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Single-walled carbon nanotube~SWNT! probe microscopy tips were grown by a surface growth
chemical vapor deposition method. Tips consisting of individual SWNTs~1.5–4 nm in diameter!
and SWNT bundles~4–12 nm in diameter! have been prepared by design through variations in the
catalyst and growth conditions. In addition to high-resolution imaging, these tips have been used to
fabricate SWNT nanostructures by spatially controlled deposition of specific length segments of the
nanotube tips. ©2000 American Institute of Physics.@S0003-6951~00!02821-7#

Carbon nanotubes are fascinating materials that exhibit
exceptional electrical and mechanical properties.1 These
unique properties have been exploited for fundamental
studies,2,3 to make electronic devices,3,4 and to create new
nanoscale tools, such as probe microscopy tips,5,6 and
nanotweezers.7 The use of carbon nanotubes for atomic force
microscopy~AFM! and other scanned probe microscopy tips
is especially exciting, since the small diameter, high aspect
ratio, mechanical robustness, electrical conductivity, and se-
lective chemical reactivity provide great advantages for im-
aging and manipulation compared to conventional silicon
and silicon nitride tips.5,6,8–10

In the past, most nanotube probe tips have been made by
mechanical attachment of multiwalled carbon nanotube
~MWNT! and single-walled carbon nanotubes~SWNT!
bundles to silicon tips in optical or electron
microscopes.5,6,8–10Nanotube tips made this way have been
used to demonstrate, for example, their potential for high-
resolution and chemically sensitive imaging,6,8 but have also
highlighted limitations. Specifically, mechanical tip fabrica-
tion is a time consuming one-by-one process, and the reso-
lution of these tips can vary widely due to their bundle struc-
tures. To overcome these and other limitations, we have been
developing direct chemical vapor deposition~CVD! growth
of SWNT and MWNT tips, and recently reported the first
examples of nanotube tips prepared in this way.11–13Signifi-
cantly, we showed that SWNT and MWNT tips with diam-
eters of 2–8 and 6–12 nm, respectively, could be reproduc-
ibly grown by metal-catalyzed CVD. Herein, we report
significant extensions of our initial discovery with the con-
trolled growth of individual SWNT and SWNT bundle tips,
and the manipulation and controlled deposition of tip seg-
ments to create nanotube nanostructures.

SWNT tips were grown using our reproducible and flex-
ible metal-catalyzed CVD surface growth method.12 Briefly,
solutions of either alumina supported Fe–Mo or ferric nitrate
were deposited on commercial Si tips, and then nanotube tips
were grown at 800 °C in a flow of 0.5–2 sccm ethylene, 400
sccm H2, and 600 sccm Ar in a CVD reactor. The structures
of the nanotube tips were characterized by scanning electron

microscopy@~SEM! LEO 982# and transmission electron mi-
croscopy@~TEM! Philips EM 420#. A Nanoscope III~Digital
Instrument, Inc., Santa Barbara! was used for all AFM ex-
periments as described previously.11–13

We have focused on the controlled growth of two gen-
eral classes of SWNT tips—those composed of several
SWNTs in a bundle and individual SWNTs—which are im-
portant for different types of imaging experiments. Bundle
tips can be made relatively long while maintaining sufficient
stiffness for high-resolution imaging of deep trenches or tall
structures, and individual SWNT tips provide ultimate reso-
lution for relatively short tips. We have selectively grown
either type of tip through variation of the catalyst density: a
high density of catalyst produces bundle tips by the surface
growth mechanism, and a low density of catalyst yields in-
dividual tubes. Typical electron microscopy images of
SWNT bundle and individual SWNT tips prepared in this
way are shown in Fig. 1. Figure 1~a! shows a SEM image of
a 5.8mm long SWNT bundle tip. Nanotube tips can be con-
trollably shortened by electrical etching to make them suit-
able for lithography and/or high-resolution imaging.5,11–14

The TEM image@inset, Fig. 1~a!# shows a SWNT bundle tip
shortened in this way for high-resolution imaging, with a
length of 29 nm and diameter of 7.4 nm. Figure 1~b!, which
shows an individual 2.2 nm diameter, 10 nm long tube, dem-
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FIG. 1. Electron microscopy of CVD SWNT tips.~a! Field emission-SEM
image of a SWNT bundle tip. The inset is a TEM image of a SWNT bundle
tip shortened by electrical etching.~b! TEM image of an individual SWNT
tip.
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onstrates that individual SWNT tips can also be prepared by
our approach.14

These CVD SWNT tips can be grown with yields in
excess of 75% for bundles and about 10% for individual
SWNT, and thus may be suitable for large-scale commercial
production. We believe that improvements in the yield of
individual SWNT tips can be obtained through improve-
ments in the catalyst activity. In addition, a limitation of the
CVD method is that it is difficult to control precisely the
nanotube length during growth. As discussed earlier, tip
length can be optimized for imaging by electrical etching,
which allows tips to be shortened with at least 2 nm
control.14

Optimized tips are robust and can be used for high-
resolution imaging of nanostructures and biological
macromolecules,13,14 although our focus here is the finding
that these well-defined SWNT tips can be used to fabricate
nanotube-based nanostructures by controlled deposition of
segments of the tips in defined patterns. This approach is
illustrated schematically in Fig. 2. To deposit a SWNT seg-
ment in a specific location, the tip is first biased at26 to
212 V at the starting point, and then the tip is scanned along
a set path. To complete the deposition, a voltage pulse is

used to disconnect the tip from the nanotube segment on the
substrate.

Figure 3 illustrates several examples of this new nano-
fabrication approach. First, a 4.8 nm diameter SWNT bundle
was deposited as a 1.5mm long line across a silicon surface
@Fig. 3~a!#. We note that this method can produce very
straight structures, since we do not need to overcome tube-
surface forces during deposition. In a second step, a thinner
2.1 nm SWNT was deposited over this small bundle at a near
perfect 90° angle to create a SWNT crossed junction@Fig.
3~b!#. Last, we find that it is possible to deposit SWNT seg-
ments directly over prefabricated metal electrodes@Fig.
3~c!#, which could facilitate the fabrication and testing of
new nanotube devices. Related studies of MWNT bundle tips
have shown that MWNTs can be ‘‘cleaved’’ from a bundle
by the lateral shear force present during scanning.9 However,
it is difficult to control size by this method.

We believe that our approach offers some advantages
compared to other methods that have been used to fabricate
SWNT devices. For example, SWNTs have been deposited
from solution onto electrodes,2 or AFM has been used to
push the nanotubes into a specific patterns.15 These methods
are limited in part by chance~of getting a suitable tube on or

FIG. 2. Schematic illustrating the deposition of a segment of a SWNT tip
onto a substrate.~a! The nanotube tip is positioned at the desired start point,
and then~b! the tip is scanned in a predefined pattern. A voltage pulse
separates the tip from deposited nanotube structure at the end of the scan.~c!
Plot of the applied voltage during the course of the deposition process.

FIG. 3. ~a! AFM image of a SWNT deposited along the direction of the
arrow. ~b! AFM image of a cross SWNT structure made by a second nano-
tube lithography step. The images in 3~a! and 3~b! are both 2mm31.3 mm.
~c! Field emission-SEM image of a SWNT deposited across three 40 nm
high gold electrodes. The white arrow highlights the deposited nanotube.
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near electrodes!, potential tube damage caused by AFM ma-
nipulation, and a difficulty in knowing the SWNT electronic
properties prior to making electrical connections. Another
promising approach involves direct CVD growth of nanotube
devices,16 although it may be difficult to make crosses and
more complex structures by this method. In addition, CVD
cannot yet yield predictable metallic versus semiconducting
tubes. With our nanotube tip deposition method, we can con-
trol the precise spatial location and size of deposited nano-
tubes, and to a large extent the electronic properties of the
deposited tube. Specifically, current–voltage measurements
made prior to deposition can be used to determine whether
the SWNT is metallic or semiconducting, and thus tips hav-
ing the required properties can be used selectively in the
fabrication.

In conclusion, individual SWNT and SWNT bundle
AFM tips have been grown in relatively high yield using
CVD surface growth. These SWNT tips exhibit significant
improvements in lateral AFM resolution compared with
commercial silicon AFM tips. In addition, we developed an
approach for constructing well-defined SWNT nanostruc-
tures on surfaces by using segments of the nanotubes tips as
building blocks. The present study demonstrates that CVD
SWNT nanotube tips have the potential to impact signifi-
cantly imaging and the fabrication of SWNT nanostructures.
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