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Growing scale-free simplices
Kiriil Kovalenko 1,14, Irene Sendiña-Nadal 2,3,14✉, Nagi Khalil 4,14, Alex Dainiak5, Daniil Musatov1,5,6,

Andrei M. Raigorodskii1,6,7,8, Karin Alfaro-Bittner 9,10, Baruch Barzel11,12,14 & Stefano Boccaletti1,2,9,13,14

The past two decades have seen significant successes in our understanding of networked

systems, from the mapping of real-world networks to the establishment of generative models

recovering their observed macroscopic patterns. These advances, however, are restricted to

pairwise interactions and provide limited insight into higher-order structures. Such multi-

component interactions can only be grasped through simplicial complexes, which have

recently found applications in social, technological, and biological contexts. Here we intro-

duce a model to grow simplicial complexes of order two, i.e., nodes, links, and triangles, that

can be straightforwardly extended to structures containing hyperedges of larger order.

Specifically, through a combination of preferential and/or nonpreferential attachment

mechanisms, the model constructs networks with a scale-free degree distribution and an

either bounded or scale-free generalized degree distribution. We arrive at a highly general

scheme with analytical control of the scaling exponents to construct ensembles of synthetic

complexes displaying desired statistical properties.
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A
ll beauty, richness, and harmony in the emergent
dynamics of a complex system largely depend on the
specific way in which its elementary components interact.

The last 20 years have seen the birth and development of the
multidisciplinary field of network science, wherein a variety of
systems in physics, biology, social sciences, and engineering has
been modeled by networks of coupled units, in the attempt to
unveil the mechanisms underneath the observed systems’ func-
tionality1–6.

But the fundamental limit of such a representation is that
networks capture only pairwise interactions, whereas the function
of many real-world systems not only involves dyadic connections,
but rather is the outcome of collective actions at the level of
groups of nodes7. For instance, in ecological systems, three or
more species compete for food or territory8. Similar multi-
component interactions appear in functional9–13 and structural14

brain networks, protein interaction networks15, semantic net-
works16, multiauthors scientific collaborations17, offline and
online social networks18,19, trigenic interactions in gene reg-
ulatory networks20,21, and spreading of social behavior due to
multiple, simultaneous, social interactions22.

Simplicial complexes (SCs), being structures formed by sim-
plices of different dimensions (nodes, links, triangles, tetrahedra,
etc.), can effectively map the relationships between any number of
components. Originally introduced over two decades ago23, SCs
are becoming increasingly relevant, thanks to the enhanced
resolution of current datasets and the recent advances in data
analysis techniques24,25. As real data are being accumulated, we
encounter a theoretical challenge: how to synthesize SCs that
faithfully reproduce the observed structural features. Significant
progresses were made in extending to SCs static graph models,
such as random graphs26–28, configuration models29–31, or
activity-driven models32. The fact is however that in many cir-
cumstances (such as in the case of scientists collaborating with
and citing each other), the network is the result of a growing
process, and therefore another approach to model SCs is that of
out-of-equilibrium models. Most of the models falling within this
category have a geometrical interpretation33 and are variations of
the so-called “network geometry with flavor” (NGF) model34–38,
which aims at providing a theoretical basis to characterize the
underlying geometry of complex networks39 or to explore hidden
geometries in complex materials by aggregating SCs as funda-
mental building blocks40. While the original NGF model adds
one34 or more37 maximal simplices of fixed dimension at each
time step of the growth process, Fountoulakis et al.41 introduced
even the option to remove an existing simplex when a new one
is added.

In this paper, we discuss the NGF model proposed by Courtney
and Bianconi37 that is able to grow SCs of order two, i.e., struc-
tures made of nodes, links and triangles, making use of pre-
ferential and nonpreferential rules, and we generalize this model
by proposing a model that makes a combination of the two
mechanisms. The resulting SCs are characterized by two dis-
tributions, the classic degree distribution P(k), capturing the
fraction of nodes with degree k, and the generalized degree dis-
tribution P(kℓ), where kℓ characterizes the number of triangles
supported by each link l= (i, j). We show that our generative
model always yields a power-law scaling in P(k), recovering the
ubiquitously observed scale-free property42,43, and, at the same
time, it allows full control over P(kℓ), i.e., bounded or scale-free
with any desired scaling exponent. Indeed, P(kℓ) has been shown
to play a crucial role in the emergence of collective behavior, such
as synchronization44. We will furthermore show that our meth-
ods can be straightforwardly extended to grow structures con-
taining hyperedges of size larger than two.

Results and discussion
SCs growth models. Let us, for the time being and unless
otherwise specified, concentrate on NGFs models of SCs of order
two proposed by Courtney and Bianconi37. The purpose is to
grow a network of N nodes featuring a transitivity coefficient T=
145,46, thus implying that each link is part of a connected triplet of
nodes (a triad) which forms a triangle. This is done by starting at
t= 0 with an elementary network seed, consisting in an initial
clique (an all-to-all connected network) of size N0≪N. Then, at
each successive times t= 1, 2, 3, ..., N−N0, a new node is added
to the graph. The added node selects mtri already existing links,
and forms connections with the 2mtri nodes located at the ends of
such links, thus generating mtri new triangles (when mtri > 1, a
further condition is enforced that the mtri selected links are not
pairwise adjacent, to avoid multiple links from the added node to
single existing nodes in the graph).

Such a procedure can be conducted with or without adopting a
preferential attachment rule. In the latter case, the probability that
the node added at time t selects the specific link (i,j) to form its
connections is taken to be PijðtÞ ¼

1
N0 N0�1ð Þ=2þ2mtriðt�1Þ, i.e., the

mtri links are randomly selected among all those which already
exist in the graph at time t− 1 with equal probability (and
therefore without applying a preferential rule). In the former case,

instead, one has that PijðtÞ ¼
kijðt�1Þ

P

i;j
kijðt�1Þ

, which implies that the

larger is the number of triangles a given edge (i,j) is part of at time
t− 1 the larger the probability for that edge of being selected to
form a new triangle with the added node. These models are the
NGF models proposed by Courtney and Bianconi37 for d= 2, s=
0 (uniform attachment) and d= 2, s= 1 (preferential
attachment).

Figure 1a, c reports the degree distribution P(k) of the networks
(of size N= 10,000 nodes) generated by the two methods. One
immediately sees that in both cases the graphs feature a clear
power-law scaling, i.e., the scale-freeness which is indeed
characterizing the vast majority of real-world networks1–6,42,43.
In Fig. 1b, d, we report, instead, a visualization of a typical
synthesized network with N= 200 and mtri= 1.

We also measure the generalized degree kℓ. Given a graph of N
nodes and its adjacency matrix A (the N ×N matrix with entries
aij= 1 if nodes i and j are connected by a link, and aij= 0
otherwise), the generalized degree kij of the link between node i
and j is the (i, j)-entry of the matrix A⊘ A2 (with the symbol ⊘
standing for the Hadamard product), that is, kij ¼ ðAÞij � ðA2Þij,

which accounts for the number of triangles in which the link ij
participates. Looking at Fig. 1, one can immediately see that while
the two generated networks are essentially heterogeneous in the
node degree, the properties of kℓ appear instead to be very
different. In particular, the nonpreferential case leads to a much
more restricted range of kℓ values as compared to that generated
by the preferential rule (see the two color bars at the right of the
panels). Moreover, the structure obtained with nonpreferential
attachment is homogeneous in terms of kℓ (almost all the six
colors, each one representing a given value of kℓ, are visible). On
the opposite, the preferential rule generates an SC with a high
heterogeneity in kℓ: almost all links are red (they have the lowest
as possible value of kℓ), and only one link (the black one) displays
a value of kℓ equal to the maximum in the distribution.

These latter features are more quantitatively visible in Fig. 2,
which reports the distribution P(kℓ) of the generalized degree kℓ
for the two cases. Comparing Fig. 2a, b, one immediately realizes
that while P(kℓ) is exponentially decaying when the growth is
realized with nonpreferential attachment (Fig. 2a), its scaling is a
clear power law in the presence of preferential attachment.
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A relevant conclusion at this stage is that the two cases are
imprinting a completely different topology in the triangular
structures (reflected by completely different scaling properties in
the distribution of the generalized degree kℓ).

Nonpreferential model (NGF37 with d= 2, s= 0). We now
furnish a full analytic treatment, and provide the rigorous
expressions for the distributions P(k) and P(kℓ). We start with the
case of nonpreferential attachment, and we call N(k,t) the number
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Fig. 2 The distribution of the generalized degree kℓ. The distribution P(kℓ) vs. the generalized—link—degree kℓ (number of triangles a link ℓ is adjacent

to) obtained by growing a network of size N= 10,000 with the nonpreferential (a) and with the preferential (b) attachment models. The data refer to an

ensemble average over 100 different realizations of the growth process. Notice that a is in log–linear scale, whereas b is in log–log scale. Legends in both

panels report the color code for the number of triangles mtri added at each step of the growth process. The dashed line in a is used for exponential solution

given by Eq. (6), while the dashed line in b is used for the power-law solution given by Eq. (12).
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Fig. 1 The structures generated in the preferential and the nonpreferential cases. a, b The model without preferential attachment and c, d the model with

preferential attachment. a, c Log–log plot of the node degree distribution P(k) of the resulting networks for different values of the number of triangles mtri

added at each step of the growth process (see color code in the legend). Data are obtained as an ensemble average over 100 different realizations of a

network with size N= 10,000 nodes. Dotted, dashed, and dash-dotted lines in a and c correspond to the analytical predictions given by Eqs. (3) and (9).

b, d Schematic visualization of generated networks with N= 200 and mtri= 1. The size of the nodes correlates with their influence in the network in terms

of their eigenvector centrality55, such that a node with large size implies a high eigenvector centrality, and therefore the node is connected to many nodes

also of large size with high eigencentrality. The width of each link ℓ= (i,j) is proportional to the square root of the link degree kℓ, the number of triangles

the link is adjacent to, and the color of the links encodes the supported number of triangles kℓ as reported in the bars at the right of both panels.
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of nodes with degree k at time t. Its rate equation reads

dNðk; tÞ

dt
¼

2mtri
P

kkNðk; tÞ
�kNðk; tÞ þ ðk� 1ÞNðk� 1; tÞ½ � þ δk;2mtri

; ð1Þ

where dNðk;tÞ
dt

� Nðk; t þ 1Þ � Nðk; tÞ, and δ is the Kronecker delta
function.

For N(t) ≡ ∑kN(k,t) ≃ t, one seeks a solution of the form N
(k,t) = tP(k), where P(k) is assumed to be time independent.
Since the total number of edges is ~2mtrit, one has ∑kkN(k,t) ≃
4mtrit, and the rate equation for P(k) becomes

PðkÞ ¼
k� 1

kþ 2
Pðk� 1Þ þ

2

kþ 2
δk;2mtri

: ð2Þ

Such a latter equation is the same as Eq. (6) introduced by
Boccaletti et al.47, and its solution (for k ≥ 2mtri) is

PðkÞ ¼
4mtrið2mtri þ 1Þ

kðkþ 1Þðkþ 2Þ
� k�3; ð3Þ

which perfectly fits the data (see the dotted, dashed-dotted, and
dashed black lines in Fig. 1a). A similar, exponential, degree
distribution has also been reported in refs. 36,39,48.

Then, one can consider Ne(kℓ,t) as the number of edges
participating in kℓ triangles at time t. Its rate equation is

dNeðk‘; tÞ

dt
¼ �mtri

Neðk‘; tÞ

NeðtÞ
þmtri

Neðk‘ � 1; tÞ

NeðtÞ
þ 2mtriδk‘;1 ± ¼ ;

ð4Þ

where Ne(t)≃ 2mtrit and the unwritten terms account for the
formation of triangles from two or more linked edges. For the
distribution of the generalized degree kℓ, one has that P(kℓ)=
Ne(kℓ,t)/Ne(t), and the recursive equation is

Pðk‘Þ ¼
1

3
Pðk‘ � 1Þ þ

2

3
δk‘;1; ð5Þ

admitting the following solution:

Pðk‘Þ ¼
2

3k‘
; k‘ ≥ 1: ð6Þ

The exponential function (6) is reported as a dashed line in
Fig. 2a, and one can see that the fit with numerical simulations is
rather good, especially for the case mtri= 1.

Preferential model (NGF37 with d= 2, s= 1). The analytic
treatment of the preferential attachment case is far more com-
plicated, as it implies the demonstration of a couple of theorems
and the extensive use of a known lemma. We limit here ourselves
to furnish the main results without reporting all the (sometimes
cumbersome) formal mathematical steps, whereas the interested
reader can find the full details within the “Methods” section.
Calling again N(k,t) the number of vertices with degree k at
time t, its recurrence relation (see details in “Methods”) can be
written as

Nðk; t þ 1Þ ¼ Nðk; tÞ 1�
k

3t

� �

þ Nðk� 2; tÞ
k� 2

3t
þ O

1

t2

� �

ð7Þ

for k > 2mtri, and

Nð2mtri; t þ 1Þ ¼ Nð2mtri; tÞ 1�
2mtri

3t

� �

þ 1þ O
1

t2

� �

ð8Þ

for k= 2mtri.
In order to obtain an expression for P(k), one supposes that

Nðk;tþ1Þ
tþ1

¼ Nðk;tÞ
t

for large t. Therefore, one gets Pð2mtriÞ ¼
3

3þ2mtri

and PðkÞ ¼ Pðk� 2Þ k=2þ1
k=2þ1:5, which ultimately gives PðkÞ ¼

3
3þ2mtri

Qk=2
l¼mtriþ1

l�1
lþ1:5 or alternatively

PðkÞ ¼
3

3þ 2mtri

Γðk=2ÞΓðmtri þ 2:5Þ

ΓðmtriÞΓðk=2þ 2:5Þ
� k�2:5; ð9Þ

where Γ is here the gamma function. The power-law scaling
predicted by Eq. (9) fits remarkably well the numerical data (see
the dotted, dashed-dotted, and dashed black lines in Fig. 1c) and
was also measured in refs. 36,39.

As for P(kℓ), one calls again Ne(kℓ,t) the number of edges
participating in kℓ triangles at time t. The recurrence relation for
Ne(kℓ,t) (see details in “Methods”) is

Neðk‘; t þ 1Þ ¼ Neðk‘; tÞ 1�
k‘
3t

� �

þ Neðk‘ � 1; tÞ
ðk‘ � 1Þ

3t
þ O

1

t2

� �

ð10Þ

for kℓ > 1, and

Neð1; t þ 1Þ ¼ Neð1; tÞ 1�
mtri

3mtrit

� �

þ 2mtri þ O
1

t2

� �

ð11Þ

for kℓ= 1. Imposing that
Neðk‘;tþ1Þ

tþ1 ¼ Neðk‘;tÞ
t for large t, one gets an

equation for P(kℓ) which reads as Pðk‘Þ ¼ Pðk‘ � 1Þ k‘�1
k‘þ3

, with

Pð1Þ ¼ 3
4
. The solution is

Pðk‘Þ ¼
3

4

Y

k‘

l¼2

l � 1

l þ 3
¼

3

4

4!

k‘ðk‘ þ 1Þðk‘ þ 2Þðk‘ þ 3Þ
� k�4

‘ : ð12Þ

The power-law function (12) is reported as a dashed line in
Fig. 2b, and one can observe that the fit is, once again,
extremely good.

Mixed model. Finally, our study can be extended and generalized
to a mixed model, through which it is possible to effectively
imprint any desired power-law scaling in the triangular structure
of the network. Contrary to the previous two cases, our mixed
model cannot be encompassed within the framework of the
NGF36. In particular, we consider the case in which the prob-
ability that the node added at time t selects the specific link (i,j) to
form its connections is

PijðtÞ ¼ A
2

N‘ðt � 1Þ
þ B

3kijðt � 1Þ

2
P

ijkijðt � 1Þ
; ð13Þ

for some constants A and B. Here, B is nonnegative, Nℓ(t) ~ 2mtrit
is the number of links at moment t and ∑ijkij(t− 1)= 3mtrit is the
sum of the generalized degrees of all edges. Notice that A= 0 and
B ¼ 2

3 (A ¼ 1
2 and B= 0) recovers the preferential (non-

preferential) case discussed above.
From the constraint that the sum of all probabilities must be

equal to 1, it follows that A and B must obey 2Aþ 3
2
B ¼ 1, so

that A= 1/2− 3/4B. Furthermore, Pij(t) must be nonnegative for
all (i,j) (also those for which kij= 1), and this gives the following
bounds for A and B: �1≤A≤

1
2
and 0 ≤ B ≤ 2. Under these

conditions, one can analytically demonstrate (see “Methods” for
details) that for strictly positive B values, the resulting networks

display scale-free distributions PðkÞ � k�γ‘ and Pðk‘Þ � k
�γ‘
‘ with

exponents given by

γ ¼ 1þ
1

Aþ B
¼ 1þ

4

2þ B
; ð14Þ

and

γ‘ ¼ 1þ
2

B
: ð15Þ

For B= 0, one has instead (see “Methods” for full details)
Pðk‘Þ ¼

2
3k‘
. Equation (14) implies that γ values are between 2
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(B= 2) and 3 (B= 0), whereas γℓ is equal to 2 for B= 2, and
tends to infinity as B tends to 0 according to Eq. (15). On its turn,
this means that choosing B between 1 and 2, γ and γℓ can be
preselected ad libitum between 2 and 3, i.e., the imprinted
structures of links and triangles feature well defined mean values
of the degrees, but unbounded fluctuations as the system grows
in size.

In Fig. 3, we report P(k) and P(kℓ) for three distinct values of B.
It is seen that the fit between analytic predictions and numerically
generated data is always remarkably good. Moreover, the figure
demonstrates that our method constitutes a highly general
scheme by means of which one can construct, in a fully flexible
way, ensembles of synthetic complexes displaying any desired
statistical properties [from the condition of Fig. 3a, d featuring a
super scale-freeness—where even the mean degrees diverge in the
thermodynamic limit—to any milder condition which charac-
terizes in fact many networks from the real world].

Extension to d uniform hypergraphs. The mixed model for SCs
can be straightforwardly extended to grow uniform d hyper-
graphs. For simplicity, let us start by setting N0= d+ 1 nodes in a
ring, such that, for d= 2 we have a triangle (2-hyperlink), for d=
3 a square (3-hyperlink), for d= 4 a pentagon (4-hyperlink), and
so on. At each time step, a structure of d− 1 new nodes forming
an open ring with d− 2 edges (see the sketches in Fig. 4a–c) are
added to the network, in order to close a d hyperedge with an
existing link. Once again, the probability that a specific link (i,j) is
chosen to close the hyperedge is

PijðtÞ ¼ A
2

N‘ðt � 1Þ
þ B

3kij;dðt � 1Þ

2
P

ijkij;dðt � 1Þ
; ð16Þ

Nℓ(t) being the total number of links at time t, and kij,d(t)
the generalized degree of the (i,j) link, that is, the total number

(at time t) of d uniform hyperedges which are incorporating the
link ij. Figure 4 reports the node degree distributions P(k) (d–f)
and the generalized degree distribution Pðk‘;dÞ (g–i), where k‘;d
now characterizes the number of triangles (for d= 2), squares
(for d= 3), or pentagons (for d= 4) supported by each link l=
(i, j). The reported curves are obtained at different values of B,
and the color code is visible in the legend of (a). It is possible to
see that, in all cases, the grown structures display the same scaling
behavior predicted by our mixed model for the case of SCs of
order 2. The extension of our techniques to the growth of SC’s of
higher order will be reported elsewhere.

In summary, complex networks encode the basic architecture
of social, biological, and technological networks, touching upon
the most crucial challenges of modern science, from the spread of
epidemics in social networks20,49 to the resilience of our eco-
systems and critical infrastructure50.

In the context of pairwise interactions, the most natural
measure of centrality is a node’s individual degree, capturing its
potential dynamic impact on the system51. The discovery that
most real-world networks exhibit extreme levels of degree
heterogeneity was disruptive—indicating that networks are highly
centralized, with a potentially disproportionate role played by a
small fraction of their components42,43.

As we deepen our investigation into the interaction patterns of
complex systems, it becomes increasingly clear, however, that
higher order structures, beyond pairwise interactions, underlie
much of the observed richness of real-world networks. Hence, we
sought the fundamental rules that prescribe centrality, and govern
its distribution, in an SC environment. In addition to this, the
proposed models are expected to exhibit the small-world
property, simultaneously featuring short average distances which
increase proportionally to the logarithm of the network size (see
Fig. 5) and large modularity and clustering coefficients—as new
nodes enter the network closing triads. A natural measure is the
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number of complexes, here triangles, that a link participates in.
Indeed, an SC represents a potentially functional unit, such as a
collaboration of a social team17, or a trio of interacting
biochemical agents20,21. A component that is part of many such
complexes is, therefore, likely central in the functionality of the
system.

Several growing network models have been introduced and
studied, which help exposing the roots of SC heterogeneity,
shedding light on the emergence of centrality beyond the degree
distribution. As we seek to understand the behavior of complex
systems, their resilience and dynamic functionality, we hope that
our comprehension into the microscopic processes of their
formation can provide meaningful macroscopic insights.

Methods
In this final section, we furnish all the details of the analytical results regarding our
models. The starting point is that, as the synthesized networks have transitivity
coefficient T= 1 (i.e., no links exist which do not form part of at least a triangle),
the degree of each vertex is the number of triangles containing that vertex mul-
tiplied by 2, and one has that Nv(kv, t)=N(2k, t), where Nv(kv, t) is the number of
nodes participating in kv triangles and N(2k, t) is the number of nodes having
degree 2k at time t. As a consequence one has that P(kv)= P(k), and is therefore
entitled to concentrate on either one of such distributions, depending on which one
finds the simpler analytical treatment.
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Data refer to an average over 100 different realizations of the growth process.
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The nonpreferential attachment case. Let Nv(k, kv, t) be the number of nodes
with k neighbors participating in kv triangles at time t. The rate equation is

dNvðk; kv ; tÞ

dt
¼ �

2mtri
P

kkNðk; tÞ
kNvðk; kv ; tÞ

þ
2mtri

P

kkNðk; tÞ
ðk� 1ÞNvðk� 1; kv � 1; tÞ

þ δk;2mtri
δkv ;mtri

± ¼ ;

ð17Þ

where the unwritten terms account for the formation of triangles from two or more
linked edges. In the sequel, we assume that the chosen edges are not linked (none of
the nodes of a selected edge is linked to any of the nodes of another selected edge,
which is always the case for mtri= 1). Hence, the number of edges and triangles
related to a given node increases one by one. Only the new nodes entering the
system have the number of edges (2mtri) double than the number of triangles in
which they are participating (mtri). This way, for k big enough, one has

kNvðk; kv ; tÞ ’ kvNvðk; kv ; tÞ: ð18Þ

After summing over all values of k, one obtains an approximate equation for
Nv(kv,t), the number of nodes participating in kv triangles

dNvðkv ; tÞ

dt
’ �

2mtri
P

kkNðk; tÞ
kvNvðkv ; tÞ

þ
2mtri

P

kkNðk; tÞ
ðkv � 1ÞNvðkv � 1; tÞ

þ δkv ;mtri
:

ð19Þ

One then can proceed as in the case of the degree distribution P(k) (see the
main text), and seek a solution of the form Nv(kv,t)= tP(kv)

PðkvÞ ¼
kv � 1

kv þ 2
Pðkv � 1Þ þ

2

2þ kv
δkv ;mtri

: ð20Þ

The solution for kv ≥mtri is

PðkvÞ ¼ 2mtriðmtriþ1Þ
kvðkvþ1Þðkvþ2Þ � k�3

v : ð21Þ

Therefore, one has also that P(k) ~ k−3 which coincides with Eq. (3) in the
main text.

The preferential attachment case. In order to obtain P(k) and P(kℓ), one needs
here to make use of the following lemma reported by Chung and Lu52:

Lemma 1 Suppose that a sequence {at} satisfies a recurrence relation

atþ1 ¼ 1�
bt

t þ t1

� �

at þ ct ; ð22Þ

where t0 and t1 are arbitrary, positive, fixed, values. Furthermore, suppose that
lim t!1bt ¼ b > 0 and lim t!1ct ¼ c > 0.

Then, lim t!1
at
t
exists and one has

lim
t!1

at
t
¼

c

1þ b
: ð23Þ

For instance (and indicating by Eð�Þ the expectation value), P(k) for k= 2mtri

can be obtained by setting bt ¼ b ¼ 2mtri

3
and ct= c= 1. Application of Lemma 1

ensures that the limit lim t!1
EðNð2mtri ;tÞÞ

t
exists and is equal to 3

3þ2mtri
, leading to

Pð1Þ ¼ 3
3þ2mtri

.

On the other hand, P(k) for k > 2mtri is obtained assuming that P(k− 2) exists,

and applying Lemma 1 again with bt ¼ b ¼ k
3
and ct ¼ EðNðk� 2; tÞÞ k�2

3t
(i.e.,

taking c ¼ Pðk� 2Þ k�2
3 ). Such a choice, indeed, entitles one to write a recurrence

relation, and to obtain an explicit formula for P(k)

PðkÞ ¼
3

3þ 2mtri

Γðk=2ÞΓðmtri þ 2:5Þ

ΓðmtriÞΓðk=2þ 2:5Þ
� k�2:5; ð24Þ

which coincides with Eq. (9) of the main text. Here, Γ is the gamma function.
Furthermore, one can demonstrate that P(k) is sharp, by the use of the following

theorem:
Theorem 1 For any fixed ε > 0 and δ > 0 and for any large enough t, the

difference between the number of vertices with degree k at time t and P(k)t is smaller
than εt with probability larger than 1− δ.

The theorem can be proved by considering the martingale Xl ¼ EðNðk; tÞjF lÞ
(where F l is the σ-algebra generated by the probability space at time l). It is rather
easy to show that ∣Xl+1− Xl∣ is bounded by 4, and therefore the theorem follows
from the Azuma–Hoeffding inequality53,54.

When trying to obtain P(kℓ), one can encounter a problem in the case in which
the triangles added at step t have one or more common edges, so that the number
of different edges added at time t might not be equal to 2mtri.

Denoting by e(t, kℓ) the number of added edges of degree kℓ at time t, the more
accurate recurrence relation for kℓ > 1 is the following:

EðNeðk‘; t þ 1ÞÞ ¼ EðNeðk‘; tÞÞ 1�
k‘
3t

� �

þ EðNeðk‘ � 1; tÞÞ
ðk‘ � 1Þ

3t
þ O

1

t2

� �

þEðeðt; k‘ÞÞ;

ð25Þ

and for kℓ= 1 one has

EðNeð1; t þ 1ÞÞ ¼ EðNeð1; tÞÞ 1�
1

3t

� �

þ O
1

t2

� �

þEðeðt; 1ÞÞ: ð26Þ

Using Theorem 1 (and some nontrivial math, of which we omit the technical
details), one can prove that lim t!1eðt; 1Þ ¼ 2mtri and lim t!1eðt; k‘Þ ¼ 0 for kℓ > 1,
so that one has lim t!1Eðeðt; 1ÞÞ ¼ 2mtri and lim t!1Eðeðt; k‘ÞÞ ¼ 0 for kℓ > 1.

Furthermore, one can prove another theorem:
Theorem 2 The number of different edges divided by t converges always to 2mtri.

It follows that Pðk‘Þ ¼ lim t!1
EðNeðk‘ ;tÞÞ

2mtri t
.

Finally, one can apply Lemma 1 with bt ¼ b ¼ 1
3
and c ¼ lim 1þ O 1

t2

� �

¼ 1 to

get that Pð1Þ ¼ lim t!1
EðNeð1;tÞÞ

2mtrit
exists and is equal to 3

4
. For kℓ > 1, one assumes

that Pðk‘ � 1Þ ¼ lim t!1
EðNeðk‘�1;tÞÞ

2mtri t
exists, and applies again Lemma 1 with bt ¼

b ¼ k‘
3
and c ¼ lim ct ¼ Pðk‘ � 1Þ ðk‘�1Þ

3t
. Hence, Pðk‘Þ ¼ lim t!1

EðNeðk‘ ;tÞÞ
2mtri t

exists

and is equal to Pðk‘ � 1Þ k‘�1
k‘þ3

. From such a recurrence relation, one finally obtains

the explicit formula for P(kℓ)

Pðk‘Þ ¼
18

k‘ðk‘ þ 1Þðk‘ þ 2Þðk‘ þ 3Þ
� k�4

‘ ; ð27Þ

which is identical to Eq. (4) of the main text.
Finally, since the degree of the vertex is the number of triangles containing this

vertex multiplied by 2, one has Nv(kv,t)=N(2k,t) and as a consequence one obtains

PðkvÞ ¼
3

3þ 2mtri

ΓðkvÞΓðmtri þ 2:5Þ

ΓðmtriÞΓðkv þ 2:5Þ
� k�2:5

v : ð28Þ

The mixed case. The recurrence relation for Nv(kv,t) (the number of vertices
participating in kv triangles at time t) is

EðNvðkv ; t þ 1ÞÞ ¼ EðNvðkv ; tÞÞ 1� A
mtri

t
� ðAþ BÞ

kv
t

� �

þEðNvðkv � 1; tÞÞ A
mtri

t
þ ðAþ BÞ

ðkv � 1Þ

t

� �

þ O
1

t2

� �

:

ð29Þ

For t > 0 and kv=mtri one has

EðNv
tþ1ðmtriÞÞ ¼ EðNvðmtri; tÞÞ 1� A

mtri

t
� ðAþ BÞ

mtri

t

� �

þ 1: ð30Þ

Furthermore, the use of Lemma 1 gives

PðmtriÞ ¼
1

1þ 2Amtri þ Bmtri

ð31Þ

and

PðkvÞ ¼ Pðkv � 1Þ
Amtri þ ðAþ BÞðkv � 1Þ

1þ Amtri þ ðAþ BÞkv
: ð32Þ

Therefore, one has

PðkvÞ ¼
1

1þ 2Amtri þ Bmtri

Y

kv

l¼mtriþ1

Amtri þ ðAþ BÞðl � 1Þ

1þ Amtri þ ðAþ BÞl
: ð33Þ

or

PðkvÞ ¼
1

1þ 2Amtri þ Bmtri

�
Y

kv

l¼mtriþ1

Amtri

AþB
þ l � 1

1þAmtri

AþB
þ l

¼
1

1þ 2Amtri þ Bmtri

�
Γðkv þ

Amtri

AþB
ÞΓðmtri þ

1þAmtri

AþB
þ 1Þ

Γðmtri þ
Amtri

AþB
ÞΓðkv þ

1þAmtri

AþB
Þ þ 1Þ

� k�γv
v ;

ð34Þ

where γv ¼ 1þ 1
AþB

.

In addition, one can consider N‘ðk‘; tÞ, the number of links with degree kℓ at
moment t. Its recurrence equation is

EðN‘ðk‘; t þ 1ÞÞ ¼ EðN‘ðk‘; tÞÞ 1� A
1

t
� B

k‘
2t

� �

þEðN‘ðk‘ � 1; tÞÞ A
1

t
þ B

k‘ � 1

2t

� �

þ O
1

t2

� �

:

ð35Þ
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For kℓ= 1 one has

EðN‘ð1; t þ 1ÞÞ ¼ EðN‘ð1; tÞÞ 1� A
1

t
� B

1

2t

� �

þ 2mtri þ O
1

t2

� �

: ð36Þ

One can apply again Lemma 1, and obtain

Pð1Þ ¼
1

1þ Aþ 1
2
B
; Pðk‘Þ ¼ Pðk‘ � 1Þ

2Aþ Bðk‘ � 1Þ

2þ 2Aþ Bk‘
: ð37Þ

Therefore, one gets

Pðk‘Þ ¼
1

1þ Aþ 1
2
B

Y

k‘

l¼2

2Aþ Bðl � 1Þ

2þ 2Aþ Bl
: ð38Þ

Let us consider separately the cases B= 0 (the fully nonpreferential case)
and B > 0.

For B= 0, one has

Pðk‘Þ ¼
1

1þ A

Y

k‘

l¼2

2A

2þ 2A
: ð39Þ

Since A ¼ 1
2
, one obtains

Pðk‘Þ ¼
2

3

Y

k‘

l¼2

1

3
¼

2

3

1

3k‘�1
; ð40Þ

which fully coincide with the exponential scaling derived in the main text for the
nonpreferential case.

On the other hand, when instead B > 0, one has

Pðk‘Þ ¼
1

1þ Aþ 1
2
B

Y

k‘

l¼2

2A
B
þ l � 1

2
B
þ 2A

B
þ l

¼

¼
1

1þ Aþ 1
2
B

Γð2þ2A
B

þ 2ÞΓð2A
B
þ k‘Þ

Γð2A
B
þ 1ÞΓð2þ2A

B
þ k‘ þ 1Þ

� k
�γ‘
‘ ;

ð41Þ

where γ‘ ¼ 1þ 2
B
.
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