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Abstract 

 This paper combines two strands of the literature on inequality and distribution issues: the 

classical approach, which insists on the division of society into classes characterized by different 

saving propensities, and the social conflict approach, which considers that inequality inflicts direct and 

indirect costs to economic development. An endogenous-growth model is studied. We assume that 

each consumer’s subjective discount factor is determined endogenously and depends on economic 

inequality through the following two channels. On the one hand, it is positively related to the 

individual consumer’s relative wealth. On the other hand, it is negatively affected by a simple 

aggregate measure of social conflict. We show that, unlike models with exogenously given discount 

rates, steady state equilibria in our model is indeterminate and that the set of all equilibria is a 

continuum which can be parameterized by a simple index of income inequality. The growth rate is 

ambiguously related to the inequality index. However, under some reasonable assumptions, the growth 

rate dependence on this index has an inverted U-shaped form. 
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1. Introduction 

 Despite the reliance of mainstream growth theory on ‘representative’ agents and long 

disregard of problems of inequality and distribution, societies are patently not homogeneous, 

whether in incomes, wealth, or any other dimension. A concern with the importance of 

distribution was central to the thinking of classical economists such as David Ricardo and 

Karl Marx. However, up until recently, the mainstream economics profession seemed to have 

little to say about the impact that the distributions of income and wealth might have on 

efficiency of an economy and its growth rate.  

 Some interest in the relationship between distribution and growth restarted in the 

1950s with the work of Kaldor (1956) and Pasinetti (1962) and the last decade has seen its 

new revival. Existing theories about the effect of income distribution on the process of 

development can be classified into two broad categories distinguished by their conflicting 

predictions. The classical approach originated by Smith (1776) and further interpreted and 

developed by Keynes (1920), Lewis (1954), Kaldor (1957), and Bourguignon (1981) suggests 

that inequality stimulates capital accumulation and thus promotes economic growth, whereas 

the modern approach argues in contrast that for sufficiently wealthy economies equality 

stimulates investment in human capital and hence may enhance economic growth.  

 The modern paradigm is represented by three complementary approaches. The capital 

markets imperfections approach, developed by Galor and Zeira (1993), Aghion and Bolton 

(1997) and others, has argued that, in the presence of credit markets imperfection, equality in 

sufficiently wealthy economies stimulates investment in human capital and in individual 

specific projects and hence enhances economic growth. The political economy approach 

initiated by Alesina and Rodrik (1994), Bertola (1993) and Persson and Tabellini (1994) has 

argued that equality diminishes the tendency for distortionary redistribution and hence 

stimulates investment and economic growth.  

 Another strand of the literature emphasizes the importance of social conflict as a link 

between inequality and efficiency. Alesina and Perotti (1996) argue that inequality can lead to 

less political stability, and this in turn can lead to sub-optimal investment levels. Social 

conflict may also have high opportunity costs caused by violence. Violence levels have 

recently increased sharply in both of the most unequal regions in the world (Latin America 

and sub-Saharan Africa), and in the one where its growth has been fastest (Eastern Europe, 

Russia and Central Asia). Fajnzylber et. al. (1998) documented these global trends, and find 

evidence to suggest that income inequality is significantly associated with violence levels, 

across countries. Bourguignon (2001) and others have documented the growing importance of 

the social and economic burden imposed on society by this rising violence, both in terms of 

the direct costs in lives and medical resources, and in terms of the opportunity costs of (both 

public and private) resources diverted from other activities towards preventing and fighting 

crime. 

 This paper proposes an endogenous-growth model combining the classical approach 

and the approach that considers social conflict and socio-political instability as links between 

inequality and development. This model is based on the following twofold assumption.  

 First, it is assumed that the subjective discount factor of a consumer is not given 

exogenously but is determined endogenously. When Uzawa (1968) noted that in an economy 

populated by infinitely-lived agents with different time-preference rates, the entire capital 

stock will eventually be owned by the most patient agent, he cast doubt on the assumption of 

a constant rate of time preference and assumed that a higher level of consumption increases 

the subjective discount rate (this assumption is needed for stability). Blanchard and Fischer 

(1989) argue, however, that this assumption “is difficult to defend a priori; indeed, we usually 
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think it is the rich who are more likely to be patient” (p. 73). In this paper, we assume that the 

rich are more patient than the poor. In this respect our model agrees closely with a model 

developed by Schlicht (1975) and Bourguignon (1981) and does not contradict to the 

empirical evidence showing (see, e.g., Browning and Lusardi (1996) and Soulels (1999)) that 

the marginal propensity to consume is substantially higher for consumers with low wealth or 

low income than for consumers with high wealth or income. Our model is also akin to several 

dynamic macroeconomic models with heterogeneous consumers (see e.g. Becker (1980), 

Michel and Pestieau (1998), Smetters (1999), Mankiw (2000)), but, unlike those models, we 

assume that all consumers are identical in their exogenous parameters. 

 Secondly, it is assumed that inequality increases the impatience of economic agents. 

The extremely simplified reasoning behind this assumption is as follows. Income inequality 

increases social discontent and the probability of coups, revolutions, mass violence, etc. (see 

Alesina and Perotti (1996) and Perotti (1996) for empirical evidence). For simplicity, we can 

reduce all risks emerging from high income inequality to the threat of total collapse of the 

ordinary economic order with absolutely unpredictable consequences for consumers. It 

follows that when solving his utility maximization problem, a consumer should foresee and 

take into account the consequences of his saving and consumption decisions only until a 

possible economic collapse, after which an absolutely new economic order will be 

established. This is true irrespective of whether this new order will be better or worse than 

before the collapse. Thus, as the probability of collapse increases, the effective discount factor 

of each consumer decreases.  

 We show that unlike models with exogenously given discount rates, steady-state 

equilibria are indeterminate in the sense that the set of all equilibria is a continuum that can be 

parameterized by an index of inequality. The dependence of the growth rate on this index is 

not unambiguous. However, under some reasonable additional assumption, this dependence 

has an inverted U-shaped form.  

 The rest of the paper is organized as follows. In Section 2 we describe the technology 

of production and the firm's problem. Section 3 presents the consumers' preferences and 

maximization problem including the hypothesis on the endogenous formation of patience. 

Section 4 studies the balanced-growth competitive equilibrium maintaining the probability of 

collapse exogenous. This probability is endogenized in section 5 and the link between growth 

and inequality is analyzed. Section 6 concludes. 

 

2 The firms 

 Technology is given by a production function 

 Y=F(K, AL),  

where Y is output, K is the capital stock, L is the input of labor, and A is the state of 

technology. The production function F: 2

+!  →ℜ
+
 is assumed to be continuous, concave, 

homogeneous of degree one and continuously differentiable on int 2

+! . Technological 

progress is assumed to be Harrod-neutral and AL is interpreted as effective labor. For 

simplicity, the capital stock fully depreciates during one time period. 

 We conduct the analysis with an endogenous-growth model. This model is based on 

the following 

 Assumption E1. A=K/k L, where k >0 is exogenously given. 
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 Borissov and Lambrecht (2005) show that the analysis can also be conducted with an 

exogenous-growth model, where the state of technology grows at an exogenously given rate 

of growth. 

 Assumption E1 is borrowed from Frankel (1962) and Romer (1986). It specifies the 

class of so called AK-models. In what follows all markets are assumed competitive. The firms 

maximize their profits taking prices as given. This means that they hire the services of labor 

and capital up to the point where their marginal products equal their respective prices. In 

intensive terms, therefore the relationships between the capital intensity of effective labor, 

k=K/AL, the interest rate, r, and the wage rate earned by one unit of effective labor, w, are the 

following: 

 r = f ′ (k)–1, w = f(k) – f ′ (k)k ,  

where 

 f(k) ≡F(k ,1) 

is the production function in intensive form. Since, by E1, k= k , we have r= r  and w=w , 

where r  and w  are determined by 

 r =f( k )–1, w =f( k )–f ′ ( k ) k .  

 Time t is discrete. 

 

3 The consumers 

3.1 The objective and the constraints 

 There is a continuum of consumers. The population size is normalized to unity, L=1. 

 Each consumer is endowed at each time with one unit of labor. It should be noticed 

that, given A, the real wage rate earned by one unit of labor is Aw . Given the initial level of 

his savings at time t=–1, 
1
ˆ
!s ≥0, at time t=0 the consumer solves the following maximization 

problem: 

 max{!
"

=0
)(

t t

t
cu#  |  s– 1=

1
ˆ
!s ,  c t+s t=(1+ r )s t– 1+ w A t ,   

                                                           s t– 1≥0, t =0,1,…}, (1) 

where At, ct and st are respectively the state of technology, consumption and savings of the 

consumer in period t, β∈(0,1) is his discount factor and  

 u(c)=log c .  

It should be emphasized that in our models there are borrowing constraints, st≥0, t =0,1,…, so 

that future income cannot be discounted to the present
3
. Our model may be considered as a 

model of sequential generations with altruism
4
. 

 We will consider stationary solutions only. Suppose we are a given constant over time 

rate of technological progress, g. Let us also assume A0=1 so that 

 A t=(1+g)
t
,  t =0,1,… . 

                                                             
3
  Nothing would be changed to our results if we relaxed this non-negativity constraint on saving and 

allow for some limited borrowing possibilities. 
4
  We leave it for the reader to generalize them to the case of overlapping generations with altruism 

and/or to the case of felicity functions with constant intertemporal elasticity of substitution. 
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Then problem (1) can be rewritten as follows: 

 max{!
"

=0
)(

t t

t
cu#  |  s– 1=

1
ˆ
!s ,  c t+s t=(1+ r )s t– 1+ w (1+g)

t
,  

                                                                s t– 1≥0, t =0,1,…}. (2) 

The first-order conditions for this problem are  

 c t+ 1≥β(1+ r )c t  (= if s t>0),  t=0,1, . . .  . (3) 

We focus on the solutions to this problem that grow at the same rate as the rate of 

technological progress, g. 

 Definition. Given β and g>–1, a steady-growth consumer optimum is a solution 

( !
"1ts ,ct*)t=0,1,… to (2) at some 

1
ˆ
!s ≥0 such that savings !

"1ts  and consumption ct* grow at the 

rate g: 

 !
+1tc /c t*=s t*/ !

"1ts =1+g ,  t=0,1,… . 

 We now characterize steady-growth consumer optima. The following lemma follows 

from definitions and first-order conditions (3). 

 Lemma 1. Suppose that g∈(–1, r ) and β are given. A steady-growth consumer 

optimum ( !
"1ts ,ct*)t=0,1,… exists if and only if 1+g≥β(1+ r ). It is characterized by 

 !
"1ts =(1+g)

t
s– 1  and c t*=(1+g)

t
c0 ,  t=0,1,…,  (4)  

where the pair (s–1,c0) satisfies 

 s– 1≥0 and  c0= w +( r –g)s– 1 .   (5) 

If 1+g=β(1+ r ), then s–1>0. If 1+g>β(1+ r ), then s–1=0 and hence c0=w . � 

 

 We now turn to the examination of the key assumption of this article. 

 

3.2 The endogenous formation of the consumer's discount factor 

 Our main assumption is that the formation of the effective discount factor of a 

consumer, β, takes place endogenously. 

 In models with homogenous consumers with exogenously given discount factors, the 

relationship between the equilibrium steady-growth rates of interest and growth, r  and g, is 

the following: 

 1+g=β(1+ r ).   (6) 

where g is endogenous and r  considered as given.  

 The same is true if we consider models with heterogeneous consumers varying only in 

their discount factors. The only difference is that, in this case, in (6) β is not the discount 

factor shared by all consumers, but is the discount factor of the most patient consumers. 

Moreover, in steady state equilibria, all the capital belongs to the most patient consumers. 

This was noted by Uzawa (1968) and Becker (1980) for the case of exogenous growth and 

can easily be proved for the case of an AK technology. 
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 In this paper, we explore the implications for growth and inequality of the following 

assumption: 

 Assumption E2. The effective discount factor of a consumer, β, is determined by 

 β=(1–p)ϕ  

where 

(i) ϕ is an individual-specific subjective discount factor, increasing in the individual 

relative income and 

(ii) p is a social objective magnitude reflecting a detrimental effect of social tension 

and political instability on the economy; this magnitude is supposed to be 

increasing (or at least non-decreasing) in some measure of income inequality. 

 Thus, ϕ is supposed to be an increasing function of the individual’s relative income. 

We measure the latter by the ratio of his personal income to per capita income. By personal 

income we mean, as usually, the amount a person could have spent whilst maintaining the 

value of his wealth intact, i.e. r s+w A, where s are his personal savings. As for per capita 

income, it is given by A(f( k )– k ). Hence, the individual relative income is  

 
))(( kkfA

Awsr

!

+
=

kkf

wAsr

!

+

)(

/
 

and, following our assumption: 

 ϕ=ϕ !!
"

#
$$
%

&

'

+

kkf

wAsr

)(

/
,  

where ϕ:[1,∞)→(0,1) is an increasing and continuous function. The results of the paper would 

not change if we assumed that the subjective discount factor is an increasing function of some 

other measure of relative well-being, for example, of relative consumption or felicity. 

 Contrary to ϕ, the social magnitude p is common to all consumers that are assumed to 

be identical in their exogenous parameters. If we assume that all consumers are risk neutral, 

this magnitude may be interpreted as the probability of occurrence of a major episode of 

disruptive violence, hurting the property rights system. We shall specify later the kind of 

inequality measure that we choose as the argument of the p function.  

 The intuition behind our assumption is that the degree of impatience of an individual 

depends not only his personal position in society but also on the general threat on property 

rights of social disorders, tensions, generated by wealth inequality. This general threat equally 

concerns all the individuals independently of their relative position in the economy. As a 

consequence, the values of ϕ  are different for consumers with different incomes, whereas p is 

the same for all consumers
5
. 

 Under our assumption the individual’s discount factor reads 

 β=(1–p)ϕ !!
"

#
$$
%

&

'

+

kkf

wAsr

)(

/
,  t=0,1,… . (7) 

                                                             
5
 Nothing would be changed in the results if, instead, we assumed that inequality inflicts losses to global 

output in a proportional fashion. In such a setting, through the inducted violence levels, inequality would put a 

wedge between potential output F(K,AL)and actual output zF(K,AL), with z the fraction of output forgone 

because of violence levels. 
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We continue focusing on stationary solutions
6
 and re-write the steady-growth consumer 

optimum by substituting the individual’s discount factor with its definition in (7).  

 Definition. Given A0  and g>–1, a consistent steady-growth consumer optimum is a 

solution ( !
"1ts ,ct*)t=0,1,… to (2) at some 

1
ˆ
!s ≥0 and at  

 β=(1–p)ϕ !!
"

#
$$
%

&

'

+'

kkf

wAsr

)(

/ˆ 01  

such that savings !
"1ts  and consumption ct* grow at the rate g: 

 !
+1tc /c t*=s t*/ !

"1ts =1+g ,  t=0,1,… . 

 To clarify this definition, it should be noted that since the state of technology grows at 

the same rate g as consumption and savings, 

 A t+ 1 /A t=1+g ,  t=0,1,…, 

we have 

 β=(1–p)ϕ
!
!

"

#

$
$

%

&

'

+
(
'

kkf

wAsr tt

)(

/1 ,  t=0,1,… . 

The following lemma follows from Lemma 1 and our assumptions. 

 Lemma 2. Suppose that A0, g∈(–1, r ) and p are given. The sequence ( !
"1ts ,ct*)t=0,1,… is 

a consistent steady-growth consumer optimum if and only if (i) it follows the path defined by 

the pair (c0,s–1) in equations (4) and (5) and (ii) the following inequality holds: 

 1+g≥(1–p)ϕ  !!
"

#
$$
%

&

'

+'

kkf

wAsr

)(

/ 01 (1+ r ) (8) 

with a strict inequality if s–1=0 (in this case c0=w ) and with equality if s–1>0 (in this case 

c0=w +( r –g)s–1). We shall say that the pair (c0,s–1) characterizes the steady-growth 

consumer optimum ( !
"1ts ,ct*)t=0,1,….� 

 

4 The balanced-growth competitive equilibrium with a constant p 

 It follows from the discussion in the previous section that on balanced-growth 

competitive equilibria there can be at most two types of individuals: those constrained on their 

savings, who spend all their wages for consumption, and those unconstrained, who contribute 

to capital accumulation.  

                                                             

6
  If we considered non-stationary solutions we would face the issue of time inconsistency. Indeed, for 

any given distribution of income, the objective function of each consumer is a well-defined concave function. 

However, if we tried to characterize a consumer optimum starting from an arbitrary chosen starting point, we 

would end up in the following issue. The discount factor accepted by a consumer at some time would not be 

equal to the discount factor of the same consumer accepted previously. This is due to the change in ϕ .  The 

consumer's objective function changes over time. This implies that the optimal plan chosen at time t1 need not be 

optimal as of time t2. Borissov (2005) studies non-stationary solutions to this problem.  
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 It is important to stress the consequence of this result for the analysis of competitive 

equilibria. One can conceive as many equilibria as the number of alternative ways to share the 

population in these two types. 

 Agents of the first type will be denoted by the subscript h and agents of the second 

type by the subscript l. Since the former are wealthier than the latter, they will be called the 

rich and the poor respectively (following Mankiw (2000), they might be called savers and 

spenders). We denote by σ the fraction of the rich in the population and by 1–σ the fraction of 

the poor. 

 Let us give a formal definition of a balanced-growth competitive equilibrium. As a 

first step, we will consider that the parameter p is given. It will appear that this equilibrium 

depends on the fraction σ  of the rich in the population. 

 Definition. Given the normalized population size, L=1, the initial capital stock K0= k  

(and hence A0=1) and the parameter p, a balanced-growth competitive equilibrium is a 

sequence {( !
"1,tl

s , !
tl

c
,

), ( !
"1,th

s , !
th

c
,

), Kt
*, At

*, Yt
*}t=0,1,2,… such that  

(i) all individual decisions, i.e. consumptions and savings of the poor and the rich, 

( !
"1,tl

s , !
tl

c
,

)t=0,1,2,…, ( !
"1,th

s , !
th

c
,

)t=0,1,2,…, are consistent steady-growth consumer optima 

with some rate of growth g*, 

(ii) aggregate variables, i.e. the aggregate capital stock, the state of technology and the 

aggregate output, Kt
*, At

*, Yt
*, grow at the same rate g* and 

(iii) at (constant over time) equilibrium prices r*= r  and w*=w , all markets clear and, 

especially, on the capital market, we have 

 Kt
*=σ* !

"1,th
s +(1–σ*) !

"1,tl
s  ⇔  Kt

*=σ* !
"1,th

s , t=0,1,2,… . (9) 

where σ* is one share of the rich in the population out of an infinite number of alternative 

shares σ. 

 Given the parameter p, the initial conditions and the equilibrium prices, a balanced-

growth competitive equilibrium, as defined here above, is fully characterized by the tuple 

{(sh*,сh*), (sl*,сl*), k*, w*, r*, σ*, g*}, where (sh*,сh*) and (sl*,сl*) are the pairs characterizing 

consistent steady-growth consumer optima of the rich and the poor at A0=1 and g=g*, k* is 

the constant over time capital intensity of effective labor, i.e., k*=Kt
*/At

*L, t=0,1,…, σ* is the 

equilibrium share of the rich in the population and g* is the equilibrium rate of growth. 

 Among all these variables, the following ones are easy to determine: 

 k*= k ,  from E1 

 sl*=0, сl*= w ,  from Lemma 2, zero savings case. 

 We obtain the expression of equilibrium saving of rich individuals, sh*, as follows: at 

any time period, the stock of capital is formed by the previous period savings: 

 !
+1tK =σ* !

th
s
,

,  t=–1,0,1,… .  

At the same time by (4) we have 

 !
th

s
,

=(1+g*)
t+ 1 !

h
s ,  t=–1,0,1,… . 



 9 

Since L=1 and At*=(1+g*)
t
, t=0,1,…, we get 

 k =k*=
LA

K

t

t

!

!

+

+

1

1 =
1

1

*)1(

*)1(*
+

+

+

!
+

t

h

t

g

sg"
=σ* !

h
s .  

Thus, equilibrium saving of the rich individuals writes: 

 !
h
s = k /σ*. 

As for сh*, it is a simple function: of the equilibrium wage rate and the interest rate, and of the 

following two variables: g* and sh*: 

 сh*= w +( r –g*)sh*,   from Lemma 2, positive savings case. 

 We are left now with the determination of σ*and g*. There remains only one equation: 

the consumer’s first-order condition (3) with equality, which implies: 

 !!
"

#
$$
%

&

'

+
'=+

kkf

wkr
pg

)(

*/
)1(*1

(
) (1+ r ).  (10) 

 Let the relative income of a rich individual, i.e. the argument of the function ϕ in 

equation (10), be denoted by η≥1, a function of σ*: 

 η(σ*)=
kkf

wkr

!

+

)(

*/"
. 

Then (10) can be re-written as follows: 

 1+g*=(1–p)ϕ(η(σ*))(1+ r ) (11)  

 The following lemma says that, for a given p, the set of balanced growth competitive 

equilibria, is a continuum (cf. Borissov (2002)). It follows from Lemma 2. 

 Lemma 3. Suppose that p is given exogenously. Then there exists an infinite number 

of balanced growth equilibria, i.e. there exists an infinite number of pairs (σ*, g*) which 

satisfy (11). In particular, the set of equilibrium values of the growth rate is the interval 

[g′,g′′), where g′  and g′′ are given by 

 1+g ′=(1–p)ϕ(1)(1+ r ),  1+g ′′=(1–p)ϕ(∞)(1+ r ).� 

 Note that, like in models with a representative consumer, any balanced growth 

equilibrium satisfies the modified golden rule: 

 1+g*=β(1+ r ),  1+ r =f ′( k ).  

Unlike most models with a representative consumer, β is not given exogenously, but is 

formed endogenously. Moreover, this β is not the discount factor of the representative 

consumer, but the effective discount factor of only one group of consumers, the rich. It 

depends on the relative income of this group and hence on the proportion between the number 

of the rich and the number of the poor. This dependence is such that the smaller the fraction of 

the rich in the population, the larger the equilibrium rate of growth. Indeed, after substitution 

of sh*=k /σ*, the equilibrium relative income of the rich becomes: 

 η= !
"

!
#+1

*
,  
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where α is the share of capital income in national income: 

 
kkf

kr

!
=

)(
"   

It follows that equation (11) can be re-written as follows: 

 1+g*=(1–p)ϕ !
"

#
$
%

&
'+ (

)

(
1

*
(1+ r ).  

Therefore, given p, the equilibrium rate of growth g* increases as the share of the rich in the 

population σ* decreases. 

 

5. The competitive balanced-growth equilibrium with an endogenous p 

 To relax our previous assumption that p is given exogenously, we need to specify how 

to measure inequality and how does p depend on this measure. There are many ways of 

measuring inequality, all of which have some intuitive or mathematical appeal. Cowell (1995) 

contains details of at least 12 summary measures of inequality. For example, we could take 

the Gini coefficient as a measure of inequality. However, since we are interested only in 

balanced growth equilibria, our task becomes simpler since we know that, given p, at any 

balanced growth equilibrium the population is divided into at most two classes, the rich and 

the poor. In such a context we can take as an index of inequality the relative income of a rich 

consumer, 
kkf

wsr h

!

+
"

)(
.  

 It should be noted that this index is equivalent to the Gini coefficient as a measure of 

inequality in equilibria in the sense that they represent the same inequality ordering over the 

set of distributions of income between the two classes. Indeed, let {(sh*,сh*), (sl*,сl*), k*, w*, 

r*, σ*, g*} be the vector which characterize a balanced-growth competitive equilibrium. The 

Lorenz curve characterizing the income distribution in this equilibrium is presented on Fig. 1. 

It is not difficult to check that the Gini coefficient corresponding to this Lorenz curve is  

α(1–σ*). The share of capital in relative income, α, appears on the graph. We know that σ* is 

inversely related with  

 η(σ*)=
kkf

wsr h

!

+
"

)(
.  

Therefore, the Gini coefficient increases as η(σ*) increases. It will be convenient for us to 

measure inequality by means of η(σ*). 

 To give a general definition of balanced growth equilibrium, let us specify our 

assumption on the formation of p and assume that 

 
!
!

"

#

$
$

%

&

'

+
(

=
kkf

wsr
pp h

)(
 

where p:[1,∞)→[0,1) is a continuous non-decreasing function. 

 The formal definition of a balanced-growth competitive equilibrium with an 

endogenous parameter p is similar to the one given in the previous section with the following 

equation defining the equilibrium value of p, p*: 
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 p*=
!
!

"

#

$
$

%

&

'

+
(

kkf

wsr
p h

)(
.  

 

 

Similarly to the previous section discussion, a balanced-growth competitive equilibrium is 

fully characterized by a similarly determined tuple {(sh*,сh*), (sl*,сl*), k*, w*, r*, σ*, g*}. The 

examination of the consumer’s first-order condition with equality allow us to characterize the 

equilibrium values σ*and g* with an endogenous p*=p(η(σ*)):  

 1+g*=(1–p(η(σ*)))ϕ(η(σ*))(1+ r ) 

with η(σ*)≥1. Define the function ψ:[1,∞)→(0,1) by 

 ψ(η)=(1–p(η))ϕ(η) 

and present the equilibrium rate of growth g* as a function of η: 

 g*=ψ(η)(1+ r )–1 

 The following theorem follows from definitions and Lemma 3. 

 Theorem. There exists an infinite number of balanced growth equilibria with 

endogenous value of p, i.e. there exists an infinite number of pairs (σ*, g*) satisfying 

 g*=ψ(η(σ*))(1+ r )–1. 

Along this equilibrium path, variables !
"1,tl

s , !
tl

c
,

, !
"1,th

s , !
th

c
,

, Kt
*, At

* and Yt
* grow at the rate 

g*. � 

 This theorem says that in our model, like in the model proposed by Borissov (2002), 

the set of equilibria is a continuum. Moreover, this set can be parameterized by a simple index 

1–σ* σ* 

Figure 1. Lorenz curve 

1–α 

The Lorenz curve 
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of inequality, η. The dependence of the growth rate on η is in general ambiguous. It is 

completely determined by the shape of the function ψ(η), which in its turn depends on the 

shapes of p(η) and ϕ(η). By the moment we have assumed no more than that the functions 

p:[1,∞)→(0,1) and ϕ:[1,∞)→(0,1) are monotonically increasing and continuous. At the same 

time it is not unreasonable to assume in addition that as η increases, ψ(η) first increases, 

peaks, and then decreases. Indeed, one might expect that ϕ(η) is a concave function having a 

noticeable positive slope when η is sufficiently small and getting more and more flat as η as 

goes up. As for p(η), one is inclined to think that it is zero or close to zero when η is 

sufficiently small, then there is an interval on which it goes up sufficiently steeply and then 

asymptotically p(η) converges to some positive number (≤1). If on the interval where p(η) 

goes up fast, ϕ(η) is sufficiently flat, then ψ(η) and therefore the dependence of economic 

development on inequality has an inverted U-shaped form. 

 To be more precise, suppose that the functions ϕ(η) and p(η) are twice continuously 

differentiable, that ϕ(η) is concave (ϕ′′(η)<0, η>0, see Fig. 2) and that there is an η1>0 such 

that p(η) is convex on the interval [0,η1] and concave on [η1,∞) (p′′(η)>0 for 0<η<η1, 

p′′(η)<0 for η>η1, see Fig. 3). Then the function ψ(η) is concave (ψ′′(η)<0) on the interval 

[0,η1].  

 

 

 If, in addition, we suppose that 

 ψ′(η)<0, η>η1 ,  (12) 

then the function ψ(η) reaches its maximum at some ηmax<η1 and, moreover, ψ(η) is 

increasing on (0,ηmax) and decreasing on (ηmax,∞) (see Fig. 4). It remains to note that the 

following conditions are sufficient for (12) to hold: 

 1–p(η1)<ϕ(η1),  

 ϕ′(η)<p ′(η),  η>η1 .  

 

η 

ϕ(η) 

1 

Figure 2. The shape of ϕ(η) 

η1 
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Casting a glance on Fig. 2 and Fig. 3, the reader would agree that the first of these inequalities 

looks quite reasonable. As for the second one, though it looks somewhat peculiar, it does not 

seem to be extremely unreasonable.  

 

 

 

6. Conclusion  

 In this paper, an endogenous-growth model with endogenous discounting has been 

constructed. All consumers are identical in their exogenous parameters. Our main assumption 

is that when maximizing his discounted utility ∑tβ
t
u(ct), where u(c)=log c, a consumer forms 

his effective discount factor β endogenously by computing β=(1–p)ϕ, where ϕ is his 

subjective discount factor and p is the probability of full collapse of the economy during one 

time period. The subjective discount factor is a monotonically increasing function of the 

relative well-being of the consumer and p is a monotonically increasing function of 

inequality. We have introduced p to reflect the empirically supported observation that 

inequality can lead to less political stability and hence more uncertainty the consumers bear. 

η 

p(η) 

Figure 3. The shape of p(η) 

0 η1 

1 

Figure 4. The shape of ψ(η) 

ψ(η) 

η 

η1 

1 

ηmax 



 14 

 We have shown that, unlike models with exogenously given discount rates, there is a 

continuum of steady-state equilibria. This is because the population is divided in equilibria 

into the rich and the poor and, what is important, the division cannot be considered as 

exogenous since all consumers are identical in their exogenous parameters. The set of 

equilibria can be parameterized by a simple index of income inequality. In general, the 

dependence of economic development on this index is ambiguous. However, under some 

reasonable assumption it has an inverted U-shaped form.  
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