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Characterization of microbiome composition and function 

through shotgun sequencing has provided many insights 

into its roles in health and disease. Gene calling (1, 2), func-

tional/pathway analysis (3–6), metagenomic-wide associa-

tion studies (7, 8), genome assembly (9, 10), and 

metagenomic single nucleotide polymorphism (SNP) detec-

tion (11) have all shown associations between microbiome 

configurations and susceptibility to several diseases, includ-

ing obesity (4, 12), type II diabetes (7), auto-inflammatory 

disorders (1, 13), metabolic disease (12, 14) and cancer (15, 

16). However, these approaches, which only examine a static 

snapshot of the microbiome at the point of collection, can-

not be used to observe the highly dynamic nature of the mi-

crobiota and the differential activity of its microbial 

members. 

Here, we asked whether microbiota growth dynamics 

could be probed from a single metagenomic sample by ex-

amining the pattern of sequencing read coverage across bac-

terial genomes. Apart from a few examples (17), most 

bacteria harbor a single circular chromosome, which repli-

cates bi-directionally from a sin-

gle fixed origin toward a single 

terminus (18) (Fig. 1A). Thus, 

during DNA replication, regions 

that have already been passed by 

the replication fork will have two 

copies while the yet unreplicated 

regions will have a single copy. 

This concept was previously 

used to detect the location of the 

replication origin in synchro-

nized yeast colonies (19), but also 

holds true in an asynchronous 

bacterial population in which 

every cell may be at a different 

stage of replication. Summed 

across the population, the copy 

number of a DNA region will be 

higher the closer that region is 

to the replication origin and, 

conversely, lower the closer that 

region is to the terminus (20, 21). 

Hence, the ratio between DNA 

copy number near the replica-

tion origin and that near the 

terminus, which we term peak-

to-trough ratio (PTR), should 

reflect the growth rate of the 

bacterial population. At higher 

growth rates, a larger fraction of 

cells undergo DNA replication 

and more active replication forks 

are present in each cell (22). This 

results in a ratio higher than 1:1 

between near-origin DNA and 

near-terminus DNA, thereby providing a quantitative 

readout of the population growth rate (21). 

We grew in vitro cultures of Escherichia coli (K-12 strain) 

and sequenced them at multiple time points during late lag 

phase, exponential phase, and early stationary phase (23). 

During stationary phase, when most of the cells in the cul-

ture are not growing and thus have a single copy of their 

genome, we found uniform coverage across the genome (Fig. 

1, A to C). In contrast, during exponential growth, when 

each bacterial cell may be at a different stage of DNA repli-

cation, the coverage pattern exhibited a single trough and a 

single peak, and the peak coincided with the known (24) 

replication origin (Fig. 1, A to C). 

Similar patterns to those seen in vitro were also found 

for E. coli in 583 publicly available (3, 7, 9) human meta-

genomic fecal samples (Fig. 1B). PTRs extracted from these 

samples varied across individuals, in the range of 1-2.4, re-

sembling the 1-2.6 range of ratios measured in vitro (Fig. 

1B). Ratios higher than 2 are indicative of multifork replica-

tion, previously documented for E. coli (18, 22). 
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Metagenomic sequencing increased our understanding of the role of the 

microbiome in health and disease, yet it only provides a snapshot of a 

highly dynamic ecosystem. Here, we show that the pattern of metagenomic 

sequencing read coverage for different microbial genomes contains a 

single trough and a single peak, the latter coinciding with the bacterial 

origin of replication. Furthermore, the ratio of sequencing coverage 

between the peak and trough provides a quantitative measure of a species’ 

growth rate. We demonstrate this in vitro and in vivo, under different 

growth conditions, and in complex bacterial communities. For several 

bacterial species, peak-to-trough coverage ratios, but not relative 

abundances, correlated with the manifestation of inflammatory bowel 

disease and type II diabetes. 
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To examine whether PTRs provide a quantitative meas-

ure of growth rate, we calculated the temporal growth rate 

of E. coli at different times during its growth experiment, as 

the derivative of its abundance across time (23). PTRs were 

correlated with the measured growth rate, preceding it by 

30 min (R = 0.95, P < 10−4) (Fig. 1D), indicating that PTR 

predicts the change in abundance. To test whether PTRs 

accurately reflect steady state growth rates (as opposed to 

temporal growth), we grew E. coli in an aerobic chemostat 

in which steady growth rates were controlled by changing 

the dilution rate of the system to induce a 16-fold range 

(23), and found excellent correlation (R = 0.996, P < 0.001) 

(fig. S1A) between the calculated PTRs and the measured 

growth rates. According to theoretical models (21), PTR = 

2C/G, where C is the replication time (C-period), and G is the 

generation time, and thus 1/log2(PTR) is proportional to 

G/C. This transformation was correlated with measured 

bacterial generation time (R = 0.96, P < 0.01) (fig. S1B), con-

firming PTR as its proxy, even when the replication time is 

unknown. 

The relationship between PTR and growth rate extends 

to other commensal strains, as we found that PTR and tem-

poral measured growth rate were significantly correlated in 

similar cell growth experiments performed on Lactobacillus 

gasseri and Enterococcus faecalis under anaerobic condi-

tions (L. gasseri, R = 0.74, P < 0.001; and E. faecalis, R = 

0.57, P < 0.05) (fig. S2, A and B). PTR also detects changes in 

growth rate mediated by changes in growth conditions, as 

PTRs and measured growth rate were correlated in addi-

tional cell growth experiments performed on E. faecalis in 

aerobic conditions, and on E. coli in restricted growth con-

ditions (23) (E. coli, R = 0.92, P < 0.001; E. faecalis, R = 0.78, 

P < 10−4) (fig. S2, C and D). L. gasseri exhibited no growth in 

aerobic conditions, and accordingly we observed no change 

in PTRs (fig. S2E). PTRs for L. gasseri and E. faecalis were 

significantly different between aerobic and anaerobic condi-

tions (E. faecalis, P < 0.05; L. gasseri, P < 0.001, Mann-

Whitney U-test) (fig. S2E). 

To examine whether PTRs can be used to detect clinical-

ly relevant changes in culture conditions, we treated an in 

vitro culture of early log-phase nalidixic acid-resistant 

Citrobacter rodentium with the bacteriostatic antibiotic 

erythromycin. Since bacteriostatic antibiotics halt bacterial 

growth, and thus indirectly inhibit replication, we postulat-

ed that erythromycin treatment would decrease PTRs. As 

control, cultures were treated with nalidixic acid, with the 

bactericidal antibiotic kanamycin, or left untreated. Indeed, 

erythromycin treatment lowered the PTR compared with 

controls (Mann-Whitney P < 0.001 and P < 10−4 for untreat-

ed control or nalidixic acid treated control, respectively) 

(Fig. 2, A and B). PTR reduction under erythromycin was 

evident within 30 min after administration, and preceded 

the halt in exponential growth that was detected only 60 

min after erythromycin treatment (Fig. 2, A to C). During 

antibiotic recovery, obtained by washing the cultures after 

2.5 hours and removing the antibiotics (23), PTRs increased, 

consistent with the rise in abundance (Mann-Whitney P < 

0.001) (Fig. 2, A and B). 

Next, we grew L. gasseri within a mixture of six com-

mensal bacterial strains (23) and observed a rise in its PTR 

corresponding with the rise in abundance, with PTR and 

temporal growth being correlated (R = 0.64, P < 0.001) (Fig. 

2D). 

Together, the in vitro experiments show that PTRs pre-

cede and predict changes in abundance even in the more 

complex setting of a mixed bacterial community, thereby 

establishing the link between PTRs and growth rate. 

To test whether PTRs remained accurate predictors of 

bacterial activity in a disease setting, we compared the pro-

liferative behavior of a virulent and non-virulent (tir-

mutant) strains of C. rodentium, which we used to infect 

C57BL/6 mice previously depleted of their native microbiota 

by wide-spectrum antibiotic treatment (23). We compared 

the in vivo abundance of both strains with PTRs and found 

that both showed similar behaviors 1-5 days post-infection 

(p.i.), with counts steadily rising from ~104-105 CFU/ml at 

day 1 to ~108 CFU/ml by day 5 (fig. S3). However, at 6-9 days 

p.i. the virulent strain displayed significantly higher counts 

(Mann-Whitney P < 0.05) (fig. S3) and PTRs (Mann-Whitney 

P < 0.001) (Fig. 3A) than the non-virulent strain, likely re-

flecting preferential mucosal adhesion and proliferation 

(25). While PTRs of the virulent strain were higher at days 

6-9 p.i. compared with days 1-5 p.i. (Mann-Whitney P < 

0.001) (Fig. 3A), PTRs of the non-virulent strain 6-9 days p.i. 

were even lower than those of in vitro cultures of C. ro-

dentium in stationary phase (Mann-Whitney P < 0.001) (Fig. 

3A). 

To explore the utility of the PTR measure within the 

complex metagenomic setting we devised a computational 

pipeline that extracts PTRs for multiple samples within 

large metagenomic cohorts (supplementary text and fig. S4). 

In devising this pipeline, we took care to address (1) ge-

nomic differences between strains of a certain species; (2) 

copy number variation of different genomic regions, and (3) 

variable coverage levels stemming from sequencing depth. 

We show that our method is robust to these drivers of noise 

(fig. S5 to S8, supplementary text), attributed to our exami-

nation of coverage across the entire genome, as opposed to 

comparing the coverage of origin and terminus regions di-

rectly. 

Examining the full length of the genome also allows us 

to predict the replication origin location in different bacte-

ria. We verified that coverage peak locations coincided with 

known locations of origins of replication. To this end, we 

applied our pipeline to 759 metagenomic stool samples from 

Chinese and European cohorts (7, 9) and predicted the loca-

tion of the origin and terminus of replication for 187 differ-

ent microbial strains. Indeed, these predictions, computed 

solely based on our analysis of the bacterial genome cover-

age patterns, agreed with the known replication origins of 
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132 different strains (24) R2 = 0.98, P < 10−30) (fig. S8), and 

for 55 strains whose replication origin location is unknown 

our method generated novel predictions (fig. S9). 

To test whether PTRs can uncover a possible interplay 

between host genetics and gut microbiome growth dynam-

ics we collected fecal samples from three mouse strains 

(Swiss Webster, BALB/c and C57BL/6) (23) grown under 

identical environmental conditions. Microbiota growth dy-

namics, as estimated by PTRs, differed significantly across 

the different mouse strains. In BALB/c mice, PTRs were 

lower overall compared with C57BL/6 and Swiss Webster 

mice (P < 0.05) (fig. S10A). The reduction in growth in the 

BALB/c mice was driven by Parabacteroides distasonis, 

which displayed consistently lower PTR than in other 

mouse strains (fig. S10, B to D), indicating that host genetics 

may affect the growth dynamics of this bacterium. 

Another example to the utility of PTRs in assessing phys-

iological microbiome behavioral patterns is provided in mi-

crobiome diurnal oscillation patterns, which we recently 

linked to host susceptibility to obesity and glucose intoler-

ance (26). Examining PTRs of fecal microbiomes collected 

from a human volunteer every 6 hours for four consecutive 

days, we identified two species, out of four that passed our 

PTR pipeline filters, that showed abundance levels cycling 

with a 24 hour periodicity (23). For both species, the PTRs 

also exhibited 24 hour oscillatory patterns (P < 0.05) (23) 

(Fig. 3B and fig. S11), suggesting that diurnal changes in the 

abundance of some bacteria were reflected in their PTRs. 

To test the impact of an extreme dietary change on bac-

terial growth rates, two healthy human volunteers under-

went an acute dietary change, in which they shifted their 

normal diet to one that contained only boiled white rice for 

one week, after which they reverted back to their regular 

dietary habits. In both participants, we observed a global 

change in gut bacterial growth dynamics between dietary 

regimens, as reflected in statistically significant differences 

in the PTRs of all bacteria between the days in which rice 

was consumed and the days in which the participant’s regu-

lar diet was followed (P < 0.005 for each participant) (Fig. 3, 

C and D). 

We also examined body site-specific microbial growth 

rates in a metagenomic cohort (3) and found significantly 

higher PTRs in 229 tongue dorsum (1.36 ± 0.006) and 193 

buccal mucosa (1.37 ± 0.007) samples, as compared with 325 

stool samples (1.16 ± 0.002; P < 10–50 in both cases) (fig. S12). 

Six species were present in both the oral cavity and stool 

with sufficient coverage to calculate PTRs, with three featur-

ing significantly different PTRs between sites (FDR-

corrected Mann-Whitney P < 0.1) (fig. S12, B to G), indicat-

ing that inter-site differences stem not only from distinct 

bacterial compositions, but also from site-specific differ-

ences in growth dynamics. 

Overall, these results provide examples of functional in-

sights that are not achievable using traditional meta-

genomics analysis methods, and indicate that microbiome 

growth dynamics vary across diverse physiological condi-

tions and locations. 

To test whether bacterial PTRs are associated with dis-

ease and different clinical parameters, we generated PTRs 

for every species in samples from European (N = 396) (9) 

and Chinese (N = 363) (7) cohorts. In both datasets, we 

found large variation in PTRs across samples (Fig. 4). Nota-

bly, we found statistically significant associations between 

the PTRs of 20 different bacteria and multiple clinical pa-

rameters, including significant correlations between the 

PTR of Bifidobacterium longum and occurrence of Crohn’s 

disease in the Spanish nationals of the European cohort (9) 

(FDR-corrected Mann-Whitney P < 0.005) (Fig. 4), and be-

tween the PTRs of 12 different bacteria and the occurrence 

of type II diabetes in the Chinese cohort (7). We also found 

significant correlations between PTRs and the occurrence of 

ulcerative colitis, body-mass index (BMI), the fraction of 

glycated hemoglobin (HbA1c%, a common marker of long-

term glycemic control) (27), fasting serum insulin, and fast-

ing blood glucose levels (Fig. 4). 

These associations are independent of- and unobtainable 

by examining bacterial abundances, as: (1) in correlating 

PTRs with clinical parameters we only used samples in 

which that bacteria was present, thereby withholding in-

formation about the presence or absence of the examined 

bacteria (23); (2) in only five of the 38 statistically signifi-

cant correlations were the abundance levels also correlated 

with the same clinical parameter; and (3) 36 of the 38 sig-

nificant associations of PTR remained significant after cor-

recting them for relative abundance levels. The PTR of some 

species were correlated with clinical parameters only after 

correction for relative abundance, including Eubacterium 

rectale and the occurrence of Crohn’s disease (FDR correct-

ed Mann-Whitney P < 10–4). 

As a global measure of the growth dynamics of the entire 

microbiota, for every sample we calculated both the mean 

and median of the PTRs of all of the bacteria present. This 

global measure correlated with fasting glucose and HbA1c% 

levels and with the occurrence of Crohn’s disease and type 

II diabetes, indicating that global microbiome growth dy-

namics also associate with disease (Fig. 4). 

A preliminary analysis of 40 samples from the Prospec-

tive Registry in IBD Study at MGH (PRISM) cohort (23) 

showed that only four bacteria passed our stringent pipeline 

filters for PTR calculation in more than half of the samples. 

Notwithstanding, Eggerthella lenta presented significantly 

different PTRs between patients with active Crohn’s disease 

and patients in remission (FDR corrected Mann-Whitney P 

< 0.1). Neither the abundance of E. lenta, nor of the other 

three species differed between active and quiescent Crohn’s 

patients, highlighting the fact that PTRs reflect an inde-

pendent feature of the effect of the gut microbiome on its 

host. 

Overall, we present a new type of metagenomic data 

analysis that provides an accurate quantitative estimate of 
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the growth dynamics of the microbiota from a single snap-

shot sample. These estimates have clinical relevance and 

correspond to changes in absolute abundances, which are 

masked by and unobtainable through relative abundances. 

Using PTRs to “fish out” microbial kinetic behavior in a 

complex microbiome population could extend our under-

standing of how flexibly the microbiota responds functional-

ly to environmental signals. We may be able to identify 

active “driver” and “modulator” species, distinguish them 

from bystander commensal species and pinpoint disease-

causing or disease-modulating microbes that contribute to 

multi-factorial diseases whose activities may be masked by 

other bacteria. Furthermore, our method may be able to 

detect, follow, and assess therapeutic responsiveness of 

pathogenic, or probiotic species introduced into the micro-

biome. 
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Fig. 1. Peak-to-trough coverage ratio (PTR) accurately measures in vitro growth rates of Escherichia coli.  
(A) Sequenced reads (right) are mapped to complete bacterial genomes and the sequencing coverage across the 

genome is plotted. Each bacteria cell in a growing population (top) will be at a different stage of DNA replication, 

generating a coverage pattern that peaks near the known replication origin (green vertical line in graph), and thus 

produce a prototypical sequencing coverage pattern with a single peak and a single trough. Bacteria from a non-

dividing population (bottom) have a single copy of the genome, producing a flat sequencing coverage pattern across 

the genome. (B) Above: sequencing coverage patterns of a non-replicating (left) and actively replicating (right) E. coli 

from two human gut metagenomic samples. Below: distribution of PTR of E. coli across 583 different human gut 

metagenomic samples (3, 7, 9) (histogram) and 58 in vitro samples from four growth experiments (boxplot).  

(C) Genome coverage plots of E. coli, measured at different times during an in vitro cell growth experiment, showing 

that PTRs are highest during exponential growth (timepoints 1-2.5) and lowest in lag (timepoint 0) and stationary 

(timepoints 3-7) phases. (D) PTRs (red line) correlate (R = 0.95, P < 10−4) with the growth rate (black line), measured 

as the derivative of the logged abundance curve (abundance is measured as optical density of the culture; OD; blue 
line) in the subsequent 30 min (23). N = 2. Symbols, mean; error bars, SEM. 
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Fig. 2. Peak-to-trough coverage ratio (PTR) accurately measures in vitro growth rates in multiple 

conditions. (A to C) Absolute abundance levels (colony forming units per ml; CFU/ml; top y-axis, blue) and 

PTR (bottom y-axis, red) as a function of time (minutes) of an in vitro culture of Citrobacter rodentium treated 

with erythromycin (bacteriostatic antibiotic in this setting, N = 2), compared to those of (A) An untreated 

control culture (N = 3); (B) A culture treated with nalidixic Acid, a drug to which C. rodentium is resistant (N = 

3); and (C) A culture treated with kanamycin, a bactericidal drug in this setting (N = 3). Background color 

indicates the treatment period (dark gray, left), recovery period (gray, middle) and early stationary phase (light 

gray, right). The black vertical line denotes antibiotic washout. PTR changes precede changes in growth. P-

values are Mann-Whitney U-test between abundance (top) or PTR (bottom) of the two different cultures show, 

at times 30-150 min (left) or times 210-300 min (right). (D) Bacterial abundances (CFU/ml; top panel) and PTR 

(bottom panel) of L. gasseri and a mixture of six additional bacterial strains that inhabit the human gut. N = 4. 

Symbols, mean; error bars, SEM. 
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Fig. 3. Peak-to-trough ratios (PTR) reflect the growth dynamics of in vivo microbial communities. (A) Shown are 

PTRs of virulent (icc169; WT; N = 3) and non-virulent (tir mutant; N = 3) Citrobacter rodentium 1-5 or 6-9 days post 

infection (p.i.) of C57BL/6 mice previously depleted of their native microbiota. PTR of stationary and exponential in 

vitro C. rodentium cultures are shown for reference. P-values are Mann-Whitney U-test. See fig. S3 for the 

corresponding measured abundances. (B) Relative abundance (left y-axis, blue) and PTRs (right y-axis, red) of 

Parabacteroides distasonis from fecal metagenomic samples obtained approximately every 6 hours from one human 

individual in 4 consecutive days (26). Plotted lines are spline interpolations using the displayed data points. Time is 

with respect to light cycles (Zeitgeber time, horizontal axis). P-value is for 24 hour oscillations (23). (C and D) Shown 

are standardized PTRs (top graphs, mean ± SEM) and specific PTRs for species present in the sample (bottom 

heatmaps), belonging to two human subjects that underwent a radical dietary change. Compared are days in which 

only white boiled rice was consumed (gray area) and days of normal diet (white area). A global change in bacterial 
growth dynamics was observed between dietary regimens (**Mann-Whitney P < 0.005, ***P < 0.001). 
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Fig. 4. Bacterial dynamics correlate with several diseases and metabolic disorders. Peak-to-trough ratios (PTR) of 

species from Chinese (7) (N = 363; Q) and European (9) (N = 396; M) cohorts are shown (boxplots, left; red-median; 

boundaries-25-75th percentiles) if its relative abundances or PTRs were significantly associated with clinical parameters. 

Shown are phylum membership; the number of samples for which PTRs were calculated; and a row with colored entries 

for each statistically significant (FDR-corrected P < 0.05) association between clinical parameters and its PTR (left 

column block) or relative abundance (right column block). Mann-Whitney U-test and Spearman correlations were used 

for binary and continuous clinical parameters, respectively. Top-block: species with significant associations between PTR 

and clinical parameters; bottom-block: species with significant associations only between relative abundance and clinical 
parameters. A-Actinobacteria, B-Bacteroidetes, E-Euryarchaeota, F-Firmicutes, P-Proteobacteria, V-Verrucomicrobia. 
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