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Abstract

Modeling and predicting human and vehicle motion is an active re-

search domain. Owing to the difficulty in modeling the various fac-

tors that determine motion (e.g. internal state, perception) this is often

tackled by applying machine learning techniques to build a statistical

model, using as input a collection of trajectories gathered through a

sensor (e.g. camera, laser scanner), and then using that model to pre-

dict further motion. Unfortunately, most current techniques use off-

line learning algorithms, meaning that they are not able to learn new

motion patterns once the learning stage has finished. In this paper, we

present an approach where motion patterns can be learned incremen-

tally, and in parallel with prediction. Our work is based on a novel

extension to hidden Markov models, called growing hidden Markov

models, which gives us the ability to learn incrementally both the pa-

rameters and the structure of the model. The proposed approach has

been evaluated using synthetic and real trajectory data. In our exper-

iments our approach consistently learned motion models that were

more compact and accurate than those produced by two other state-

of-the-art techniques.
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1. Introduction

Predicting the trajectories that vehicles and pedestrians are go-

ing to follow in a given environment is fundamental for ef-

fective autonomous navigation in cities, parking lots and high-

ways. The main challenge lies in the fact that these objects

move according to a diversity of complex factors, such as their

intentions and internal state, which are very difficult to model

and parametrize. Thus, instead of modeling these factors ex-

plicitly, the preferred approach in the literature assumes that

objects tend to follow typical motion patterns� hence, if those

patterns are known, it is possible to use them not only to pre-

dict future motion but also, for example, for detecting anom-

alous behavior, or improving visual tracking.

In practice, former knowledge about motion patterns is

seldom available a priori and it should be obtained by ap-

plying machine-learning techniques to motion data obtained

through some kind of sensor system. For example Bennewitz

et al. (2005) use the expectation-maximization (EM) algo-

rithm to cluster trajectory data gathered with a laser scan-

ner, and Hu et al. (2006) apply a two-pass hierarchical clus-

tering algorithm to find patterns on the output of a visual

tracker.

Despite being quite diverse, most motion pattern learning

techniques share the significant drawback that they operate

off-line, which implies the assumption that at least one ex-

ample of every possible motion pattern is contained in the

learning dataset. Given the enormous variety of possible hu-

man behaviors, this assumption does not hold in practice, and

the learned motion models have, in the best case, only limited

utility.
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It would be better to learn motion patterns incrementally, so

that when a new motion pattern is observed, the system is able

to integrate it into its knowledge base. This paper describes

such an approach: it learns motion patterns incrementally and,

at the same time, uses its current knowledge to predict motion.

It builds on our previous work (Vasquez and Fraichard 2005�

Vasquez et al. 2007) on a unified extension to hidden Markov

models (HMMs) (Rabiner 1990), a probabilistic framework

which is very popular in the motion pattern learning literature

(e.g. Walter et al. 1999� Makris and Ellis 2002� Bennewitz et

al. 2005). This extension, called growing hidden Markov mod-

els (GHMMs), enables incremental and on-line learning of the

parameters and the structure of the model.

In order to evaluate our approach, we have compared it

against two other state-of-the-art techniques (Bennewitz et al.

2005� Hu et al. 2006) using synthetic data from a simulator as

well as real data obtained with a visual tracking system. In our

experiments, our technique has consistently outperformed the

other two approaches regarding model size and accuracy.

The rest of this paper is structured as follows. Section 2

provides an overview of motion pattern learning, focusing on

techniques based on HMMs. Section 3 presents GHMMs. In

Section 4 the application of GHMMs to our particular prob-

lem is discussed. Our experimental test scenarios are described

in Section 5, which also presents a qualitative analysis of the

obtained results and discusses the real-time applicability of

our approach. Section 6 presents the two approaches that have

been used for comparison and evaluation purposes, it also in-

troduces the performance measures and discusses our quanti-

tative results. Finally, we present our conclusions in Section 7.

2. Related Work

To learn motion patterns, it is necessary to define their mean-

ing and to decide how they are going to be represented. In the

first part of this section, we present an overview of approaches

in the literature, classifying them according to the answers they

provide to these questions. Then, in the second part we provide

a more detailed explanation of HMM-based approaches, which

constitute the basis of our proposed approach.

2.1. Literature Overview

2.1.1. Behavioral Models

Approaches in this category consider motion patterns in terms

of behaviors having high-level semantics: a person may be fol-

lowing a friend, or fleeing from an attacker, a car may be un-

dertaking another car or waiting for the green light, etc.

In general, these approaches deal with the evolution of the

intentional state of the objects, often disregarding their met-

ric or physical states (e.g. position and speed). This makes

them better suited for applications such as video surveillance

or scene understanding than for tracking or motion prediction.

A good example of this type of approach is described in the

work of Oliver et al. (2000): they use coupled HMMs (Brand et

al. 1997) to model interactions (e.g. approaching, meeting and

fleeing) between pairs of objects. These states are defined prior

to learning and the model is trained on labeled data. Similar

ideas have been explored by Gong and Xiang (2003) and Xi-

ang and Gong (2006), allowing for interactions between more

than two objects. A more recent approach proposed by Hoogs

and Perera (2008) models behavior with a dynamic Bayesian

network containing semantic states obtained from a predefined

ontology.

2.1.2. Descriptive Models

This family of approaches models motion in terms of the phys-

ical state of the object without taking semantics into account.

Often, motion patterns are represented as sequences of points,

describing the object’s state at consecutive discrete time steps.

Under this representation, the learning problem is frequently

addressed using some sort of clustering algorithm to extract a

number of “typical” motion patterns (i.e. trajectory prototypes)

from an input dataset consisting of raw trajectory data.

A representative example is the approach proposed by Ben-

newitz et al. (2002), which uses EM to perform the clustering.

Other algorithms include hierarchical clustering (Makris and

Ellis 2001� Buzan et al. 2004� Vasquez and Fraichard 2004�

Hu et al. 2006), graph cutting (Junejo et al. 2004), and custom

pairwise clustering algorithms (Wang et al. 2006).

To apply the obtained trajectory prototypes to perform

tracking or motion prediction, a probabilistic framework is of-

ten used. This allows us to represent the uncertainties asso-

ciated with sensor noise and to take into account the model

incompleteness. Since most of these approaches are based on

HMMs, we review them in further detail in a separate section.

Some alternatives to approaches based on probabilistic

frameworks exist in the literature: neural networks are prob-

ably the most popular, starting with the seminal work by John-

son and Hogg (1995), which first proposed the use of multi-

layer self-organizing networks, where one layer represents the

states and another corresponds to the followed path. Similar

approaches have been proposed by Sumpter and Bulpitt (2000)

and Hu et al. (2004), who by modeling time explicitly obtained

performance comparable to that of probabilistic models. A dif-

ferent idea has been explored by Stauffer and Grimson (2000),

who no longer represented motion patterns as typical trajecto-

ries but as a co-occurrence matrix for every different motion

pattern, where every element ci� j roughly corresponds to the

probability that an object passes through states i and j given

that it is engaged in the corresponding motion pattern.
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2.1.3. Hybrid Models

Of course, the intentional and physical states of an object are

not independent� the intentions of an object condition its physi-

cal state� conversely, information about the position and speed

of an object may be used to infer the object’s intentions or

the behavior in which it is involved. A number of approaches

model to a certain extent the relationship between these two

states.

The basic idea in this kind of approach is to condition mo-

tion models on the behavior being executed. Often, the behav-

ior is represented as the object’s intention of reaching a partic-

ular place in the environment (i.e. its goal). For example, Liao

et al. (2004) have used a hierarchical extension to HMMs, ab-

stract hidden Markov models (AHMMs) (Bui et al. 2002), to

learn and predict the motion of pedestrians in cities, where the

three layers in the AHMM represented, top to bottom, goals,

transportation modes and the physical state. The approach is

able to learn the goal and transportation mode structures using

custom tailored algorithms, but the low-level physical structure

is given a priori in the form of a graph. Another AHMM-based

approach has been proposed by Osentoski et al. (2004) for in-

door environments but the structure is given a priori. Regard-

ing AHMMs, it is worth mentioning that they are, with respect

to inference, equivalent to a Markov decision process (Howard

1960) a probabilistic planning technique, which illustrates the

connection between planning and motion prediction.

Other goal-based approaches include those of Foka and

Trahanias (2002), Bruce and Gordon (2004) and Dee and Hogg

(2004). The latter is of particular interest because it represents

the world from the object’s perspective, which clearly con-

trasts with most other approaches, which are based in some

sort of global view. However, these three approaches share the

problem that the object’s evolution towards the goal is modeled

using overly simplistic mechanisms (e.g. linear interpolation

by Foka and Trahanias (2002)), leading to unreliable physical-

state estimations.

2.1.4. Other Approaches

The problem of building models of temporal processes has

also been studied in other disciplines. For example, Dixon

et al. (2004) have proposed a programming-by-demonstration

framework that represents motion using HMMs that are

learned with a model merging algorithm very similar in

spirit to that proposed by Stolcke and Omohundro (1993).

Another programming-by-demonstration framework has been

proposed by Calinon and Billard (2007) it represent trajecto-

ries as Gaussian mixture models and uses Gaussian Mixture

Regression for inference. The paper proposes two incremen-

tal parameter learning strategies, while the model structure

(i.e. the number of Gaussians) is fixed a priori.

Finally, we would like to mention the work of Kulic et al.

(2008) in the context of whole body motion. They propose an

approach based on a generalization of HMMs called factor-

ial HMMs. The approach assumes a chain-like structure and

fixed number of discrete states and uses an incremental al-

gorithm to estimate the model parameters and to instantiate

new motion models. The approach builds a HMM out of every

input observation sequence and uses a symmetric version of

the Kullback–Leibler divergence as the basis for a hierarchical

agglomerative clustering algorithm where new motion models

are inserted according to a threshold.

2.2. HMM-based Approaches

In this section we focus on techniques based on HMMs, and

thus are closely related to the proposed approach. For the

sake of clarity, our discussion of HMMs will be just a brief

overview, heavily biased towards our application. The inter-

ested reader may refer to the papers by Juang et al. (1986) and

Rabiner (1990) for a deeper introduction to the subject.

In the context of our problem, a HMM (see Figure 1(a))

may be seen as a graph whose nodes represent states attain-

able by the object (e.g. places in the environment) and whose

edges represent transitions between states. The system is as-

sumed to be at a given state and to evolve stochastically at

discrete time steps by following the graph edges according to

a transition probability P�St � St�1�. Moreover, the object’s

state is not observable directly, instead, it should be measured

through some kind of sensor reading (i.e. observation) which

is related to the actual state through an observation probability

P�Ot � St �. Often, the initial state of the system is represented

stochastically with a state prior P�S1�.

HMM learning may be done at two different levels.

� Structure learning: determines the number of nodes in

the model, which will be henceforth called discrete

states, as well as the edge structure for the graph.

� Parameter learning: estimates the parameters for the

three probability distributions (state prior, transition and

observation probabilities) from data.

Different algorithms for structure and parameter learning

exist in the literature, it is the choice of these algorithms what

distinguishes different HMM-based motion pattern learning

approaches. For example, Walter et al. (1999) assume that the

number of motion patterns is known a priori and define the

structure using a different chain-like graph for every motion

pattern, then parameters are learned using the EM algorithm�

Bennewitz et al. (2005) learn the HMM structure by cluster-

ing trajectory data with the EM algorithm, and then manually

set the model’s parameters according to assumptions about ob-

ject’s motion� Makris and Ellis (2002) learn the HMM struc-

ture in a similar way, but also incorporate parameter learning

into the algorithm.
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Fig. 1. (a) A basic three-state HMM� (b) HMM structure em-

bedded in a parking lot (only a few motion patterns are dis-

played).

Despite their differences, all of these approaches have some

points in common: (a) typical motion patterns are represented

with some sort of trajectory prototype� (b) structure learning

is independent of parameter learning� and (c) learning is first

performed off-line and then the system switches to a utilization

stage where no further learning is performed. As we will see in

the following sections, our approach behaves differently with

respect to these points.

3. GHMMs

In this section we present our proposed extension to HMMs,

GHMMs1, which may be described as time-evolving HMMs

1. Since space is limited, we have opted to provide a general overview on

GHMMs, which omits some specific information on optimizations and data

structures. The interested reader is referred to Vasquez (2007) for more details.

with continuous observation variables, where the number of

discrete states, structure and probability parameters are up-

dated every time that a new observation sequence is available.

The learning algorithm can be considered incremental accord-

ing to the three-point definition proposed by Langley (1995)

since: (a) it inputs one observation sequence at a time� (b) it

does not reprocess any previous data� and (c) it retains only

one knowledge structure in memory.

Our approach is designed for its utilization as a discrete

approximate inference tool for continuous state spaces. It is

applicable to problems where the continuous state space may

be discretized into a finite number of regions, so that every

such region is represented by a discrete state in the GHMM.

Our approach relies on three main assumptions, which

make it less general than conventional HMMs.

� We assume that input observation sequences correspond

to complete examples (i.e. from beginning to end) of the

whole process or system being modeled (e.g. in our ap-

plication this corresponds to complete pedestrian trajec-

tories).

� The evolution of the state of the modeled system or

process is a continuous function.

� The observation space is a subspace of the continuous

state space. This implies that, by finding a decomposi-

tion of the observation space, a decomposition is also

performed on the continuous state space2.

The key intuition behind GHMMs is that the structure of the

model should reflect the spatial structure of the state space dis-

cretization, where transitions between discrete states are only

allowed if the corresponding regions are neighbors. There-

fore, structure learning basically consists of estimating the best

space discretization from data and identifying neighboring re-

gions. We have addressed this problem by building a topolog-

ical map using the instantaneous topological map (ITM) algo-

rithm (Jockusch and Ritter 1999). For parameter learning, we

basically have adapted the incremental EM approach proposed

by Neal and Hinton (1998) in order to deal with a changing

number of discrete states and with continuous observations.

To avoid confusion, in the rest of this document, we make

a strict distinction between: the nodes of the ITM algorithm

and the discrete states of a GHMM� the continuous state of an

object� and the observations provided by sensors.

2. It is worth noting that this assumption may be relaxed when the model is

not used for prediction but, for instance, just for recognition. In that case the

only requirement is the existence of a weak topological equivalence between

the observation and state spaces� when the system goes through states which

are near each other, the corresponding observations will also be close to each

other.
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Fig. 2. Overview of the GHMM learning algorithm.

3.1. Probabilistic Model

Structurally GHMMs are identical to regular HMMs except for

the fact that the number of states and the transition structure

are not constant, but can change as more input observation se-

quences are processed. The other difference lies in the learning

algorithm, which is able to incrementally update the model. A

GHMM is defined in terms of three variables:

� St and St�1, the current and previous states, which are

discrete variables with value St � St�1 � �1� � � � � Nk�,

where Nk is the number of states in the model after k

observation sequences have been processed3�

� Ot , the observation variable, which is a multidimen-

sional vector.

The joint probability decomposition (JPD) for GHMMs is:

P�St�1 St Ot� 	 P�St�1�� �� �
stateprior

P�St � St�1�� �� �
transition
probabili t y

P�Ot � St�� �� �
obser�ation
probabili t y

� (1)

where the state prior is simply the posterior of the previous

time step:

P�St�1� 	 P�St�1 � O1:t�1�� (2)

Both the observation and transition probabilities are as-

sumed to be stationary, that is, independent of time, thus the

parametric forms of the three probabilities in the JPD are the

same, irrespectively of the value of the time variable:

� P�S0 	 i� 	 � i , the state prior will be represented as a

vector � 	 ��1� 
 
 
 � � N � where each element contains

the prior probability for the corresponding discrete state�

� P�[St 	 j] � [St�1 	 i]� 	 ai� j , transition probabilities

are represented with a set of variables A, where each

element ai� j represents the probability of reaching state

j in the next time step given that the system is currently

in state i �

3. For the sake of notational simplicity, we often omit the k hereafter� nev-

ertheless, it should be noted that parameters and structure change with every

new observation sequence. Also, notation O1:t will be used as a shortcut for

the variable conjunction O1 O2 
 
 
 Ot�1 Ot .

� P�Ot � [St 	 i]� 	 G�Ot � �i � 	�� the observa-

tion probability density function will be represented by

a Gaussian distribution for every discrete state, having

the same covariance matrix 	 for all discrete states� the

set of all of the Gaussians’ parameters will be denoted

by b 	 �	��1� 
 
 
 � �N �.

The full set of parameters for a GHMM is denoted by 
 	

��� A� b�.

In addition to its time-evolving nature, a GHMM is defined

by its learning algorithm, which processes complete observa-

tions sequences as they arrive. The general steps of the algo-

rithm are depicted in Figure 2 and are detailed in the following

subsections.

3.2. Updating the Topological Map

Our structure learning approach is based on the construction

of a topological map: a discrete representation of continuous

observation space in the form of a graph where nodes repre-

sent regions of the space, and edges connect contiguous nodes.

Every node i has an associated vector �i , corresponding to the

region’s centroid. The nodes are added and adapted in order to

minimize the distortion of the model, that is, the sum of the

squared distances between the input (i.e. observation) vectors

and the centroid of their closest node.

The topological map is updated for every available obser-

vation Ot using the ITM algorithm which has the following

properties.

� It minimizes the number of nodes while trying to keep

the same average distance between neighbors.

� Has linear time and memory complexity with respect to

the number of nodes.

� Edges are a subset of the Delaunay triangulation, mean-

ing that they can exist only between nodes representing

adjacent Voronoi4 regions (Figure 3).

The ITM algorithm consists of the following steps

(cf. Jockusch and Ritter (1999)).

4. The Voronoi region associated with a node is defined by the set of all of

the points which are closer to that node’s centroid than to any other centroid

in the graph. Delaunay edges link the centroids of Voronoi regions that have a

common border.
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Fig. 3. Example ITM space decomposition: (a) nodes and re-

gions� (b) edges.

1. Matching: find the nearest b and second nearest s nodes

to Ot . We use the Mahalanobis distance

d2
	�u� �� 	 �u � ��

T	�1�u � ��� (3)

with the same 	 as for observation probabilities, where

u and � are two reference vectors.

2. Weight adaptation: move�b towards Ot by a small frac-

tion �b 	 �Ot ��b�.

3. Edge adaptation: (a) create an edge connecting b and s

unless that edge exists� (b) for every neighbor m of b

check if Ot lies in the Thales sphere going through �m

and �b and delete the corresponding edge if that is the

case. Delete any node which has no neighbors.

4. Node adaptation: (a) if Ot lies outside the Thales sphere

going through �b and �s and its distance from �b is

greater than a given threshold � , create a new node n

with �n 	 Ot . Connect nodes b and n. Remove node s

if its distance from b is smaller than �
2
.

A crucial part of the algorithm is that, with exception of

the matching step, all of the operations needed to maintain the

Delaunay triangulation depend only on nodes and edges in a

local neighborhood. There is a minor problem though, since

node adaptation takes place after edge adaptation, it is possible

that some of the edges connected to b become non-Delaunay.

However, these edges are later deleted by the edge adaptation

step when new observations fall in the same region.

It is important to note that, owing to the assumption that the

observation space is actually a subspace of the continuous state

space, the obtained ITM is also a representation of the latter.

This makes it possible to use it directly to update the GHMM

structure, as described in the following section.

3.3. Updating the Model’s Structure

During the topological map update, nodes and edges may be

added or deleted, these changes in the topological map are

reflected in the GHMM structure as follows.

1. For every new node i in the topological map, add a cor-

responding discrete state in the GHMM, initializing its

prior to a preset value: � i 	 �0. Do the same for the

self-transition probability: ai�i 	 a0. Note that in this

and the two following steps, the values are not strictly

a probability because the corresponding sums do not

add to one. This is corrected by a normalization step

that takes place at the beginning of parameter update

(cf. Section 3.4).

2. For every new edge �i� j� in the topological map, initial-

ize the corresponding transition weights to ai� j 	 a0 and

a j�i 	 a0. As in the previous step, these values will be

normalized later to obtain true probabilities.

3. For every deleted node and edge in the topological map,

assign a value of zero (i.e. delete) to the corresponding

state prior and transition weights.

4. For every added or modified centroid �i , set the corre-

sponding Gaussian mean value: �i 	 �i .

3.4. Updating the Parameters

Parameter learning takes place once per input sequence, after

all of the observations have been processed by the structure

learning step. The GHMM learning algorithm re-estimates the

parameters using an incremental version of the Baum–Welch

technique based on the work from Neal and Hinton (1998) ex-

tending it for continuous observation variables and an evolv-

ing number of states. The basic idea of these algorithms is to

use inference to compute, for every state and transition, the

likelihood that it belongs to the state (or transition) sequence

that best explains the observation sequence. Then, these likeli-

hoods are used as weights to update the model.
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Fig. 4. Pattern representations generated from input data: (a) input trajectories� (b) trajectory-based prototypes� (c) goal-based

directed graph (the goal is the rightmost node).

A particularity of our approach is that all of the observation

probabilities’ mean values have been assigned during structure

update (see § 3.3) and that their covariance 	 is fixed. Hence,

only the state prior and transition probabilities need to be re-

estimated. This is done in four steps.

1. Normalize the state prior and transition values. This is

necessary because structure update does not guarantee

that the corresponding probabilities add up to one, as

explained in Section 3.3.

2. Precompute �i (forward probabilities), � i (backward

probabilities) and pO (joint observation probability) for

the observation sequence O1:T (see Appendix A).

3. For every discrete state i in the GHMM, re-estimate the

state prior:

�� i 
�1�i� �1�i�

PO

� (4)

� i 
�k � 1�� i � �� i

k
� (5)

where k is the number of observation sequences that

have been observed so far.

4. Re-estimate every non-zero transition probability in the

GHMM using Equations (6) and (7).

�ai� j 

�T
t	2 �t�1�i�ai� j P�Ot � [St 	 j]�� t� j��T

t	2 �t�1�i�� t�1�i�
� (6)

ai� j 
�k � 1�ai� j � �ai� j

k
� (7)

These steps constitute a single iteration of incremental

Baum–Welch. The reason to use Equations (5) and (7) is that

they are equivalent to dividing the sum of the weight by the

number of trajectories in order to obtain an average weight

value� these equations, together with the preset values �0 and

a0, are the elements that enable incremental learning with an

evolving number of states.

For the sake of comparison, we also performed early

tests with straightforward Baum–Welch, i.e. using only Equa-

tions (4) and (6) to make the update, but the learned parameters

were too heavily biased towards recent observation sequences.

4. Learning and Predicting Motion with

GHMMs

Having presented GHMMs, this section focuses on their con-

crete application to learning and predicting the motion of ve-

hicles and pedestrians. This application is based on the key

observation that often, objects move in function of their inten-

tion to reach a particular state (i.e. their goal). Accordingly, we

model the object’s motion as a sequence of augmented state

vectors, composed of two sets of variables describing its cur-

rent and goal state, respectively.

Owing to the fact that our model is goal-oriented, in our ap-

proach, a motion pattern is no longer a trajectory prototype, but

a directed graph indicating all of the possible ways in which a

goal may be reached (Figure 4).

4.1. Notation and Basic Assumptions

We assume that tracking data are available as a collection of

observation sequences (i.e. trajectories). Every individual se-

quence Ok
1:T k 	 �O1� 
 
 
 � OT k � corresponds to the tracker’s

output for a single object and its observations are evenly

spaced in time. Different observation sequences may have dif-

ferent lengths T k .

In the rest of this section, we assume that the state of an

object is defined by its position and velocities �x� y� x �� y��

and, thus, that the augmented state of the object consists of

its current position and velocities, as well as its goal position

�x� y� x �� y�� �x� �y�. It should be noted, however, that our ap-

proach is applicable to spaces of arbitrary dimensions.

We assume that observations are available in the form of

estimates of the object’s coordinates and velocities Ot 	

�xt � yt � x
�
t � y
�
t�, although, as in the case of the continuous state,

is it also possible to include other variables, such as the size

or orientation of the object. Since learning is performed on

the basis of complete observation sequences, we assume that

the position of the last observation OT 	 �xT � yT � x
�
T � y
�
T � of

each sequence corresponds to the object’s goal. Hence, it is

possible to build an augmented observation sequence, which

constitutes the actual input to our algorithm:

�O1:T 	 ��x1� y1� x
�
1� y
�
1� xT � yT �� �x2� y2� x

�
2� y
�
2� xT � yT �� � � � �

�xT � yT � x
�
T � y
�
T � xT � yT ���
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4.2. Probabilistic Model

Since our approach is based on GHMMs, it uses the same

probabilistic model that has been described in Section 3.1.

Nevertheless, we also need to distinguish between the current

and intended components of the state. Thus, we decompose

the augmented observation variable into its current O �t and its

intended O ��t component: Ot 	 [O �t � O
��
t ].

To define the JPD, we assume that the current and in-

tended components of observations are conditionally indepen-

dent given the current state5, enabling us to rewrite the obser-

vation probability as

P�Ot �St� 	 P�O �t O ��t �St� 	 P�O �t �St�P�O
��
t �St� (8)

and the whole JPD as

P�St�1 St O �t O ��t �

	 P�St�1�P�St �St�1�P�O
�
t �St�P�O

��
t �St �� (9)

Since the observation probability is now written as a prod-

uct of probabilities, P�O �t O ��t � St� 	 P�O �t � St�P�O
��
t � St�

we need to define their parametric forms:

P�O �t �[St 	 i]� 	 G�O �t � �
�
i � 	
��� (10)

P�O ��t �[St 	 i]� 	

�
��	

��


UO ��t
if O ��t is not

available,

G�O ��t � �
��
i � 	
��� otherwise,

(11)

where UO ��t
is a uniform distribution over the goal domain, ��i

and���i are the mean values of the current and goal components

for discrete state i � and 	� and 	�� are the respective values of

the covariance matrix for all of the states.

By noting that P�Ot � St� is either a product of Gaussians,

or a product of a constant and a Gaussian, we may rewrite this

probability as a single Gaussian:

P�Ot �[St 	 i]� 	
1

Z
G�Ot � �i � 	� (12)

where �i 	 [��i � �
��
i ], and 	 is a block diagonal matrix having

the form:

	 	

�
	� 0

0 	��

�

(13)

and Z is a normalization variable, which enables computation

of the uniform on the goal component using the same Gaussian

representation. Since during prediction the intended part of the

5. When using a visual tracker this is reasonable, since it can be safely assumed

that the current estimate of the pose depends only on the current pose of the

object and its projection on the camera image, not on its goal. The same can

be said about the goal, which depends only on the final pose of the object and

not on the intermediate readings of the camera.

augmented observation is not available, this is done by setting6

O ��t 	 0.

4.3. Prediction

We have not yet discussed prediction, which can be performed

using the same algorithms that are used for standard HMMs,

without interfering with learning. This is possible because

learning takes place immediately after an observed trajectory

has finished and, thus, it does not affect prediction in any way.

For our particular case, we have chosen to apply exact infer-

ence.

For every new observation, the current belief state for the

object is re-estimated using

P�St �O1:t� 	
1
Z

P�Ot �St �
�

St�1


P�St �St�1�P�St�1�O1:t�1�

�
� (14)

where P�St�1 � O1:t�1� comes from the state estimation for

the previous time step (or from the state prior, in the case of the

first observation in a sequence). Then, prediction is performed

by propagating this estimate H time steps ahead into the future

using

P�St�H �O1:t� 	
�

St�H�1

P�St�H �St�H�1�P�St�H�1�O1:t��(15)

Sometimes, we are interested in knowing the probability of

the continuous state probability distribution, as opposed to the

discrete space, shown above. Since in our case observations are

expressed in terms of the state variable, the continuous state

probability can be approximated by the probability that a given

state is observed in the future, which may be computed from

the predicted discrete state as follows:

P�Ot�H �O1:t� 	
1

Z

�

St�H

P�St�H �O1:t�P�Ot�H �St�H �� (16)

5. Experimental Results

We have implemented our approach and conducted extensive

experiments with both synthetic and real datasets. We start this

section by describing the scenarios and the datasets used (Sec-

tion 5.1), then we discuss qualitative results in order to pro-

vide an intuition of how the approach works (Section 5.2). Fi-

nally, the real-time performance of our approach is studied in

Section 5.3. Performance evaluation regarding prediction ac-

curacy and model size are deferred to Section 6 wherein our

approach is also compared with two other motion prediction

techniques.

6. It is easy to show that this is equivalent to a multiplication by a constant

and, when normalized, becomes effectively equivalent to the uniform on Equa-

tion (11).
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5.1. Test Scenarios

All of the experiments discussed in this paper are based on

data obtained in two different parking lot environments: a real

environment and a simulated environment.

5.1.1. Real Environment: Leeds

The first experimental environment is a parking lot located at

the University of Leeds7 and a small street section where both

pedestrians and vehicles move.

The video input has been captured by a camera located high

above the parking lot and covering a wide area, which has al-

lowed us to conduct our experiments in the image plane, with-

out any projection on a world reference system.

The tracking system proposed by Magee (2004) has been

used to obtain the observation sequences� however, it is impor-

tant to note that the trajectories have been hand-edited to cor-

rect tracking problems. As an indicator, approximately 20% of

the 269 trajectories in the dataset have been altered in some

way, and some have been entirely tracked by hand (Dee 2005).

Solving these tracking problems is an open issue in the

multi-object tracking community, and is out of the scope of

this paper. This is a drawback of most approaches in the liter-

ature, including ours and the two other approaches presented

in Section 6, which depend on an accurate segmentation of the

observation sequences. On the other hand, this problem does

not have any effect in our comparison, which focuses on the

evaluation of the learning algorithm and compare the different

approaches using the same input datasets.

The observations on this dataset have been sampled at ap-

proximately 10 Hz and contain only position data, therefore,

we have used a Kalman filter to estimate the corresponding

velocities. The complete dataset is depicted in Figure 5.

5.1.2. Synthetic Environment: INRIA

Owing to the difficulty of obtaining real data, we have de-

cided, in addition to the real dataset that we have described

above, to develop a parking lot and trajectory simulator in or-

der to have a more thorough experimental testbed. This allows

us to test particular situations without the logistic difficulties

posed by executing scripted actions in a real environment as

the Leeds parking lot. It is also a practical way of generating

large amounts of data which are free of the problems that are

common to tracking systems.

A graph-like structure has to be defined first (Figure 6).

Nodes of the graph represent control points with an associated

7. We would like to thank Hannah Dee and the University of Leeds for letting

us use this dataset.

Fig. 5. Leeds dataset.

Fig. 6. The parking lot simulator showing a model of the IN-

RIA lab parking lot. Point size and color correspond to position

variance and speed, respectively.

speed and position variance, i.e. way points in the environ-

ment. They also have flags indicating whether they are start,

intermediate or end points of a trajectory. Nodes are connected

by oriented edges, which indicate the possibility to go from

one node to another.

Once this graph has been defined, the simulator works by

choosing at random a start and an end point (according to the

corresponding flags), and then obtaining a sequence of nodes

by finding the shortest path between them. For every node in

the sequence, a point is generated by adding Gaussian noise

to the node’s position. Finally, the trajectory is generated by
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Fig. 7. Synthetic parking dataset, from the model displayed in

Figure 6.

Fig. 8. Projection on the image of the learned structure after

100 trajectories have been processed (Leeds dataset).

applying spline interpolation to the point sequence and sub-

sampling it according to the simulated sampling rate and ob-

ject’s speed. As in the case of the Leeds dataset, we have as-

sumed a frame rate of 10 Hz. Figure 7 depicts an example tra-

jectory dataset generated by the simulator.

5.2. Qualitative Results

The GHMM’s structure and parameters are updated as a result

of the learning step� Figure 8 shows the resulting structure af-

ter applying the learning step for 100 trajectories of the Leeds

dataset.

Figures 9 and 10 illustrate a typical example of the pre-

diction process on the real dataset. Figure 10 consists of a set

Fig. 9. Explanation of Figure 10, see also Section 5.2.

of images arranged in columns and rows. Rows correspond to

different values of t .
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Fig. 10. Example of a sequence of predictions for an obstacle moving in the Leeds environment. See Section 5.2 for details.

In each row, the left image shows an actual picture of

the parking lot featuring different overlays, as shown in Fig-

ure 9(a): (a) the current and previous observations, depicted

as dots� (b) the current state estimation approximated by a

Gaussian indicated with a ellipse� (c) the current goal estima-

tion also approximated by a Gaussian, represented by a another

ellipse� and (d) the mean value of the predicted states for dif-

ferent time horizons going from H 	 1 to H 	 15, where H

represents the number of time steps to look ahead in the future.

These mean values are displayed as points colored from blue

(for H 	 1) to green (for H 	 15).

The center and right images are two-dimensional projec-

tions in the image space of the state and goal estimations. As

depicted in Figures 9(b) and 9(c) they display, in addition to
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the previously mentioned overlays, the probability distribution

for the predicted position for H 	 15 and final goal in the

environment, respectively. Higher probabilities are indicated

with “lighter” tones (closer to red).

The state prediction probability displayed in the center row

has been computed by applying Equation (16) to the cells of a

regular grid. Since the augmented state is six dimensional, we

have chosen to project the probability over the current position

plane, thus not showing the predicted goal.

For the right column, we have applied Equation (16) to the

cells of a regular grid, much like for the center column, but

this time we have projected the probability over the intended

position (goal) plane.

An interesting feature of our environment is that it includes

two types of moving objects (i.e. pedestrians and vehicles).

Since these objects follow different motion patterns, this has

considerable influence in the prediction process. For example,

for t 	 10, we may see that there are two highly probable

goals. This is interesting because they correspond to a pedes-

trian’s destination (the building entrance) and a vehicle’s desti-

nation (a lane’s end). As the vehicle moves further, it becomes

quickly associated with a vehicles’ goal and, by t 	 82, the

only two goals with a significant probability correspond to ve-

hicles’ destinations.

Also noteworthy is that predicted states at H 	 15 seem

to be very close to the current object position. The reason is

that, in this dataset, objects move very slowly with respect to

the size of the image, especially when they are far from the

camera. This effect is much less noticeable on simulated data

(not shown here), because all of its coordinates are referred to

the ground plane.

5.3. Processing Time

Figures 11(a) and 11(b) plot the time taken by prediction (up-

per dotted line) and learning (lower dotted line) with respect

to the number of processed trajectories. The model size, ex-

pressed as the number of edges in the GHMM structure (upper

line) is also given as a reference. Tests have been executed in

a 2 GHz Intel Duo computer running Linux.

As expected, running time seems to depend linearly on the

model size. Moreover, prediction times are below 16 ms per

observation for real data and 35 ms for simulated data. The

longer times for the simulated environment are explained in

part by the fact that this environment is much larger than the

real environment. Even in this case, prediction times are ob-

tained at full camera frame rate.

It is also interesting to note that in the case of learning,

times per observation are below 5 ms which means that a 10

second trajectory requires slightly more than one second to be

learned. Thus, the algorithm is well adapted for on-line usage

in environments where it is likely to observe less than one tra-

jectory per second.

Fig. 11. Computation times: (a) Leeds dataset� (b) INRIA sim-

ulator.

6. Performance Evaluation

This section provides a quantitative comparison of our ap-

proach against two other recent techniques. First, we introduce

those approaches, then we describe the proposed performance

measures, finally we discuss the obtained results with both real

and simulated data.

6.1. Compared Approaches

We have implemented two other approaches in order to com-

pare them with the proposed technique. These approaches have

been selected among the many different approaches discussed

in Section 2 on the basis of three criteria.
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� Unsupervised learning. Since our approach learns from

unlabeled data, we are interested in comparing it against

similar approaches.

� Structure learning. The compared approaches should be

able to estimate the size and structure of the learned

model, not only the parameter values.

� Suitability for prediction. Not all of the existing ap-

proaches are suited to motion prediction, which, from

our point of view, requires at least two conditions: the

approach should model time, at least implicitly, and it

should be able to produce multi-modal predictions.

From the approaches that verify those criteria, we have se-

lected a HMM-based approach, which applies the EM algo-

rithm for learning, and a second approach that is based on

hierarchical fuzzy K -means (HFKM) clustering. We describe

them now in further detail.

6.1.1. EM Clustering

This approach, proposed by Bennewitz et al. (2005) uses the

EM algorithm to cluster together trajectories into trajectory

prototypes, which are then transformed into HMMs with the

same semantics as in our approach, but limited to chain-like

structures where the only valid transitions out of a state go to

itself and to the next state in the chain.

We discuss here the overall structure of the clustering algo-

rithm, the interested reader is referred to the original paper for

further details:

1. initialize K clusters from randomly chosen observation

sequences�

2. run optimization�

3. compute model score�

4. if the score may be improved by adding the worse scored

trajectory as a cluster, add it and go to step 2�

5. if the score may be improved by removing one of the

two more similar clusters, delete it and go to step 2, oth-

erwise stop.

Step 2 is the most important, it estimates the cluster para-

meters by iterating through two steps: (a) for every observa-

tion sequence and cluster, compute the expected membership,

that is, the likelihood that the observation sequence belongs

to that cluster� and (b) re-estimate cluster representations as

an average of observation sequences, weighted by the corre-

sponding likelihoods that were computed in the previous step.

The process is stopped when parameter changes between two

consecutive iterations are negligible.

Since the EM algorithm requires the number of clusters to

be known a priori, it is necessary to estimate it somehow. This

is the purpose of steps 3 to 5, which score the model using

the Bayesian information criterion (Schwarz 1978) and then

try to improve that score by adding or removing clusters. It

is worth noting that our implementation differs slightly from

the original paper, which worked with predefined insertion and

deletion thresholds for steps 4 and 5. Since we have found it

difficult to fix those thresholds, we have preferred to always

try to increase and decrease the cluster number to see if the

score is improved.

Once the clusters are found, they are converted into HMMs

by applying prior knowledge about how objects move. HMM

states are uniformly spaced along the found clusters, and tran-

sition probabilities are fixed according to average object ve-

locities. A final note about this approach is that it does not use

velocity information on the observations, although the authors

mention the possibility to extend the approach to use such in-

formation.

6.1.2. HFKM Clustering

The second approach we have implemented (Hu et al. 2006)

is based on the HFKM algorithm. It has the same overall

structure as EM, but uses different expressions to compute the

expected memberships and cluster representations in step 2.

Also, a different measure, the tightness and separation crite-

rion (Xie and Beni 1991), is used to find the optimal number

of clusters on steps 3–5.

The approach works in a hierarchical manner: a first clus-

tering is performed on coarsely subsampled observation se-

quences using only pose information. Then, for every ob-

tained cluster, the belonging observation sequences are clus-

tered again, this time without subsampling and taking into ac-

count the object’s velocities.

In this case, our implementation differs again from the orig-

inal paper: after conducting an initial round of tests with very

bad clustering results, we concluded that there is a typo in

cluster representation computation formula that appears in the

paper (see Appendix B). After correcting it, the results im-

proved significantly. A final difference with the EM approach

is that, after the final clustering step, “anomalous” trajectories

are filtered out by deleting clusters that have less than a given

number of trajectories. In our experiments we have fixed this

threshold to three.

6.2. Performance Measures

Comparing heterogeneous techniques, even if they solve a

common problem, is a difficult task. Often their theoretical

bases are too different, making it difficult to evaluate them

fairly. Here we propose two measures that, despite their sim-

plicity, still provide useful indicators about the accuracy and

the parsimony of the models produced by the different ap-

proaches.
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6.2.1. Measuring Model Size

The structure of the transition matrix is the fundamental com-

plexity factor for inference on HMMs, a sparse transition ma-

trix implies much lower computational cost than a dense tran-

sition matrix. Therefore, we measure the size of the model by

the number of edges in the transition graph. For GHMMs this

is the sum of the number of neighbors for every discrete state

in the model. In the case of EM and HFKM this is the sum

of the transitions for all clusters, which for a single cluster is

equal to the number of points in the cluster minus one plus the

number of points, to account for self-transitions.

6.2.2. Measuring Prediction Accuracy

To evaluate prediction accuracy, the average expected predic-

tion error has been computed from a test dataset containing

K observation sequences. The prediction error is the expected

distance between the predicted position for a time horizon H

and the corresponding observation Ot�H :

�E� 	
1

K

K�

k	1

1

T k � H

�

T k�H�

t	1

�

i��

P�[St�H 	 i]�Ok
1:t���O

k
t�H � �i ��

1�2� (17)

The case of the HFKM algorithm is particular, since the al-

gorithm only outputs the probability of following a given mo-

tion pattern and is not able to produce predictions at the state

level. In order to compare approaches, we have assumed a de-

terministic transition probability where all of the probability

mass for the nth time step is concentrated on the nth point of a

cluster:

P�[St�H 	 i]�O1:t � � j �

	

�
��	

��


P�O1:t �� j � if i is the �t � H�th

element of cluster j ,

0 otherwise,

(18)

where P�O1:t � � j � is the probability8 that the observation

sequence O1:t belongs to cluster j .

6.3. Leeds Data

In order to compare the performance on the Leeds environ-

ment, we proceeded by dividing the data into a learning dataset

8. See Hu et al. (2006) for a definition of this probability.

Table 1. Parameters for Leeds Data

Algorithm Parameters

EM � 	 7� K0 	 15

HFKM sampling_step 	 25� K0 	 15

GHMM � 2
pos 	 49� � 2

vel 	 0�8� � 2
goal 	 400� � 	 9

(200 sequences) and a test dataset (60 sequences). To evaluate

how the model’s size and accuracy evolve with respect to the

size of the learning dataset, we performed five experiments,

giving 40, 80, 120, 160 and 200 input trajectories to the learn-

ing algorithms. In the case of the GHMM and to have a fair

comparison, learning has been done on all of the sequences in

the learning dataset prior to prediction. However, it should be

noted that this is by no means a requirement for our approach

since it is designed to learn and predict in a continuous fashion.

The parameters we have chosen for every algorithm are

shown in Table 1. Owing to the difficulty in choosing ade-

quate parameters to compare the approaches, we have started

by making an educated guess and then refining them by trial

and error.

The meanings of the parameters that appear in the table

and are not defined in the text are as follows: K0 is the ini-

tial number of clusters� for HFKM sampling_step means that

in the first clustering step, learning sequences will be sampled

by taking one out of sampling_step observations on them.

Finally, for GHMMs, the covariance matrix is built as follows:

	 	

�

��������������
�

� 2
pos 0 0 0 0 0

0 � 2
pos 0 0 0 0

0 0 � 2
vel 0 0 0

0 0 0 � 2
vel 0 0

0 0 0 0 � 2
goal 0

0 0 0 0 0 � 2
goal

�

��������������
�

� (19)

6.3.1. Comparing Prediction Accuracy

Figure 12 shows the average prediction error as a function of

the total number of trajectories in the learning dataset. For

every batch, full learning is performed and then the expected

error is computed with Equation (17) using the test dataset as

input.

As can be seen, the average error is much lower for GH-

MMs than for the other two approaches. Perhaps more surpris-

ing, while for GHMMs the error seems to decrease as more

trajectories are used for learning, this is not the case for the

other two algorithms. At first, we thought that this was due to
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Fig. 12. Leeds data: prediction accuracy.

initialization differences between runs, where different trajec-

tories were used to initialize the clusters in each case. In order

to discard this possibility, we have used the same initializa-

tion for all different runs without significant difference, as the

figure shows. Our current explanation is that the fact of using

a global optimization scheme may lead to very different clus-

terings depending on input data, sometimes with suboptimal

results.

Another important factor, at least in the case of HFKM,

seems to be that the model is “saturated” and is not able to

perform further generalization on the basis of additional data.

This leads us to what, in our eyes, is an important drawback of

HFKM: it lacks some kind of scale parameter (such as the co-

variance in EM and GHMM) to trade off a better accuracy for

the cost of having a more complex model. This will become

clearer in the model size comparison.

6.3.2. Comparing Model Size

The growth on model size with respect to the number of trajec-

tories on the learning dataset is displayed in Figure 13. As can

be seen in the figure, the size of the GHMM models is negli-

gible with respect to the other two approaches. On the other

hand, the model growth tends to stabilize for both GHMM

and HFKM, while in the case of the EM approach, it jumps

suddenly for 160 trajectories. As mentioned in Section 6.3.1,

this seems to indicate that both GHMM and HFKM have con-

verged, but the behavior of EM is more difficult to explain.

The jump is explained by a number of “anomalous” tra-

jectories, that appear between positions 120 and 160 in the

learning dataset. These trajectories force the creation of sev-

eral clusters in the EM model that do not appear in the HFKM

approach owing to its cluster size threshold. In the case of

GHMM, these trajectories also lead to a sudden growth of the

model, but this is more difficult to perceive because of its small

size.

Finally, in Figure 14, we plot the model size against the pre-

diction error. This illustrates more explicitly the fact that, for

the HFKM and EM algorithms, an increase in the model size

does not necessarily lead to an improvement in the accuracy.

As we discuss in the following section, we have explored this

further using simulated data.

6.4. INRIA Data

In the case of the simulated INRIA environment, we have pro-

ceeded in an analogous fashion to what we have done with the

Leeds dataset, but this time, the learning dataset contains 1,000

sequences while the test dataset contains 100. The learning

batches for this dataset contain 200, 400, 600, 800 and 1,000

trajectories, respectively.

The parameters for every algorithm are shown in Table 2.

This time, however, we have included two different set of pa-

rameters per algorithm in order to show their influence on the

model performance. The parameters have also been obtained

by trial and error.
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Fig. 13. Leeds data: model size.

Fig. 14. Leeds data: model size versus prediction accuracy.

6.4.1. Comparing Prediction Accuracy

In this dataset, the accuracy of the GHMM approach is again

better than that of the compared approaches, but this time the

difference is not as big as for Leeds data. Moreover, the be-

havior of the other approaches, with the exception of HFKM

with a sampling step of three, is this time much closer to that

of the GHMM approach. This is explained by the absence of
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Fig. 15. INRIA data: prediction accuracy.

Table 2. Parameters for the INRIA Data

Algorithm Parameters

EM � 	 0�5� K0 	 15

� 	 1� K0 	 15

HFKM sampling_step 	 3� K0 	 15

sampling_step 	 25� K0 	 15

GHMM (cov1) � 2
pos 	 2�25� � 2

vel 	 0�04� � 2
goal 	 16�

� 	 9

GHMM (cov2) � 2
pos 	 1� � 2

vel 	 0�04� � 2
goal 	 16�

� 	 9

anomalous trajectories in the learning and test datasets, to-

gether with the existence of many similar example sequences

per behavior.

We have not found the reason why HFKM with a sampling

step of three behaves differently, our best explanation at this

moment is that, as the number of points in a trajectory in-

creases, the clustering starts to smooth out the distinctive part

of every trajectory and to produce less clusters, which fail to

accurately represent the underlying behaviors.

6.4.2. Comparing Model Size

Regarding the size of the model (Figure 16), the results ob-

tained with the simulated dataset are very different from the

Leeds dataset. In this case the size of the models obtained

with both GHMM parameterizations are similar to the other

approaches, with the exception of EM (� 	 1). On the

other hand, once again, our approach is the only case where

the model size growth is monotonic, while for the other ap-

proaches it tends to oscillate. In fact for both HFKM parame-

terizations, the model size seems to decrease as the learning

dataset becomes larger.

By plotting the model size versus the accuracy (Figure 17)

we observe again that, with the exception of GHMMs, for

the same parametrization, an increase in the model size is not

translated directly into an improvement in the accuracy. It also

shows that, between models of comparable size, those obtained

with our approach exhibit consistently and significantly better

accuracy.

This is also a good opportunity to recapitulate on the choice

of the model parameters. It is probable that, at least in the case

of EM, reducing the covariance matrix could improve the ac-

curacy to make it closer to what is obtained with GHMM, nev-

ertheless, this would imply a huge increase in the model size,

which is not comparable to that of the GHMM model. This

seems to indicate that our model generalizes better, and that,

in the case of EM, the model is probably overfitting data.

6.5. Evaluation Conclusion

Despite the good results that we have obtained so far, we con-

sider that much more experimental work needs to be done be-
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Fig. 16. INRIA data: model size.

Fig. 17. INRIA data: model size versus prediction accuracy.

fore arriving at definitive conclusions. We consider at this mo-

ment that our approach performs better than the similar EM

approach mainly because of two factors: (i) it has a more ex-

pressive and compact structure and (ii) it learns the parameters

of the observation and transition probabilities from data in-

stead of relying in a priori knowledge. We consider the first



1504 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / November/December 2009

factor to be more important than the second� it would be inter-

esting, however, to apply HMM parameter learning to the EM

approach after trajectory clustering, to have a quantitative eval-

uation of the relative importance of both factors. It would be

also interesting to do something similar in the case of HFKM,

by building a HMM from the obtained clusters.

7. Conclusions and Future Work

We have developed a novel extension to HMMs which is able

to learn the model parameters and structure incrementally. We

have applied this extension to vehicle and pedestrian motion

by defining an augmented state which adds the intended goal

to the classic state variables. This improves over other HMM-

based techniques by implementing a model, even if rather

crude, of the object’s intentions.

We have performed extensive experimental validations of

our approach and compared it against two state-of-the-art tech-

niques using real and synthetic data. In these experiments,

our technique has performed consistently better than the other

two approaches by providing more accurate predictions with

smaller models. Even if further experiments would be neces-

sary to reach definitive conclusions, we consider these results

to be very encouraging. Moreover, our experiments also show

that our approach is able to perform continuous learning and

prediction in real-time even for large datasets.

We have implemented our approach as a C�� library and

made it available together with some datasets at http://svn.asl.

eth.ch/ghmm.

Future work includes applying our approach to gesture

recognition on video sequences using semi-supervised learn-

ing with human-labeled input sequences. A more challeng-

ing and open research direction would be to explore how our

approach can be extended to embedded sensors, for example

cameras or laser scanners mounted on vehicles.
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Appendix A. Forward, Backward and

Observation Probabilities

For the sake of completeness, we include here the pseudo-code

for the computation of the forward and backward probabilities.

The probability of an observation sequence is computed

from the forward probabilities using (20).

P�O1:T �
� 	

N�

i	1

P�O1:T � ST 	 i �
�

	

N�

i	1

�T �i� (20)
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Appendix B. Computing Fuzzy K -means

Cluster Representations

The original paper of Hu et al. (2006) presents the following

expression to compute the j th cluster center V j �t�:

V j �t � 1� 	 V j �t��

�M
l	1 Rl j �t� 
 �Xl � V j �t��
�M

l	1 Rl j �t�
� (21)

where M is the total number of trajectories, Xl is the lth tra-

jectory, and Rl j �t� is the estimated membership of trajectory

l to cluster j . However, in our experiments using this expres-

sion has lead to bad clustering results. The problem seems to

be that Equation (21) contains a typo since it does not take

into account the right fuzzification coefficient (see, for exam-

ple, Kolen and Hutcheson (2002)) whose value, judging from

the other expressions in the paper, is two. The corrected equa-

tion has produced much better results, it is

V j �t � 1� 	 V j �t��

�M
l	1 R2

l j �t� 
 �Xl � V j �t��
�M

l	1 R2
l j �t�

� (22)
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