*
+GCED 79.4 84.6 76.8 81.7

RAG-Sequence 58.9* 62.7* 55.8 61.5*
+GCED 71.4 74.8 68.9 73.5

PA+PDR 62.3* 69.0* 60.1 66.7*
+GCED 73.0 80.1 72.5 78.9

Hard-EM 68.5* 75.8* 66.9 75.3*
+GCED 80.1 83.2 78.4 83.8

+GCED (average) ↑18.2% ↑14.6% ↑19.3% ↑15.0%

the organic combination of all components in GCED both
have significant effects for distilling informative-yet-concise
and human-readable evidences.

2) Ablation Study on QA models which are augmented
by ground-truth-based evidences: Next, we make ablation
Study on QA models which are augmented by ground-truth-
based evidences. We can find that ASE affects most on QA



TABLE VIII
THE EFFECT OF EACH COMPONENT OF GCED. THE EVIDENCES ARE

DISTILLED FROM THE GROUND-TRUTH ANSWERS WITH BERT ON
SQUAD-2.0.

Sources I C R H EM F1

w/o ASE 0.85 0.65 0.80 0.77 72.0 78.2
w/o QWS 0.67 0.79 0.77 0.74 70.2 76.5
w/o Grow 0.82 0.80 0.67 0.76 75.2 80.6
w/o Clip 0.81 0.70 0.81 0.77 80.5 86.3

w/o I 0.73 0.78 0.80 0.77 80.2 87.0
w/o C 0.80 0.72 0.76 0.76 79.3 86.9
w/o R 0.81 0.83 0.75 0.80 82.1 88.4

BERT+GCED 0.86 0.83 0.82 0.84 85.0 90.9

model’s performance. When it’s removed (w/o ASE), the
performance decreases most. This results demonstrate that
the answer-oriented sentence(s) contain suggestive information
in predicting correct answers if we use ground-truth-answer-
based evidences as the contexts to train QA models. Next,
we remove QWS (w/o QWS), and the performance also
decreases a lot. The results demonstrate that question-relevant
clue words have a significant semantic relationship with the
ground-truth answers. After that, we remove Grow step (w/o
Grow) and Clip step (w/o Clip) in the Grow-and-Clip strategy.
The degrading performance demonstrates that both of Grow
step and Clip step have critical effects in predicting correct
answers. Furthermore, we assess the individual effect of the
informativeness scores (w/o I), the conciseness scores (w/o C),
and the readability scores (w/o R). The results demonstrate
all three criteria have positive effect in predicting correct
answers if these evidences are distilled based on the ground-
truth answers.

In brief, the proposed GCED is a powerful algorithm in dis-
tilling informative-yet-concise and human-readable evidences,
which can explain/support the input answers. And if the
evidences are distilled based on the ground-truth answers,
these evidences are an informative-yet-concise form of the
contexts, which can improve the performance of QA models
besides explaining/supporting the input answers.

F. Case Study

In this part, we display a good evidence distilled by the
proposed GCED, as shown in Fig. 8. Given a QA pair
and the context which contains four sentences, S1 and
S2 are selected as the answer-oriented sentences by ASE
at first. Second, we select "Beyoncé", "performed",
and "competitions" in the answer-oriented sentences
as the question-relevant clue words by QWS. Third, we
adopt S1 and S2 to construct a weighted syntactic parsing
tree by WSPTC with calculating attention weights for
all edges. Fourth, we obtain an evidence forest including
an answer tree and two evidence trees. The answer tree
contains three nodes "singing", "and", "dancing".
One evidence tree contains five nodes "Beyoncé",
"Giselle", "Knowles", "-", and "Carter". The

Fig. 8. A good evidence distilled by GCED. Given a QA pair, S1 and S2

are selected as the answer-oriented sentences by ASE. Question-relevant clue
words (the highlighted words) are used to construct the evidence forest (bold
and colored in dark blue). We use Grow-and-Clip strategy to grow words
(bold and colored in brown) and clip words (colored in grey), and connect
them to the optimal evidence.

other evidence tree contains seven nodes "performed",
"in", "various", "singing", "and", "dancing",
and "competitions". Fifth, we adopt OEC with the
Grow-and-Clip strategy to grow three nodes including "as",
"a", and "child" to achieve informativeness, and clip one
node including "various" to achieve conciseness. Due to
space limitation, we haven’t display the nodes which have
been grown first and then clipped, such as "born", "and",
"raised", "in", "Houston", ",", "Texas", etc. These
nodes mainly aim at guarantee readability during the process
of Grow-and-Clip. Finally, we rank the remaining nodes by
their indexes to distill the final optimal evidence, that is
"Beyoncé Giselle Knowles-Carter performed
in singing and dancing competitions as a
child".

We are satisfied to find that this evidence is informative
(contain useful information), concise (the length is short
enough) and readable (without grammar mistakes or fuzzy
logic), demonstrating the proposed GCED can catch important
information to explain/support the input answer, filtering out
noises and is user-friendly.

G. Error analysis

However, there are some unsatisfying evidences distilled
by GCED. For example, given a question "In the
Bible, who was the mother of Solomon?", the
the answer predicted by a QA model is "bathsheba".
The evidence distilled by GCED is "Solomon had
brothers through Bathsheba, Nathan,
Shammua, and Shobab, brothers through as
many mothers.". However, it’s difficult to understand by
humans due to its bad readability . Because GCED doesn’t
have knowledge to know the relationship among child,
David, and wife, so it can’t distill a more human-readable
informative-yet-concise evidence "Solomon was the



child to David and his wife Bathsheba.".
Moreover, some contexts are comparatively long, containing
many sentences. The structure of most sentences are
complicated with nested clauses and hidden subjects, making
it difficult to extract more suggestive information and filter out
redundant noises to distill informative-yet-concise evidences.

Therefore, we will optimize our proposed GCED through
adding world knowledge and commonsense and improving the
understanding on too complicated sentences in the future work.

V. RELATED WORK

Evidences extraction based on sentence-level for answer
explanation. A succession of research has been conducted
to improve the interpretability of QA. For the extractive and
abstractive QA, such as SQuAD [41], [42] and TriviaQA
[27], most answers and their supporting evidences can be
directly extracted from the given contexts based on semantic
and syntactic knowledge. The process of evidences extraction
can be summarized as extracting only a few sentences in
the documents to explain/support the answer. Previous studies
mainly extract evidences on sentence level. For example, Min
et al. [35] extract the minimal context based on a sentence
selector and a QA model, giving the QA model a reduced
set of sentences with high selection scores in order to ex-
plain/support answers. Yin et al. [55] study interdependent
sentence pair representations with three attention schemes,
integrating mutual influence between sentences into CNNs
to explain/support answers on WikiQA [52]. Choi et al. [17]
combine a coarse, fast model for selecting relevant sentences
and a more expensive RNN for explaining/supporting answers
and use this model to maintain or even improve the perfor-
mance of state-of-the-art QA models simultaneously. Lin et
al. [32] utilize a sentence-level selective attention to aggregate
the information of all sentences to extract relational facts.
They employ convolutional neural networks to embed the
semantics of sentences. Lin et al. [31] employs a paragraph
selector to filter out those noisy paragraphs and a paragraph
reader to extract the correct answer from those denoised
paragraphs. Shen et al. [44] propose a distantly supervised
open-domain question answering (DS-QA) system which uses
information retrieval technique to obtain relevant text from
Wikipedia as supporting facts for answers. Wang et al. [48]
use reinforcement learning to train target paragraph selection
and answer extraction jointly. They propose a re-ranking-based
framework to make use of the evidence from multiple pas-
sages in open-domain QA, and perform evidence aggregation
in existing open-domain QA datasets. Atanasova et al. [1]
generate veracity explanations on available claim context,
and show that veracity prediction can be modeled jointly
with veracity prediction and improves the performance of the
veracity system. However, sentence-level evidences still have
redundant noises. To guarantee continuous information, several
whole sentences are selected out as supporting evidences
instead of emphasizing clue words or phrases. Different from
them, our research aims at token-level instead of sentence-
level or paragraph-level to distill informative-yet-concise and

human-readable supporting evidences. Human evaluation in-
dicates that our distilled evidences are of high-quality which
are informative to explain/support the input answers, concise
without redundant noises and achieve better human readability.

Evidences extraction by neural networks for answer ex-
planation. Besides, there are a series of research make answer-
explanations by neural networks on complex datasets. For
example, Schuff et al. [43] propose a hierarchical model and a
new regularization term to strengthen the answer-explanation
coupling on multi-hop HOTPOTQA. Thayaparan et al. [38]
introduce a novel approach for answering and explaining
multiple-choice science questions by reasoning on grounding
and abstract inference chains. Wang et al. [47] extract evidence
sentences for multiple-choice MRC based on inference and
utilization of prior knowledge by distant supervision and deep
probabilistic logic framework. Jansen et al. [24] implement a
fine-grained characterization of the knowledge and inference
requirements on science exam QA. Tran et al. [46] adopt
an explainable, evidence-based memory network architecture,
which learns to summarize the dataset and extract supporting
evidences to make its decision on TrecQA and WikiQA.
However, due to the end-to-end attribute of neural networks,
the supporting evidences generated from neural networks are
not traceable and user-friendly for explaining/supporting given
answers. Different from their works, our solution GCED is
built upon a pipelined principle based on three characteristics
heuristically, improving the controllability and traceablility
for the distilled evidences. Moreover, Some research such as
Atanasova et al. [2] aims to develop a comprehensive list of
properties to evaluate exsting explainability techniques (sim-
plification, gradient-based, etc). Therefore, we could evaluate
our GCED on this methods in the future.

VI. CONCLUSION AND FUTURE WORK

The interpretability of question answering is a great chal-
lenge in NLP, which is expected to find supporting facts
for given QA pairs so as to provide end-users a better
understanding for why a specific prediction is regarded as the
answer to that question. To automate the process of distill-
ing high-quality evidences to explain/support given answers,
we propose an Informative-yet-Concise Evidence Distillation
algorithm (GCED) for answer explanation on QA. Empirical
experiments elaborate the distilled evidences are informative to
explain/support the input answers, concise without redundant
noises and have human-like readability. There is also some
space to improve our algorithm. We plan to verify the proposed
GCED on more datasets and models, improving its ability on
understanding world knowledge/commonsense and speeding
up the process of evidence distillation in the future.
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[12] José Gilvan R. Maia Caio Viktor S. Avila, Wellington Franco and Vania
M. P. Vidal.2020. CONQUEST: A Framework for Building Template-
Based IQA Chatbots for Enterprise Knowledge Graphs.

[13] Eugene Charniak and Mark Johnson. 2005. Coarse-to-Fine n-Best
Parsing and MaxEnt Discriminative Reranking. In Proceedings of the
43rd Annual Meeting of the Association for Computational Linguis-
tics (ACL’05). Association for Computational Linguistics, Ann Arbor,
Michigan, 173–180. https://doi.org/10.3115/1219840.1219862

[14] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes.
2017. Reading Wikipedia to Answer Open-Domain Questions. In
Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Associa-
tion for Computational Linguistics, Vancouver, Canada, 1870–1879.
https://doi.org/10.18653/v1/P17-1171

[15] Hao Cheng, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2020. Probabilistic Assumptions Matter: Improved Models for Distantly-
Supervised Document-Level Question Answering. In Proceedings of
the 58th Annual Meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics, Online, 5657–5667.
https://doi.org/10.18653/v1/2020.acl-main.501

[16] Hao Cheng, Xiaodong Liu, Lis Pereira, Yaoliang Yu, and Jianfeng
Gao. 2021. Posterior Differential Regularization with f-divergence for
Improving Model Robustness. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies. Association for Computational
Linguistics, Online, 1078–1089. https://www.aclweb.org/anthology/202
naacl-main.85

[17] Eunsol Choi, Daniel Hewlett, Jakob Uszkoreit, Illia Polosukhin, Alexan-
dre Lacoste, and Jonathan Berant. 2017. Coarse-to-Fine Question An-
swering for Long Documents. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Association for Computational Linguistics, Vancouver,
Canada, 209–220. https://doi.org/10.18653/v1/P17-1020

[18] Noam Chomsky. 1965. Aspects of the Theory of Syntax. In MIT Press.
[19] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Man-

ning. 2020. ELECTRA: Pre-training Text Encoders as Discriminators
Rather Than Generators. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net. https://openreview.net/forum?id=r1xMH1BtvB

[20] Michael Collins. 2003. Head-Driven Statistical Models for Natural
Language Parsing. Computational Linguistics 29, 4 (2003), 589–637.
https://doi.org/10.1162/ 089120103322753356

[21] Philip Davies. 2002. What is Evidence-based Education?. In British
Journal of Educational Studies.

[22] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long and Short
Papers). Association for Computational Linguistics, Minneapolis, Min-
nesota,4171–4186. https://doi.org/10.18653/v1/N19-1423

[23] Christiane Fellbaum. 2010. WordNet. In Theory and Applications of
Ontology: Computer Applications. 231–243.

[24] Peter Jansen, Niranjan Balasubramanian, Mihai Surdeanu, and Peter
Clark. 2016. What’s in an Explanation? Characterizing Knowledge and
Inference Requirements for Elementary Science Exams. In Proceedings
of COLING 2016, the 26th International Conference on Computational
Linguistics: Technical Papers. The COLING 2016 Organizing Commit-
tee, Osaka, Japan, 2956–2965. https: //www.aclweb.org/anthology/C16-
1278

[25] Robin Jia and Percy Liang. 2017. Adversarial Examples for Evaluating
Reading Comprehension Systems. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, Copenhagen, Denmark, 2021–2031.
https://doi.org/10.18653/v1/D17-1215

[26] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettle-
moyer, and Omer Levy. 2020. SpanBERT: Improving Pre-training by
Representing and Predicting Spans. Transactions of the Association for
Computational Linguistics 8 (2020), 64–77.

[27] Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. 2017.
TriviaQA: A large-scale Distantly Supervised Challenge Dataset for
Reading Comprehension. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics, Vancouver, Canada,
1601–1611. https://doi.org/10.18653/v1/P17-1147

[28] Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke Zettle-
moyer. 2013. Scaling Semantic Parsers with On-the-Fly Ontol-
ogy Matching. In Proceedings of the 2013 Conference on Em-
pirical Methods in Natural Language Processing. Association for
Computational Linguistics, Seattle, Washington, USA, 1545–1556.
https://www.aclweb.org/anthology/D13-1161

[29] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gim-
pel, Piyush Sharma, and Radu Soricut. 2020. ALBERT: A Lite
BERT for Self-supervised Learning of Language Representations.
In 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.
https://openreview.net/forum?id=H1eA7AEtvS

[30] Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni,
Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis,
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