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Growt h and characterizatio n of smal l band gap „;0.6 eV… InGaAs N layers
on InP
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We demonstrate the growth of small band gap (Eg;0.6eV! strained and lattice matched single
crystal InGaAsN alloys on InP substrates. InGaAsN layers with N concentrations varying from
0.6% to 3.25% were grown by gas source molecular beam epitaxy using a radio frequency plasma
nitrogen source. Lattice-matched, 0.5-mm-thick InGaAsN layers with smooth surface morphologies
and abrupt interfaces were achieved. Low temperature photoluminescence measurements reveal a
band gap emission wavelength of 1.9 mm ~at 20 K! for lattice matched InGaAsN~N;2%!. Tensile
strained In0.53Ga0.47As/In0.53Ga0.47As0.994N0.006multiple quantum wells emitting at 1.75mm at 20 K
are also reported. © 1999 American Institute of Physics. @S0003-6951~99!04109-1#
InGaAsP alloys grown lattice matched to InP substrates
are widely used as materials for lasers and detectors at opti-
cal fiber communication wavelengths.1,2 For detectors, the
long wavelength cutoff is lCO51.7mm, determined by the
band gap of the lattice-matched In0.53Ga0.47As absorption
layer.3 The cutoff wavelength for InGaAsP-based lasers is 2
mm, limited by the maximum compressive strain that can be
accommodated in InGaAs quantum wells forming the active
region.4 Detectors with response extending beyond 1.7 mm
have been fabricated using In-rich lattice-mismatched
InGaAs layers.5 However, higher dark currents due to de-
fects in the relaxed, lattice-mismatched InGaAs layer and the
need to have compositionally graded buffer layers to reduce
dislocations make detectors with lattice matched absorbing
layers a potentially superior approach.6 In this work, we
demonstrate that strained and lattice-matched InGaAsN al-
loys on InP can extend the wavelength of photonic device
operation beyond that accessible to the InGaAsP/InP system.

Recently, it was proposed that the addition of a small
fraction of nitrogen into group II I arsenides and phosphides
results in a material ~called a mixed nitride! with a smaller
band gap than the corresponding binary compound.7 A large
band gap bowing parameter due to the high electronegativity
of nitrogen is believed to be responsible for this unusual
property of mixed nitrides.7 Subsequently, numerous experi-
mental reports of a reduction in band gap for various nitro-
gen containing ternary alloys have been published.8–12 Re-
cently, InGaAsN based light sources such as 1.3 mm
wavelength lasers13,14 and 1.45 mm wavelength light emit-
ting diodes14 were demonstrated on GaAs substrates. Com-
pared to growth on GaAs, reports of mixed nitride growth on
InP substrates are limited. Nitrogen fractions up to 1% were
reported in InN12xPx/InP layers grown by gas source mo-
lecular beam epitaxy ~GSMBE!.15 Also, quantum wells em-
ploying InNAsP with emission in the 1.1–1.5 mm wave-
length range have been reported.16

Based on the bowing parameter for GaNxAs12x
7 and

InNxAs12x ,17 we have calculated the band gap of InGaAsN
alloys on InP. The band gap data were extrapolated using
Vegard’s law from experimental and calculated data for the
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four ternary compounds, namely InGaAs,18 GaInN,7

GaNAs,7 and InNAs.17 The band gap cutoff wavelengths of
InxGa12xAs12yNy alloys shown in Fig. 1 are plotted along
contours corresponding to compositions required to achieve
either lattice matched or strained layers on InP.18 From the
plot, we find that for N concentrations as low as 4%, we
anticipate wavelength cutoffs of 2.0 mm, extending to 2–5
mm for higher nitrogen concentrations. Compressively
strained layers employed in quantum wells may extend the
wavelength of InP-based lasers into the 2–3 mm range. At
N.12% the band gap drops rapidly to zero as InGaAsN
becomes semimetallic.

To test the predictions of Fig. 1, InGaAsN alloys with
varying N concentrations were grown by GSMBE on semi-
insulating ~100! InP substrates.19 Group V elements were
obtained by thermally cracking PH3 and AsH3 at 900°C. To
generate the active N species, ultrahigh purity nitrogen gas
was introduced via a mass flow controller into a radio fre-
quency ~rf! plasma source.20 After oxide desorption from the
substrate at 500°C, a 0.2-mm-thick InP buffer layer was
grown at 480°C. The growth was interrupted and the sample

FIG. 1. Band gap cutoff wavelength ~l.1.7 mm! and lattice constant for
InGaAsN alloys mixed as afunction of N and Ga atomic fraction.
7 © 1999 American Institute of Physics
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temperature reduced to 320–370°C under an AsH3 over
pressure. Then a high-brightness nitrogen plasma was initi-
ated, and the N2 flow and rf power ~65–125 W! were ad-
justed to achieve the desired N/As ratio, at a constant AsH3

flow of 1.5 sccm. A 514 nm wavelength, Ar-ion laser and a
closed cycle helium cooling system were used for low tem-
perature photoluminescence ~PL! measurements of the epi-
taxial layers. Transmission measurements were performed
using a tungsten-halogen source used in combination with a
Fourier transform infrared ~FTIR! spectrometer.

A series of InGaAsN samples were grown with a range
of In/Ga ratios adjusted by keeping the In Knudsen cell tem-
perature and N flux ~0.06 sccm at 73W rf power! constant,
while varying the Ga fraction by changing the base tempera-
ture of a dual-filament Ga Knudsen cell. For sample A ~see
Fig. 2!, the In/Ga ratio was 0.52:0.48 determined from x-ray
analysis of an InGaAs ~no N! sample. The well-defined peak
at 11519 on the tensile side ~20.9% strain! of the InP sub-
strate peak indicates growth of a single crystal InGaAsN
film. Upon reducing the Ga cell temperature by ;10°C
~thereby increasing the In/Ga ratio! the strain was reduced to
20.3% as indicated by a shift in the InGaAsN peak towards
that of InP. Reducing the Ga fraction further, the peak cor-
responding to InGaAsN shifts from tensile to compressive
~22839!. A final adjustment in Ga-cell temperature allowed
us to grow a 0.5-mm-thick In0.59Ga0.41As0.981N0.019 lattice
matched layer with a mismatch Da/a,931024, where a is
the InP lattice constant. In a similar manner, a lattice-
matched sample with ;1% N was also grown with Da/a
,431024. The lattice-matched samples exhibited a smooth
surface morphology similar to InP layers, with no surface
roughening visible using a Nomarski microscope. X-ray
rocking curves of the lattice matched samples showed Pen-
dellosüng fringes in InGaAsN layers .0.5mm thick ~sample
D, Fig. 2!, indicating an atomically flat InGaAsN/InP inter-
face and top surface. A streaky reflection high energy elec-
tron diffraction ~RHEED! pattern observed during growth

FIG. 2. Double crystal x-ray rocking curves ~004 reflection! of a series of
InGaAsN samples grown at fixed In and N fluxes, but a varying Ga flux
obtained by changing base temperature on the Ga Knudsen cell while main-
taining tip temperature at 1015 °C.
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also suggests a two-dimensional layer-by-layer growth
mode.

The nitrogen fraction was determined by dynamical
x-ray analysis of the rocking curves assuming Vegard’s law
and lattice constants corresponding to zinc blende InN and
GaN. For sample A @Fig. 3~a!#, the full-width at half-
maximum ~FWHM! of the InGaAsN peak and location of
each Pendellosu¨ng fringe match well with the model derived
from the known growth conditions. Also shown in Fig. 3~b!
is a strained InGaAsN layer grown with higher rf power
~;95 W! but the same N flow and In/Ga ratio as sample D.
This results in anitrogen concentration of 3.25%, which was
the maximum value achieved. To confirm N incorporation,
InGaAs/InGaAsN multiple quantum wells ~MQW! were
grown with the same In/Ga ratio in the wells and barriers, the
only difference being that during the growth of the InGaAsN
well layers, the shutter of the nitrogen cell was opened. A 10
period In0.535Ga0.465As0.994N0.006/In0.535Ga0.465As MQW
sample with 200-Å-thick wells and 300-Å-thick barriers was
grown at a substrate temperature of 350°C. Since the barrier
and well had the same In/Ga ratio, the clear satellite peaks
seen in the x-ray data confirmed the periodic incorporation of
N.

Figure 4 shows low temperature ~T520 K! photolumi-
nescence measurements for the MQW and two lattice
matched InGaAsN samples. The peak wavelength for the
lattice-matched samples shifted from 1.78 to 1.91 mm, and
the intensity decreased with increasing N concentration. The

FIG. 3. Use of dynamical x-ray simulation analysis to estimate the nitrogen
fraction in InGaAsN. The simulation ~thin lines! was fit to the data ~bold
lines! using known In/Ga fraction and growth rates.
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tensile strained MQW sample showed the strongest PL
peaked at 1.75 mm. For these samples, no detectable ro
temperature photoluminescence was obtained, indicating the
presence of a high concentration of nonradiative centers.
Low temperature PL for the lattice matched samples also
showed a long emission tail below the band gap. A similar
feature has previously been observed in InGaAsN/GaAs
QWs with 1% to 3% N concentration.21 The low lumines-
cence efficiency of these samples is in contradiction to the
excellent structural quality indicated by an atomically
smooth surface and narrow x-ray peaks ~FWHM ,609!.
These defects may be due to vacancies induced by the low
growth temperature, or may be due to residual strain intro-
duced by the small diameter N atom in a group V site. The
inset in Fig. 4 shows the band gap cutoff wavelength at room
temperature as afunction of nitrogen concentration. The data
points were extrapolated from the low temperature PL mea-
surements by including a 60 meV reduction in band gap,
assuming a temperature dependence similar to
In0.53Ga0.47As.22 The solid line is taken from the calculations
in Fig. 1. We attribute the large red shift in the data as com-
pared to predictions to inaccuracies in our linear interpola-
tion method, or to residual lattice strain. Optical transmission
spectra confirm the red shift in the band edge of InGaAsN
alloys relative to In0.555Ga0.445As. Figure 5 shows the square
of the absorption coefficient (a2) as a function of the inci-
dent photon energy ~E!, for In0.555Ga0.445As and InGaAsN
samples with 1% and 3% nitrogen. The band gap given by
the intercept with the abscissa increases monotonically with
N content.

In summary, we have grown InGaAsN alloys by
GSMBE with high structural quality on InP substrates. For a
constant nitrogen flow, the N concentration in the films was
found to be proportional to the rf power. Lattice matched and
strained samples with In/Ga ratios greater than 0.53:0.47 and
a nitrogen concentration as high as 3.25% were demonstrated
with a band gap cutoff wavelength of 2.02 mm ~;0.6 eV!.
Low temperature PL measurements indicate that the emis-
sion intensity is reduced and the FWHM is increased with N
concentration. These results demonstrate the potential of

FIG. 4. Low temperature photoluminescence spectra of MQW and lattice
matched InGaAsN samples. Inset: band gap cutoff wavelength extrapolated
to room temperature taken from PL data ~points! as a function of nitrogen
concentration. Also shown is our calculated estimate of the cutoff wave-
length taken from Fig. 1.
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strained and lattice matched InGaAsN layers grown on InP
for significantly extending the wavelength range of the
InGaAsP/InP material system.
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FIG. 5. Room temperature transmission spectra for InGaAsN layers with
;1% and 3% N concentration, showing a red shift in transmission edge
relative to a strained In0.555Ga0.445As sample. Maximum band gap cutoff
wavelength extrapolated from data is lCO52.02mm.
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