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We propose a modelling framework for growing multiplexes where a node can belong to different
networks. We define new measures for multiplexes and we identify a number of relevant ingredients
for modeling their evolution such as the coupling between the different layers and the distribution of
node arrival times. The topology of the multiplex changes significantly in the different cases under
consideration, with effects of the arrival time of nodes on the degree distribution, average shortest
path length and interdependence.

PACS numbers: 89.75.Fb, 89.75.Hc and 89.75,-k

Many different physical, biological and social systems
are structured as networks, and their properties are now,
after a decade of efforts, well understood [1–4]. How-
ever, a complex network is rarely isolated, and some of
its nodes could be part of many graphs, at the same
time. Examples include multimodal transportation net-
works [5, 6], climatic systems [7], economic markets [8],
energy-supply networks [9] and the human brain [10].
In these cases, each network is part of a larger system
in which a set of interdependent networks with different
structure and function coexist, interact and coevolve. So
far network scientists have investigated these systems by
looking at one type of relationship at a time, e.g., by ana-
lyzing collaboration networks and email communications
as separate graphs. However, the structural properties of
each of these networks and their evolution can depend in
a non-trivial way on that of other graphs to which they
are interconnected. Consequently, these systems are bet-
ter represented as multiplexes, i.e. graphs composed by
M different layers in which the same set of N nodes can
be connected to each other by means of links belonging
to M different classes or types. Despite some early at-
tempts in the field social network analysis [11], the char-
acterization of multiplexes is still in its infancy, mainly
due to the lack of multiplex data. However, some re-
cent works have already proposed suitable extensions to
multi-layer graphs of classic network metrics and mod-
els [12–14]. Preliminary results show that multiplexicity
has important consequences for the dynamics of processes
occurring in real systems, including routing [12, 15], dif-
fusion [16], cooperation [17], election models [18], and
epidemic spreading [19]. Nowadays, an increasing num-
ber of new data sets of multiplex systems, e.g. com-
ing from large online social networks [20, 21], trading
networks [22] and human neuroimaging techniques [23],
are rapidly becoming available and demand for adequate
models to understand their structure and evolution.

In this Letter we propose and study a generic model
of multiplex growth, inspired by classical models based
on preferential attachment, in which the probability for
a newly arrived node to establish connections to existing

nodes in each of the layers of a multiplex is a function of
the degree of other nodes at all layers. We define two new
metrics to characterize the structure of multiplexes and
we study the effect of different attachment rules and the
impact of delays in the arrival of nodes at different layers
on the structure of the resulting network. We provide
closed forms for both the degree distributions at each
layer and the inter-layer degree-degree correlations, and
we show how different attachment kernels can change the
distributions of distances and interdependence.

More precisely, a multiplex is a set of N nodes which
are connected to each other by means of edges belong-
ing to M different classes or types. We represent each
class of edges as a separate layer, and we assume that
a node i of the multiplex consists of M replicas, one for
each layer. We denote by V [α] the set of nodes in layer
α and by E[α] the set of all the edges of a given type α.
An M -layer multiplex is therefore fully specified by the
vector A = [A[1], A[2], . . . , A[M ]], whose elements are the

adjacency matrices A[α] = {a[α]ij }, where a[α]ij = 1 if node
i and node j are connected by an edge of type α, whereas

a
[α]
ij = 0 otherwise. We denote by k

[α]
i =

∑

j a
[α]
ij the de-

gree of node i at layer α, i.e. the number of edges of type
α of which i is an endpoint, and by ki theM -dimensional
vector of the degrees of the replicas of i. In general, the
degrees of the replicas of i are distinct, and some replicas

can also be isolated (i.e. k
[α]
i = 0 for some value of α).

In the following we consider all the edges at all layers to
be undirected and unweighted. As in the case of classi-
cal ‘singlex’ graphs, we can characterize each layer α of
a multiplex by studying the degree distribution P (k[α]),

and the joint-degree distribution P (k[α], k′
[α]

). However,
we are interested here in the structural properties of the
multiplex as a whole, so we propose to quantify the corre-
lations between the degrees of replicas of the same node
at two different layers α and α′, by constructing the inter-
layer joint-degree distributions P (k[α], k[α

′]), or the con-
ditional degree distributions P (k[α

′]|k[α]). In particular,
we can look at the projection of the conditional distribu-
tion obtained by considering the average degree k̄[α

′] at
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layer α′ of nodes having degree k[α] at layer α:

k̄[α
′](k[α]) =

∑

k[α′]

k[α
′]P (k[α

′]|k[α]) (1)

By plotting this quantity as a function of k[α] we can de-
tect the presence and the sign of degree correlations be-
tween the two layers. For a multiplex with no correlations
between layers α and α′ we expect k̄[α

′](k[α]) = 〈k[α′]〉
and k̄[α](k[α

′]) = 〈k[α]〉. If k̄[α
′](k[α]) increases with k[α]

we say that the degrees of the two layers have positive
(assortative) correlations, while if k̄[α

′](k[α]) is a decreas-
ing function of k[α] we say that the degrees on layer α
and α′ are anticorrelated (or disassortatively correlated).
We notice that a similar concept of inter-network assor-
tativity was already defined in Ref. [24] for the case of
interdependent graphs, while the authors of Ref. [13] pro-
posed to measure inter-layer assortativity by means of the
Pearson’s linear correlation coefficient of degrees [25].
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FIG. 1. (color online) Synchronous linear attachment.

Panel a-b: the degree distribution P (k) (left) and the projec-
tion k̄(k) of the inter-layer degree correlations (right) closely
follow the theoretical curves (solid black lines) and are rela-
tively insensitive to the coupling matrix.

In addition to the assortativity, we can also charac-
terize the ‘multiplex reachability’ of a node i, e.g., by
computing the average distance Li from i to any other
node of the multiplex, and comparing this average dis-
tance with that measured on each layer separately. The
presence of more than one layer in a multiplex produces
an increase in the number of available paths, so that the
distance between two nodes of a multiplex will be, in gen-
eral, smaller than or at most equal to that measured on
each layer separately. A better measure to quantify the
value added by the multiplexicity to the reachability of
nodes is the interdependence [12] which for a node i is
defined by

λi =
∑

j∈N

j 6=i

ψij

σij
(2)

where ψij is the number of shortest paths between node i
and node j which use edges lying on more than one layer,
while σij is the total number of shortest paths between
i and j in the multiplex. The interdependence of a mul-
tiplex is computed as the average node interdependence
λ = 1/N

∑

i λi with λ ∈ [0, 1]. If λ is close to zero, then
most of the shortest paths among nodes lie on just one
layer, while if λ is close to 1 the majority of the shortest
paths exploit more than one layer.
The few models of multiplexes proposed so far are

based on the juxtaposition of random graphs [13]. How-
ever, networks usually result from a growing process con-
sisting in the addition of nodes and edges over time. For
this reason, we introduce here a model of growing mul-
tiplex networks. Most of the classical growing models
for single-layer networks start from an initial connected
graph with m0 nodes and assume that new nodes arrive
in the graph one by one, carryingm edge stubs, and con-
nect with other existing nodes according to a prescribed
attachment rule. In that case, each node i has a unique
arrival time ti, but in multiplexes, instead, each layer
can exhibit a different edge-formation dynamics, and in
general the edges of the M replicas of a new node are
not created at the same time. For instance, a face-to-
face interaction relationship is usually established before
two individuals become friend, while two locations are
usually connected by a road before a direct railway line
between them is constructed. Consequently, we assume
that a newly arrived node has exactly m stubs on each
layer of the multiplex (in Appendix we briefly discuss the
case where m is a random variable), but the replica of a
node i on layer α can connect its m stubs at a different

time t
[α]
i . We denote by ti the vector of arrival times

of the replicas of node i. In order to make the model
analytically tractable, we make two simplifying assump-
tions. The first is that there exists a layer ᾱ so that

t
[ᾱ]
i ≤ t

[α]
i ∀i, ∀α 6= ᾱ. This is equivalent to saying that

a newly arrived node must first create its connections on
layer ᾱ before any of its replicas can create connections
on any other layer α 6= ᾱ. We call ᾱ the master layer
(in Appendix we briefly discuss the case in which this
assumption does not hold, and each node can arrive first
on any of the M layers of the multiplex). The second
assumption is that nodes arrive one by one on the mas-
ter layer, at equal discrete time intervals t = {1, 2, . . . , }.
We label the nodes of a growing multiplex according to
the ordering induced by their arrival on the master layer.
Without loss of generality, in the following we assume
that the the master layer is the first one, i.e. ᾱ = 1, and
that the arrival times of the replicas of node i have the
form

t
[α]
i = T (t

[1]
i , ξ

[α](τ)) (3)

where T is a certain function of t
[1]
i and of the random

variable ξ[α](τ). By appropriately choosing T and ξ[α](τ)
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FIG. 2. (color online) Delayed linear attachment. (a)
Degree distribution on the first layer. When β is close to 1,
super-hubs appear. (b) The degree k(t) of the largest hub of
the first layer as a function of time scales as (t/t0)

δ, where
δ approaches 0.5 when β increases (insets). The value of β
tunes the shape of the distribution of average shortest path
lengths (c) and node interdependence (d). (e) The percentage
of times Hi that the maximal-degree node in a shortest path
from node i belongs to the first layer. When β is small, super-
hubs in the first layer are more abundant in the shortest paths.

we can model different arrival behaviors, including a) si-

multaneous arrival (T = t
[1]
i ); b) power-law delayed ar-

rival (T = t
[1]
i + ξ(τ) and P (ξ = τ) = (β − 1)τ−β for

τ ≥ 1 and β > 1). Upon arrival, the newborn node i
connects to m existing nodes in the master layer, accord-
ing to a certain attachment rule. As in the preferential
attachment models [27], we assume that the attachment
probability depends on the degree of a node. However,
in a multiplex the probability for node i to connect to

node j on each layer α can depend not only on k
[α]
j but

also on the degrees of j’s replicas on the other layers

Π
[α]
i→j =

F
[α]
j (kj)

∑

l F
[α]
l (kl)

(4)

For the sake of clarity and without loss of generality,
we focus in the following on 2-layer multiplexes with
α = 1, 2. We begin with the simplest case of linear at-
tachment which is the natural extension of the Barabási-
Albert model [27]. In this case, we consider that the
probability for a newborn node i to connect to an existing
node j on layer α is proportional to a linear combination
of the degrees of j at all layers. The attachment kernels
can then be expressed as

[

F [1][k, q]
F [2][k, q]

]

= C

[

k
q

]

=

[

c[1,1] c[1,2]

c[2,1] c[2,2]

][

k
q

]

(5)

where we use here and in the following the notations
k[1] = k and k[2] = q [28]. The coefficients c[r,s]

tune the dependence of the attachment probability at
layer r on the degrees of nodes at layer s. In the

case of 2-layer multiplexes we can represent the set of
coefficients C = {c[r,s]} using the compact notation
{c[1,1], c[1,2], c[2,1], c[2,2]}. The dynamics can be easily
solved in mean-field (see Appendix for details) and in
some specific cases we can fully characterize the degree
correlations within the two different layers by analytically
solving the master-equation. If we denote by Nk,q(t) the
number of nodes having, at time t, degree k on the first

layer and degree q on the second layer, and by Π
[α]
k,q the

probability that one of these Nk,q(t) nodes acquires one
of the m new links on layer α at time t + 1, the master
equation can be written as [29]

Nk,q(t+ 1) = Nk,q(t) + G − L (6)

where

G = m
[

Π
[1]
k−1,qNk−1,q(t) + Π

[2]
k,q−1Nk,q−1(t)

]

+ δk,mδq,m

L = m
[

Π
[1]
k,q +Π

[2]
k,q

]

Nk,q(t)

represent, respectively, the expected increase (G) and the
expected decrease (L) of Nk,q at time (t+ 1). Assuming
that Nk,q = tP (k, q) for large t, the solution of Eq. (6)
is obtained by solving the corresponding recursive ex-
pression (see Appendix for details). In the following we
summarize the master-equation solution in some partic-
ularly interesting cases. First of all let us consider simul-
taneous arrival of the nodes in the two layers. If we set
C = {1, 0, 0, 1} then the attachment probability at each
layer will depend only on the degree of the nodes in the
same layer. In this case the degree distribution in the
first layer reads [30, 31]

P (k) =
2m(m+ 1)

k(k + 1)(k + 2)
, k > m (7)

and the degree distribution in the second layer is identi-
cally equal. This distribution goes as P (k) ∼ k−γ with
γ = 3. If we solve the master-equation for the multi-
plex evolution we obtain the analytical expression for the
inter-layer joint degree probability P (k, q)

P (k, q) =
2Γ(2 + 2m)Γ(k)Γ(q)Γ(k + q − 2m+ 1)

Γ(m)Γ(m)Γ(k + q + 3)Γ(k −m+ 1)Γ(q −m+ 1)
(8)

The average degree k̄(q) at layer 1 of nodes having degree
q at layer 2 reads:

k̄(q) =
m(q + 2)

1 +m
(9)

Notice that even if the two layers grow independently,
the simultaneous arrival introduces non-trivial inter-layer
degree correlations. In fact, in the mean-field approach,
the degree of a node on each layer increases over time

as k
[α]
i (t) = m

(

t/t
[α]
i

)1/2

(see Appendix for details), so
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FIG. 3. (color online) Semi-linear attachment. Degree
distributions (a) and inter-layer degree correlations (b) for
semi-linear attachment. (c) The distribution of the average
shortest path length from one node to all the other nodes
heavily depends on the coupling pattern. Similarly, the in-
terdependence of a node λ(t) is always a sublinear function
of the arrival time t but its shape depends on the coupling
pattern at work (d). In general, older nodes have smaller
interdependence. (e) The coupling pattern also affects the
distribution of node interdependence. The smallest average
interdependence is observed when the two layers are indepen-
dent (yellow curve).

that the degrees of the two replicas of a node i depend, for
large t, only on their arrival time. If both replicas have

the same arrival time, i.e. t
[1]
i = t

[2]
i then the degree of

the two replicas will be positively correlated. In Fig. 1 we
report the degree distribution and the values of k̄(q) for
two coupling patterns, which are in good agreement with
the theoretical curves [32]. It is clear from the figure that
in the synchronous arrival case the shape of the coupling
matrix is actually not very relevant and that the value of
the degree distribution exponent and strong assortativity
are robust features of these multiplexes.

If we consider a power-law delayed arrival time on the
second layer, the results are significantly different. In
Fig. 2 we illustrate how the exponent of the delay distri-
bution β affects the structure of the obtained multiplex.
The bulk of the degree distributions are still power laws
P (k) ∼ k−γ with γ = 3, but the shape of the far tail
depends now on β: for small β, a few nodes are predom-
inant and become super-hubs (as also shown in Fig. S-1
in Appendix). The average shortest path and the inter-
dependence are also significantly affected, as shown in
Fig. 2c-d. In particular, when β is closer to one the pres-
ence of more predominant ‘old’ hubs lowers the average
shortest path and the inter-layer assortativity. Moreover,
broader delays cause a lower participation of hubs of the
second layer in shortest paths, as shown in Fig. 2e.

So far we have considered the case of two scale-free
growing networks, but it would be interesting to con-
struct multiplexes in which a scale-free network is cou-
pled to a network with a peaked degree distribution. In
this respect, we introduce a semi-linear attachment ker-

nel which allows to grow multiplexes in which the two
layers have different topological structures. The model is
defined as follows

[

F [1][k, q]
F [2][k, q]

]

= C

[

k
1

]

(10)

where C is still a 2 × 2 matrix of coefficients, as in the
linear model. In this case, the degree of a node on any of
the two layers could depend only on its degree on layer 1
and does not ever depend on its degree on layer 2. If we
set C = {1, 0, 0, 1} we can analytically solve the master
equation and the degree distributions of the two layers
read:

P [1](k) ∼ k−3, P [2](q) ∼ e−q (11)

while the inter-layer joint degree distribution is equal to

P (k, q) = a(k)

k−m
∑

n=0

(k −m

n

)

(

2m

2 + 2m+ k − n

)q−m+1

(−1)k−m+n

(12)

where a(k) = Γ(k)
Γ(m+1)Γ(k−m+1) . The function k̄(q) is

given by

k̄(q) = m

(

2(m+ 1)

1 + 2m

)q−m+1

(13)

Similar relations can be derived for the other coupling
patterns. In Panel a) and b) of Fig. 3 we report the
degree distribution and the value of k̄(q) for three dif-
ferent coupling patterns, which are in good agreement
with the theoretical curves. In the semi-linear model the
coupling pattern has a dramatic impact on other struc-
tural properties of the multiplex such as the distribution
of the average shortest path length from each node and
the distribution of node interdependence. In particular,
the interdependence is smaller for older nodes, and grows
sublinearly with time. This implies that navigation for
old nodes is easier within a single layer while younger
nodes will have to resort to the different layers to reach a
target. In addition, a sublinear growth implies that the
system performance increases very slowly.
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Mean-field theory

In this section, using a mean-field approach, we discuss the time evolution of the degree of the nodes of a multiplex
in the different layers and we derive long-time expressions for the degree distribution at each layer and for the inter-
layer degree-degree correlations. We first consider the linear attachment case (A) and then proceed to the semi-linear
case (B). We also provide a concise discussion of the case in which new nodes bring a random number of new edges
(C).

Linear attachment kernel on both layers

According to the growth model discussed in the main text, the probability that a newly arrived node i in the
multiplex creates a link to node j on layer α can be written as

Π
[α]
i→j =

F
[α]
j (kj)

∑

l F
[α]
l (kl)

(S-1)

where F
[α]
j (kj) is a certain function of the degrees of the replicas of node j. If F

[α]
j (kj) is a linear function of kj ∀α,

and all the replicas of the new node arrive at the same time, the temporal evolution of the degree of a node on each
layer is governed by the equations

[

dk[1]

dt
dk[2]

dt

]

=
1

2t
C

[

k[1]

k[2]

]

=
1

2t

[

c[1,1] c[1,2]

c[2,1] c[2,2]

][

k[1]

k[2]

]

(S-2)

with the constraints c[1,1] + c[1,2] = 1 and c[2,1] + c[2,2] = 1. Since the matrix elements are real and non-zeros, the
maximal eigenvalue is real. Moreover since we have just two layers then both eigenvalues λ1 and λ2 are real. We
notice that if we impose that each row of matrix C must sum to 1, and that the coefficients c[r,s] are non-negative (to

ensure that Π
[α]
i→j is a probability distribution ∀α), then we can write

C =

[

a 1− a
b 1− b

]

, 0 ≤ a ≤ 1, 0 ≤ b ≤ 1

It is easy to verify that if b − a+ 1 6= 0 the matrix C has eigenvalues λ1 = 1 and λ2 = (a− b) 6= 1, with eigenvectors
u
1 = [1, 1] and u

2 = [1,−b/(1− a)] (the degenerate case b− a+1 = 0 is considered below). Since the eigenvalues are
distinct, then C is diagonalizable, i.e. it is similar to the diagonal matrix

Λ =

[

1 0
0 a− b

]

, 0 ≤ a ≤ 1, 0 ≤ b ≤ 1

whose non-zero elements are the eigenvalues of C. The system in Eq. (S-2) can be also written in the form

k̇(t) = A(t)k(t) = α(t)Ck(t) (S-3)

where α(t) = 1
2t is a scalar function, and C is a constant matrix. This is a homogeneous time-varying linear dynamical

system, whose temporal evolution is fully determined by the initial state ks = mu
1 and by the state transition matrix

Φ(t, s), where s is the time at which a node is added to the graph

k(t) = Φ(t, s)ks = mΦ(t, s)u1. (S-4)

Since C is diagonalizable, then the transition matrix can be written as

Φ(t, s) = e
∫

t

s
A(τ) dτ = eC

∫
t

s
dτ
2τ = eCσ. (S-5)

To compute the transition matrix Φ(t, s) we first compute the exponential matrix eCσ and then we substitute σ with
∫ t

s
dτ
2τ . Since the eigenvalues of C are distinct, the corresponding eigenvectors form a base of R2, so we have

eCσ = V eΛV −1 (S-6)
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where V is the matrix whose columns are the eigenvectors of C and Λ is the diagonal matrix of the eigenvalues of C.
After some simple algebra we obtain

eCσ =
1

1− (a− b)

[

beσ + (1− a)e(a−b)σ (1− a)eσ − (1 − a)e(a−b)σ

beσ + b(1−a)
a−b e(a−b)σ (1− a)eσ − b(1−a)

(a−b) e
(a−b)σ

]

. (S-7)

By substituting σ with
∫ t

s
dτ
2τ = 1

2 (log t− log s), we get:

Φ(t, s) =
1

1− (a− b)

[

b( ts )
1
2 + (1− a)( ts )

a−b
2 (1− a)( ts )

1
2 − (1 − a)( ts )

a−b
2

b( ts )
1
2 + b(1−a)

a−b ( ts )
a−b
2 (1− a)( ts )

1
2 − b(1−a)

a−b ( ts )
a−b
2

]

(S-8)

and the solution of the system reads

ks(t) = mΦ(t, s)u1 = m

(

t

s

)
1
2

u
1. (S-9)

In this case we have

〈k[1]|k[2]〉 ∝ k[2], (S-10)

〈k[2]|k[1]〉 ∝ k[1]. (S-11)

Let us now consider the degenerate case b− a+1 = 0. Since we imposed that each row of the matrix C has to sum
to 1, then b − a + 1 = 0 only if a = 1 and b = 0. In this case the two layers evolve independently, the matrix C is
diagonal and the time evolution of the degree on each layer reads

k[α]s (t) = m

(

t

s

)
1
2

, (S-12)

with α = 1, 2. This means that in the case of linear attachment kernel on both layers without delay the degree
distribution of each layer is a power-law P (k) ∼ k−γ with exponent γ = 3 and we have

〈k[1]|k[2]〉 ∝ k[2], (S-13)

〈k[2]|k[1]〉 ∝ k[1]. (S-14)

Semi-linear attachment kernel

For the semi-linear attachment kernel we have
[

dk[1]

dt
dk[2]

dt

]

=
1

t

[ am
2am+1−a 0

bm
2bm+1−b 0

] [

k[1]

k[2]

]

+
1

t

[

m(1−a)
2am+1−a 0

0 m(1−b)
2bm+1−b

]

[

1
1

]

(S-15)

which is in the form

k̇(t) = A(t)k(t) +B(t)w(t) (S-16)

where

A(t) =

[

am
t(2am+1−a) 0

bm
t(2am+1−a) 0

]

, B(t) =

[

m(1−a)
t(2am+1−a) 0

0 m(1−b)
t(2bm+1−b)

]

, w(t) =

[

1
1

]

.

The system in Eq. (S-16) is a non-homogeneous time-varying linear dynamical system where w(t) represents an
external forcing function. If we call Φ(t, s) the state transition matrix of the corresponding homogeneous system
k̇(t) = A(t)k(t), it is possible to show that the unique solution of Eq. (S-16) is given by

ks(t) = Φ(t, s)ks +

∫ t

s

dσΦ(t, σ)B(σ)w(σ). (S-17)
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The form of the transition matrix Φ(t, s) associated to the homogeneous system depends on the value of a. When
a 6= 0 then Φ(t, s) reads

Φ(t, s) =

[

(

t
s

)β
0

(2abm+(1−a)b)
(2abm−ab+a)

(

t
s

)β
+ ((a−1)b−2abm)

(2abm−ab+a) 1

]

, where β =
am

2am− a+ 1
. (S-18)

By plugging Eq. (S-18) into Eq. (S-17) one obtains the mean-field temporal evolution of k
[1]
s and k

[2]
s :

k[1]s (t) =
am− a+ 1

a

(

t

s

)β

+
a− 1

a
,

k[2]s (t) = δ

(

t

s

)β

+ η (log(t)− log(s)) + ǫ, (S-19)

where

δ =
2a2bm2 + (3a− 3a2)bm+ (a+ 1)2b

2a2bm− a2b+ a2
,

η =
(a2 − ab)m

2a2bm− a2b+ a2
,

ǫ =
((2a2 − 3a)b+ a2)m− (a− 1)2b

2a2bm− a2b+ a2
.

In general, if b 6= 0 then for t→ ∞ we have
(

t
s

)β ≫ (log(t)− log(s)). Consequently, Eqs. (S-19) can be written as

k[1]s (t) ≃
(

m+
1− a

a

)(

t

s

)β

, (S-20)

k[2]s (t) ≃ δ

(

t

s

)β

(S-21)

so that the degree distribution on both layers reads

P (k[ℓ]) ∼ k−( 1
β
+1) = k−(3+ 1−a

am
) (S-22)

and we have

〈k[1]|k[2]〉 ∝ k[2],

〈k[2]|k[1]〉 ∝ k[1]. (S-23)

Instead, if b = 0 the solution for the degree of nodes on the second layer reads

k[2]s (t) = η(log(t)− log(s)) + ǫ, (S-24)

while k
[1]
s (t) is expressed by Eq. (S-20). In this case, the degree distribution on the first layer is the same as in

Eq. (S-22), while for the second layer we have

P (k[2]) ∼ e−
k
η (S-25)

and in the limit of large k[1](t), k[2](t) we obtain

〈k[1]|k[2]〉 ∝ e
βk[2]

η ,

〈k[2]|k[1]〉 ∝ log(k[1]). (S-26)

Eqs. (S-18—S-24) are valid when a 6= 0. When a = 0 the state transition matrix reads

Φ(t, s) =

[

1 0
bm(log t−log s)

2bm−b+1 1

]

(S-27)
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and the generic solutions for k
[1]
s (t) and k

[2]
s (t) are

k[1]s (t) = m (log(t)− log(s)) +m,

k[2]s (t) =
bm2 (log(t)− log(s))

2
+
(

(2− 2b)m+ 2bm2
)

(log(t)− log(s)) + 4bm2 + (2− 2b)m

4bm− 2b+ 2
. (S-28)

In this case, the degree distribution on the first layer is exponential P (k[1]) ∼ e−
k
m . On the second layer, the functional

form of the degree distribution depends on the value of b. It is easy to verify that when b = 0 then P (k[2]) ∼ e−
k
m ,

and we have in the limit of large k[1](t), k[2](t)

〈k[1]|k[2]〉 ∝ k[2],

〈k[2]|k[1]〉 ∝ k[1]. (S-29)

Conversely, when b > 0 the degree distribution on the second layer is

P (k[2]) ∼ e−
√
µk+ν

√
µk + ν

(S-30)

where

µ = m
[

4b2m+
(

2b− 2b2
)]

,

ν = m2
[

b2m2 +
(

2b− 6b2
)

m+ (3b2 − 4b+ 1)
]

.

In this case, in the limit of large k[1](t), k[2](t), we have

〈k[1]|k[2]〉 ∝
√

k[2],

〈k[2]|k[1]〉 ∝
(

k[1]
)2

. (S-31)

Fluctuations in the number of edges

In principle, the mean-field approach could be also applied to the case in which the number of edges brought on
layer α by each new-born node is not fixed but is a random variable ξ[α] drawn from a given distribution P (ξ[α]). In
this case we should solve the system of stochastic differential equations:

[

dk[1]

dt
dk[2]

dt

]

=
1

2
(

κ[1](t) + κ[2](t)
)

[

ξ[1](t) 0
0 ξ[2](t)

] [

a 1− a
b 1− b

] [

k[1]

k[2]

]

(S-32)

where:

κ[α](t) =

∫ t

1

dτ ξ[α](τ)

The random variable ξ[α] is a positive integer with average 〈ξ[α]〉 and the dominant term at large times of κ[α] is then
given by

κ[α](t) ≃ t〈ξ[α]〉+ o(t)

This implies in particular that at large times, the effect of randomness in the number of edges is negligible, and the
behavior of the system is governed by the average number of edges 〈ξ[α]〉 added in each layer.

Master Equation approach for the model without delay

We provide here the derivation of exact expressions of P (k) and P (k, q) starting from the master equation of the
system. We denote by Nk,q(t) the average number of nodes that at time t have degree k in layer 1 and degree q in
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layer 2. We start from a small connected network and at each time we add a node which brings, at same time, m
new edges in layer 1 and m new edges in layer 2. We assume that, when we add the new node i to the network, the
expected number of new links in layer 1 attached to a node j of degree k in layer 1 and degree q in layer 2 is given

by mΠ
[1]
i→j =

Ak,q

t . Similarly, the expected number of new links in layer 2 attached to a node j of degree k in layer 1

and degree q in layer 2 is given by mΠ
[2]
i→j =

Bk,q

t . In addition to that, we work in the hypothesis that in the large t
limit, t ≫ 1, we have Ak,q/t ≪ 1 and Bk,q/t ≪ 1 so that we can neglect the probability that a node acquires at the
same time a link in both layers. In this hypothesis the master equation for evolving multiplex network is given by

Nk,q(t+ 1) = Nk,q(t) +
Ak−1,q

t
Nk−1,q(t) +

Bk,q−1

t
Nk,q−1(t)−

[

Ak,q

t
+
Bk,q

t

]

Nk,q(t) + δk,mδq,m (S-33)

for k ≥ m and q ≥ m, as long as Nm−1,q(t) = Nk,m−1(t) = 0. Assuming that Nk,q = tP (k, q) is valid in the large
time limit t≫ 1, we can solve for the combined degree distribution P (k, q) indicating the probability that a node has
at the same time degree k in layer 1 and degree q in layer 2. We get the master equations

P (m, q) =





q
∏

j=m+1

Bm,j−1

1 +Am,j +Bm,j



P (m,m),

P (k, q) =

q
∑

r=m





q
∏

j=r+1

Bk,j−1

1 +Ak,j +Bk,j





Ak−1,r

1 +Ak,r +Bk,r
P (k − 1, r) (S-34)

Solution of the master equation in three simple cases

(i) Linear attachment kernel – Let us first consider a linear preferential attachment kernel, in which c[1,1] = c[2,2] = 1
and c[1,2] = c[2,1] = 0. In this case we have

Ak,q =
k

2
,

Bk,q =
q

2
. (S-35)

The recursive Eqs. (S-34) read

P (m, q) =
Γ(q)Γ(3 + 2m)

Γ(m)Γ(3 + q +m)
P (m,m),

P (k, q) =

q
∑

r=m

(

Γ(q)Γ(3 + r + k)

Γ(r)Γ(3 + q + k)

)

k − 1

2 + k + q
P (k − 1, r) (S-36)

where P (m,m) is fixed by the normalization condition
∑∞

k=m

∑∞
q=m P (k, q) = 1. Using the relation

q
∑

r=m

Γ(k + r − 2m)

Γ(r −m+ 1)Γ(k −m)
=

Γ(k + q − 2m+ 1)

Γ(k −m+ 1)Γ(q −m+ 1)
(S-37)

it can be proved recursively that P (k, q) takes the following expression

P (k, q) =
2Γ(2 + 2m)

Γ(m)Γ(m)

Γ(k + q − 2m+ 1)

Γ(k + q + 3)

Γ(q)

Γ(q −m+ 1)

Γ(k)

Γ(k −m+ 1)
(S-38)

Summing over the degree in layer 2 we can find the degree distribution P (k) in layer 1, i.e. P (k) =
∑∞

q=m P (k, q)
obtaining the known result for a single layer,

P (k) =
2m(1 +m)

k(k + 1)(k + 2)
(S-39)

The function 〈k(q)〉 is given by

〈k(q)〉 =
∑∞

k=m kP (k, q)
∑∞

k=m P (k, q)
=

m

1 +m
(q + 2) (S-40)
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Similar expressions are obtained for P (q) and 〈q(k)〉, by summing Eq. (S-38) over k.

(ii) Uniform attachment kernel – Let us now consider a uniform attachment kernel, in which every target node j is

chosen with probability Π
[1]
i→j =

1
t in layer 1 and with probability Π

[2]
i→j =

1
t in layer 2, so that

Ak,q = m

Bk,q = m. (S-41)

In this case the recursive Eqs. (S-34) read

P (m, q) =

(

m

1 + 2m

)q−m

P (m,m),

P (k, q) =

q
∑

r=m

(

m

1 + 2m

)q−r
m

1 + 2m
P (k − 1, r) (S-42)

where P (m,m) is again fixed by the normalization condition
∑∞

k=m

∑∞
q=m P (k, q) = 1. Using again the relation

provided in Eq. (S-37) it is easy to prove recursively that P (k, q) is given in this case by

P (k, q) =
1

m

(

m

1 + 2m

)k+q−2m+1
Γ(k + q − 2m+ 1)

Γ(k −m+ 1)Γ(q −m+ 1)
(S-43)

Moreover the degree distribution P (k) =
∑∞

q=m P (k, q) and P (q) =
∑∞

k=m P (k, q) of a single network are given by

P (k) =
1

1 +m

(

m

1 +m

)k−m

and P (q) =
1

1 +m

(

m

1 +m

)q−m

(S-44)

while the function 〈k(q)〉 =
∑∞

k=m kP (k, q)/P (q) is given by

〈k(q)〉 = (q + 2)m

1 +m
(S-45)

(iii) Semi-linear attachment kernel – Finally we analyze the case of semi-linear attachment with c[1,1] = c[2,2] = 1
and c[1,2] = c[2,1] = 0. We have:

Ak,q =
k

2
Bk,q = m. (S-46)

In this case the Eqs. (S-34) read as

P (m, q) =

(

2m

2 + 3m

)q−m

P (m,m),

P (k, q) =

q
∑

r=m

(

2m

2 + k + 2m

)q−r
k − 1

2 + k + 2m
P (k − 1, r) (S-47)

where P (m,m) is fixed by the normalization condition
∑∞

q=m

∑∞
k=m P (k, q) = 1. It can be shown recursively that

these equations have the following solution,

P (k, q) =
1

Γ(m+ 1)

Γ(k)

Γ(k −m+ 1)

k−m
∑

n=0

(

k −m
n

)(

2m

2 + 2m+ k − n

)q−m+1

(−1)k−m−n,

with the associated degree distributions P (k) =
∑∞

q=m P (k, q) and P (q) =
∑∞

k=m P (k, q) given by

P (k) =
2m(1 +m)

k(k + 1)(k + 2)
,

P (q) =
1

Γ(1 +m)

∞
∑

k=m

k−m
∑

n=0

(

k −m
n

)(

2m

2 + 2m+ k − n

)q−m+1

(−1)k−m+n =

(

m

1 +m

)q−m
1

1 +m
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Finally the function 〈k(q)〉 = ∑∞
k=m kP (k, q)/P (q) is given by

〈k(q)〉 =
(

2(m+ 1)

1 + 2m

)q−m+1

m

(S-48)

Role of β in the delayed arrival

In Fig. S-1 we show the time evolution of the maximum degree kM (t) on the first layer, for different values of β.
Notice that kM (t) ∼ (t/s)δ. The effect of the exponent β tuning the width of the delay distribution is evident: the
larger the value of β, the closer δ is to 0.5, the value observed in the case of synchronous arrival. Consequently, the
rightmost part of the degree distribution is broader when β is close to 1 and becomes more similar to P (k) ∼ k−3

when β increases.

Finite size effects

It is interesting to investigate how the properties of the multiplexes generated using the model we propose depend
on the number of nodes N . For instance, most of the mean-field predictions for the degree distributions and inter-layer
degree correlations are valid in the limit of large N . However, as shown in Fig. S-2 and in Fig. S-3, the properties of
the degree distributions and of inter-layer degree-degree correlations are similar to those predicted for large N even
for relatively small multiplexes, e.g. with N = 1000.

Time complexity

The most efficient algorithm for the construction of a simplex networks based on preferential attachment takes
advantage of random sampling with rejection and runs in O(Nm2). However, in the case of a multiplex the procedure
to sample a candidate neighbour j of a newly-arrived node i is a bit more complicated. Let us first consider a two-layer
multiplex described by Eq. (S-2). When we sample the candidate neighbours of node i at layer 1 at time t, each node

j should be sampled with a probability proportional to ak
[1]
j + (1 − a)k

[2]
j . The simplest way to implement such

sampling is to construct a vector S whose n-th entry is equal to
∑n

j=1 ak
[1]
j + (1− a)k

[2]
j (the first element S[0] of the

array is set equal to zero); then we sample a real number ζ in the interval (0,S[t]] and we choose the node j such
that ζ ≤ S[j] and ζ > S[j − 1]. The construction of the vector S at each time t requires O(t) operations while the
sampling of a single node j can be efficiently implemented by binary search, requiring at most O(log(t)) operations
per edge, so that the sampling of m edges requires at most O(m log(t)) steps. Thus, the total number of operations
needed to sample a layer of a multiplex is:

N
∑

j=m0+1

O(t) +O(m log(t)) = O(N2) +O(mN log(N)) = O(N2 +mN log(N)) (S-49)

It is easy to verify that the construction of a M -layer multiplex requires a number of steps

O(M(N2 +mN log(N)) (S-50)

which, for m fixed, is dominated by O(MN2). Therefore, the time complexity of this algorithm is linear in the
number of layers and quadratic in the number of nodes. We notice that in principle it is possible to construct better
algorithms to sample growing multiplexes by implementing a smart policy to update the array S.

Randomly-chosen master layer

In the main text we made the simplifying assumption that each node arrives first on the master layer and then
on the other layers, after a certain delay. We call this assumption “Equal master layer” (EML). In this Section we
briefly comment on the case in which this assumption does not hold, i.e. when a node first arrives either on the first
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FIG. S-1. Effect of β on the maximum degree of a layer. When the exponent β of the delay distribution is close to 1,
the maximum degree of a layer scales as (t/s)δ, with δ > 1/2. Consequently, the rightmost side of the degree distribution is
broader when β is close to 1 and converges to P (k) ∼ k−3 as β increases.
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FIG. S-2. Degree distribution on the first layer for different values of N . Even for relatively small multiplexes, i.e.
N = 1000, the exponent of the degree distribution is almost equal to γ = 3.

or on the second layer, and then arrives on the other layer after a power-law distributed delay. We call this case
“Randomly-chosen master layer” (RML), to stress the fact that the master layer of each node is chosen at random
among the M layers of the multiplex. In particular, we are interested in the case in which a newly arrived node
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N=50000
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k(k) ~ k

FIG. S-3. Inter-layer degree correlation as a function of N . The shape of the inter-layer degree-degree correlations is
already evident even for small values of N . The curves have been vertically displaced to facilitate visual comparison.

selects one of the M layers of the multiples as its master layer with uniform probability p = 1/M . In Fig. S-4, S-5
and S-6 we report, respectively, the degree distributions, the temporal scaling of the degree of the largest hub and
the distribution of shortest path lengths and node interdependence for RML with M = 2. The plots suggest that the
random choice of the master layer produces a more balanced distribution of super hubs between the two layers, which
has a relevant impact on the distribution of shortest path lengths and node interdependence (Fig. S-6). Conversely,
the degree distributions and the temporal scaling of the degree of the largest hub are practically indistinguishable
from those observed in EML (Fig. S-4 and S-5).
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FIG. S-4. Degree distribution of mixing master layers. The degree distribution of the first layer for the EML (panel a)
and the RML (panel b) for β = 1.1 (blue circles) and β = 2.0 (red squares). The random choice of the master layer for each
node does not sensibly change the shape of the degree distribution.
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FIG. S-5. Temporal scaling of degree for RML. The degree kM of the largest hub in the first layer scales as (t/s)δ, where
δ depends on the exponent β of the delay distribution and approaches 0.5 as β increases. Notice that the values of δ are pretty
similar to those observed in the case of EML, reportes in Fig. S-1.
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FIG. S-6. Distribution of shortest path lengths and node interdependence for RML. When the master layer of each
node is chosen at random, the distribution of shortest path lengths (panel b, left) is more similar to that obtained for synchronous
arrival (shaded curve) than that obtained in EML (panel a, left). Conversely, the distribution of node interdependence for RML
(panel b, right) sensibly deviates from that obtained for synchronous arrival (shaded curve) and differs from that observed in
EML (panel a, right). These results can be explained by a more balanced distribution of super-hubs among the two layers of
the multiplex.


