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Understanding how the regulation of growth factor
pathways alters during prostate cancer (PC) progression
may enable researchers to develop targeted therapeutic
strategies for advanced disease. PC progression involves
the shifting of cells from androgen-dependent growth to
an androgen-independent state, sometimes with the loss
or mutation of the androgen receptors in PC cells. Both
autocrine and paracrine pathways are up-regulated in
androgen-independent tumors and may replace andro-
gens as primary growth stimulatory factors in cancer
progression. Our discussion focuses on growth factor
families that maintain homeostasis between epithelial
and stromal cells in the normal prostate and that un-
dergo changes as PC progresses, often making stromal
cells redundant. These growth factors include fibroblast
growth factor, insulin-like growth factors, epidermal
growth factor, transforming growth factor a, retinoic
acid, vitamin D3, and the transforming growth factor b
families. We review their role in normal prostate devel-
opment and in cancer progression, using evidence from
clinical specimens and models of PC cell growth.

The Natural History of Prostate Cancer
Little is currently known about the natural history of
untreated prostate cancer. The discrepancy that exists
between the prevalence of prostate cancer at autopsy and
the clinical incidence of prostate cancer has been recog-
nized for many years (1). The frequency of autopsy-
detected cancer has been reported to be 30–40% in men
over the age of 50. In contrast to these autopsy prevalence
studies, the lifetime probability that a man will be diag-
nosed clinically with prostate cancer is ;13%, and the

probability of dying of prostate cancer is only ;3% (2).
Despite these statistics, diagnosed prostate cancer is the
most common cancer in men and the second highest cause
of cancer death in men in Western society. In the US, .540
new cases are found daily, and the death rate is 104/day
(3). At present, separating the individuals whose cancer
will not progress from those with potentially fatal disease
is not possible (4). Because no trial has examined the
natural history of localized prostate cancers detected
through screening for prostate-specific antigen (PSA),3

this dilemma would be compounded in cancers detected
through a screening program (5). Such cancers may have
different natural histories from those that present clini-
cally. Moreover, prostate cancers exhibit extreme hetero-
geneity with respect to grade and stage within individual
tumors (6), making it difficult to determine their overall
ability to progress. Although a number of characteristics
of prostate cancer, including histological grade, tumor
size, and ploidy (7), are useful in predicting biological
activity, more reliable prognostic markers to identify
individuals with potentially fatal forms of the disease are
urgently needed. A better understanding of growth fac-
tors and the changes that occur in the androgen receptor
(AR) should give some information in this regard (4).

Treatment for clinically detected prostate cancer in-
cludes watchful waiting, prostate surgery, or targeted
irradiation. The latter two treatments can cure only cancer
that is organ confined, yet up to 60% of patients present
with metastases, particularly to the bone. Because deter-
mining the biological potential of localized cancers de-
tected with any degree of certainty through screening is
not possible, observation alone will result in a lost oppor-
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tunity for cure in many patients; on the other hand,
treatments such as radical prostatectomy or radiation
therapy in such cases will necessarily overtreat many
patients (8). Advanced prostate cancer with metastases to
bone and other soft tissues also presents a difficult ther-
apeutic problem (4). Management alternatives for ad-
vanced prostate cancer are palliative at best. Treatment
for such cancers depends on the androgen requirement of
prostate epithelial cells for growth and survival. Endo-
crine therapy leads to substantial periods of remission.
However, it is ineffective once the tumors progress from
androgen-dependent (AD), through androgen-sensitive
(AS; these tumors do not require androgen for growth but
proliferate more rapidly in its presence), to hormone
refractory or androgen-independent (AI). This progres-
sion is almost inevitable in men after androgen ablation
therapy. Total androgen ablation used in hormonally
naive patients results in a median remission of about 24
months (4). Therapeutic alternatives in men who have
progression of the disease after androgen ablation are
very limited, with a median survival between 8 and 12
months.

The need to develop more effective therapy for these
patients exists. A better understanding of growth factor
pathways may provide an additional target for therapy in
patients with advanced prostate cancer. This review fo-
cuses on the current state of knowledge of growth factor
pathways in prostate cancer. The majority of data pre-
sented were derived from cancer cell lines without func-
tional AR and from animal models. We thus warn the
reader that such data may not be directly relevant to
human prostate cancer. In addition, some of the data are
based on single literature reports, and they need confir-
mation before definitive conclusions can be drawn.

Biological Properties of the Prostate Gland
The prostate gland is composed of epithelial cells, which
form two layers and stromal cells. There are three types of
epithelial cells: secretory glandular cells, nonsecretory
basal cells, and neuroendocrine cells (9). The basal cells
lack ARs, are AI, and are thought to be stem cells for
secretory epithelial cells (10); the neuroendocrine cells
may play a role in regulating the growth and function of
the secretory cells (11). The stroma of the prostate is
composed of smooth muscle cells, fibroblasts, lympho-
cytes, and neuromuscular tissue embedded in an extra-
cellular matrix. Evidence suggests that epithelial-stromal
interactions play an important role in normal prostatic
morphogenesis (12). In normal tissue, such interactions
are often paracrine with, for example, receptors for a
particular growth factor present only on epithelial cells
and production of the factor only by stromal cells. In
cancer, some growth factor pathways become autocrine,
enabling the epithelial cells, which express a growth
factor and its receptor, to grow independently of stromal
cells.

Various hypotheses to explain how malignant but not

benign prostatic epithelial cells become AI have been
proposed [reviewed in (13)]. These hypotheses are based
on: (a) clonal selection of AI cells from a heterogeneous
population of AD and AI cells by androgen ablation; (b)
an adaptive theory, which proposes the presence of AD
stem cells that can adapt to self-renewal in the absence of
androgen; (c) the potential effects of small residual
amounts of androgen, which can stimulate AS cells; and
(d) changes in the AR, such as mutation, overexpression,
or loss, that occur in some but not all cases of AI prostate
cancer. Currently, determining which hypothesis is cor-
rect is not possible, but given that most prostate cancers
are heterogeneous, it is likely that both clonal selection of
preexisting AI cells and adaptive processes may contrib-
ute to AI progression. However, the findings described
below make it clear that AI progression must also be
mediated by growth-regulatory factors that function in-
dependently of androgen.

Both autocrine and paracrine growth factors are up-
regulated in AI prostate tumors and may replace andro-
gen as the primary growth-stimulatory factors in cancer
progression. This up-regulation may represent an adap-
tive response to androgen ablation in the growth regula-
tion of AI tumors and is the basis for discussion in this
review.

The AR in Prostate Cancer
Because androgen has been shown to regulate the expres-
sion of many prostatic growth factors and androgen
ablation is the most common first-line treatment for
prostate cancer patients [reviewed in (14)], no review on
growth modulators of prostate cancer would be complete
without some comment regarding the AR and its possible
role in this disease.

The AR is a member of the steroid/thyroid hormone/
retinoic acid family of receptors that bind to specific
hormone-responsive elements in target genes, thus regu-
lating transcription [reviewed in (15)]. In the developing
prostate, only the stromal cells express ARs, suggesting
that androgen regulation of prostatic development is
mediated via the stromal cells [reviewed in (16, 17)]. In
the normal adult prostate, AR expression is found mainly
in the epithelium, but it is also identified in the stromal
cells (16, 17). In contrast, in prostate cancer specimens, AR
staining in the epithelium is heterogeneous, with a
marked decrease in AR-positive cells occurring in less
differentiated tumors, corresponding to the reported in-
sensitivity to androgen observed in advanced prostate
cancers (18, 19). The reason for this altered expression of
the AR and why some cells lose their AR is still not
known.

Sequence analysis of the AR gene in prostate cancers
has revealed that many tumors contain mutations (20–24).
The resulting mutant proteins may be unable to bind
androgen but remain constitutively activated, or they may
bind androgen but be nonfunctional (15, 25). AR muta-
tions in prostate cancers are commonly point mutations
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but may also reflect microsatellite instability. Point muta-
tions have been identified in many prostate cancers,
including the AS cell line LNCaP (20–22). In particular, a
hot spot for mutation exists at codon 887 (ACT-GCT,
Thr-Ala) in the hormone-binding domain of the gene. In
LNCaP cells, this mutation enables the AR to bind pro-
gestogenic and estrogenic steroids, but it also causes a
decreased affinity for androgen (23). Such abnormal bind-
ing may induce the transcription of genes out of context,
thus upsetting the delicate balance of growth factors in
the prostate and promoting cancer development.

Prostate cancer development has also been linked to a
change in the number of repeats in the polymorphic CAG
and GGC microsatellite in exon 1 of the AR gene (24–26).
How this leads to prostate cancer development is not yet
clear.

Prostate cancer cells have derived complex mecha-
nisms that allow them to grow in the absence of androgen
stimulation or in the presence of mutated or lost AR.
Exposure of DU-145 AI prostate cancer cells transfected
with an AR expression vector and a chloramphenicol
acetyltransferase (CAT) reporter gene to keratinocyte
growth factor (KGF), epidermal growth factor (EGF), or
insulin-like growth factor 1 (IGF-1) could activate CAT
gene expression in the absence of androgen (27). These
data suggest that growth factors may activate AR in an
androgen-deprived environment.

The Role of Growth Modulators in Prostate Cancer
Although the role of androgen is important, alone it is
insufficient to maintain normal prostate homeostasis. This
process also requires complex interactions between pep-
tide growth factors and growth modulators that may be
regulated either by androgen or independently by other
factors (Table 1) (28–79). This renders the prostate gland
very sensitive to any aberrations in growth factor or
androgen expression. Therefore, it is not surprising that in
prostate cancer the expression, regulation, and cell-related
production of many of these growth modulators are
altered (Table 1).

Alterations may take the form of up- or down-regula-
tion of growth factors or their receptors or a change from
paracrine to autocrine mediation of growth factor path-
ways. Alternatively, because many growth factor path-
ways send their messages to the cells via common signal
transduction pathways, any mutations affecting signal
transduction may affect several growth factor pathways
simultaneously. Functional analysis of these potential
changes is outside the scope of this review. Our focus is
on growth factor families for which there is evidence to
support a major role in normal and cancerous growth of
the prostate. These families include the following: the
fibroblast growth factor (FGF) family, the IGF family,
EGF, and transforming growth factor a (TGF-a), all of
which are predominantly stimulators of proliferation;

retinoic acid, which causes differentiation and invasive-
ness; and the TGF-b family and vitamin D3, which are
predominantly inhibitors of prostatic growth. Using evi-
dence from human prostate cancer cell lines and animal
models in vivo and in vitro, we will discuss the role that
these factors play in normal prostate development and in
cancer progression. Evidence obtained from clinical find-
ings is often controversial, and many different models of
prostate cancer have been studied in vivo and in vitro in
an attempt to define more precisely the roles particular
growth factors play in prostate cancer progression.

Models for Studies of Prostate Cancer
Prostate cancer rarely arises spontaneously in animals
other than humans, and an ideal model for its study does
not exist. Such a model would have a reasonably slow
doubling time, be AD or AS, produce PSA, metastasize to
lymph nodes and bone, and progress to an AI state after
castration (80). The natural history of prostate cancer in
humans varies widely in biological aggressiveness, andro-
gen sensitivity, and histological appearance. Different
models mimic various aspects of the clinical disease.
Those most commonly used are summarized in Table 2
(81–111).

rodent models
The rat prostate differs from the human gland in that it is
divided into distinct individually encapsulated lobes
(dorsal, ventral, and anterior), each of which has a sepa-
rate set of compound ducts (111). The best known model
of prostate cancer is the Dunning R-3327 rat prostatic
adenocarcinoma model, derived by the passage of a
spontaneous prostate tumor discovered at autopsy in a
Copenhagen rat (81). Subcutaneously implanted tumors
become palpable in ;60 days and histologically are
well-differentiated adenocarcinomas with both glandular
and stromal elements. Multiple sublines indicative of
cancer progression have been developed [described in
detail in (82)], including AS lines (H) and AI tumors (A
subline), which lack 5a-reductase and ARs (83), and
metastatic (84) sublines (Table 1).

Other rodent models include the hormone- or N-
methyl-N-nitrosourea-induced Noble rat prostatic adeno-
carcinoma model (85, 86), Pollard rat tumors in Lobund-
Wistar (L-W) rats derived from a spontaneous tumor
(90, 91), spontaneous ACI rat prostate cancers in aging
August 3 Copenhagen hybrids (93), and the Shionogi
mouse mammary carcinoma model (95, 96), which pro-
duces both AD and AS wild-type tumors. In Shionogi
mice, the proportion of AI stem cells in recurrent AI
tumors has been shown to increase 500-fold, lending
support for self-renewal of stem cells in the absence of
androgen (113). These models have been described else-
where in detail (13).

Thompson et al. (97) have developed a mouse prostate
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reconstitution (MPR) model that exploits the ability of
fetal epithelial and stromal cells from the urogenital sinus
to form a mature prostate gland when implanted under
the renal capsule of adult mice. This model allows the

study of paracrine interactions between cell compart-
ments by introducing candidate genes for growth factors,
oncogenes, or suppressor genes into the epithelial or
fibroblast compartments derived from the fetal prostate

Table 1. Role of growth factors in normal prostate and in prostate cancer progression.

Growth factor
Expressiona and regulation in

normal prostate Expression and regulation in prostate cancer Possible role in metastasis

TGF-b 1, 2, and 3 Rats/humans: expressed by PE
and PM, a2; TGF-bs
counterbalance mitogenic
effects of other growth
factors; expression
associated with castration-
induced apoptosis (28–32)

Expression of members of TGF-b family
correlates with responsiveness to
androgens and is associated with
abnormal growth; TGF-b1 and -b3 up-
regulated; may be secreted with
autocrine regulation; sensitivity to TGF-
b inhibition is lost with tumor
progression (33–41)

Causes osteoblast migration,
angiogenesis, immunosuppression
(42–44)

bFGF Expressed by PE and PS but
receptor only in PS, a1;
maintains homeostasis (45,
46)

Bone fibroblasts from PC patients
stimulate LNCaP tumor formation in
vivo, involving bidirectional bFGF
activity; expression is higher in AI than
in AS human cell lines (47); switch
from PS autocrine to PE autocrine
expression occurs in rat and human
PC (47, 48); in Dunning rat PC, AI is
accompanied by a switch in exon IIIc
of the FGF-r2 gene, changing ligand
from KGF to bFGF in epithelial cells
(48); antisense bFGF causes Dunning
AT3 cells to form smaller, more slowly
growing tumors in vivo; MMTV-Int-2
transgenic mice show proliferation of
PE cells (49)

bFGF regulates protease expression,
e.g., urokinase-type plasminogen
activator, collagenase, which may be
involved in metastatic cascade;
bFGF is highly angiogenic (50)

aFGF Rats: role in early prostate
epithelial development (51)

Rats: expression changes with
progression from PS in slow-growing
tumors to PE in more aggressive
tumors (52)

Not defined

KGF Rats/humans: involved in
ductal branching of fetal
prostate; paracrine
production by PS, receptor
(BEK) on PE; a1 (53–55)

Human: switch to autocrine production
by PE tumor cells (55, 56)

Not defined

FGF-8 Androgen-regulated FGF
detected by PCR in rat
prostate (57)

Detected by PCR in LNCaP and AI DU-
145 cells, suggesting that it is not
androgen regulated (57)

Not defined

IGF-1, IGF-2, and
IGF-BPs

IGFs produced by PS; IGF-type I
receptors are on PE; PE
secrete IGF-BP-2, -3, -4, and
-6 (58, 59)

PE shows autocrine regulation of IGF
pathways in absence of serum;
dysregulation of IGF-BP production in
cell lines and patients (60, 61)

IGFs may promote bony metastases;
PSA cleaves IGF-BP-3, resulting in
release of IGFs in distant tissues
(61–63)

EGF, TGF-a/EGFR EGF found in prostatic fluids,
suggesting a regulatory role;
TGF-a production by PS, but
EGFR on PE; EGF and TGF-a
production is a1 but EGFR
expression is a2 (64–67)

Both EGF and TGF-a expression are up-
regulated in human cancers (68–71);
switch from paracrine to autocrine
production by PE (72)

EGF enhances cell invasion by
induction of tumor proteases (73);
EGF can regulate the IGF axis (74)

BMP Rats/humans: BMP 2, 3, 4,
and 6 present in prostate
tissue (75)

BMP 3 predominates in rat tumors and
varies in concentration in human cell
lines (75)

May be produced at metastatic sites
and stimulate bone formation (75)

NGF NGF protein is localized in PS,
receptors on PE (76)

Expression of NGF is reduced, and that
of receptors is lost with cancer
progression (77)

Not defined

IL-6 IL-6 is present in normal serum
and in primary prostate
epithelial cell cultures (78)

IL-6 is high in prostate cancer cell lines;
receptors appear to be up-regulated in
prostate cancer patients, with
autocrine production (79)

a PE, expression in prostate epithelial cells; PS, expression in prostate mesenchymal/stromal cells. Androgen regulation is notated as negative (a2) or positive (a1).
BMP, bone morphogenetic protein; NGF, nerve growth factor; IL-6, interleukin 6.
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gland and then combining and engrafting them under the
renal capsule of syngeneic male mice.

human prostate cancer cell lines
Most human prostate cancer cell lines have been estab-
lished from metastatic deposits, with the exception of
PC-93 (98), grown from an AD primary tumor. However,
PC-93 and other widely used lines, including PC-3 (99),
DU-145 (100), and TSU-PR1 (114), are all AI; all lack ARs
(with the possible exception of PC-93), PSA, and 5a-
reductase; and all produce poorly differentiated tumors if
inoculated into nude mice. The paucity of cell lines that
are AD has made studies of the progression of prostate
cancer using human material very difficult. However,
metastatic sublines of PC-3 have been developed by

injection of cells into nude mice via different routes,
especially orthotopically (115).

The LNCaP cell line, established from a metastatic
deposit in lymph node (100), is the only human prostate
cancer cell line that demonstrates androgen sensitivity but
not androgen dependence. After its initial characteriza-
tion (100), several laboratories found that this line was
poorly tumorigenic in nude mice unless coinoculated
with tissue-specific mesenchymal or stromal cells (116) or
Matrigel (117), suggesting that extracellular matrix and
paracrine-mediated growth factors play a role in prostate
cancer growth and site-specific metastasis (118). LNCaP
cells grown in castrated mice that had progressed to the
AI state were cultured to obtain new cell lines. The C-4
LNCaP (119) line produces PSA and a factor that stimu-

Table 2. Models of prostate cancer.
Animal Model Androgen sensitivity AR 5a-reductase Comments References

Rats
Copenhagen Dunning H line, AS; 1 1 Various sublines 81–82

R-3327 A line, AI; 2 2 reflect PC progression;
MAT-Ly-Lu, AI; 2 2 metastatic (liver/lung); 83
MAT-Ly, AI 2 2 metastatic (liver); 84

Noble Noble AD and AI Chronic hormones 85–88
lines induce PCs;

stroma plus epithelial
cells required for 89
tumorigenicity

Lobund-Wistar Pollard AD and AI Spontaneous tumor; 90
(L-W) lines tumors induced by 91, 92

testosterone or N-methyl-N-nitrosourea
administration

August 3 ACI Spontaneous PC in 93, 94
Copenhagen ventral lobe; old rats

Mice
DD/S Shionogi AD and AI 1 1 Extensively used for 95, 96

mammary lines studying intermittent
carcinoma hormonal ablation therapy

C57BL/6 MPR RM-6 line, Overexpression of myc 97
(renal capsule) AI and ras in stromal and epithelial cells

from urogenital sinus allows analysis
of paracrine/autocrine pathways

Human cell lines PC-93 AI ? ? Established from primary AD tumors 98
PC-3 AI ? 2 Established from 99
DU-145 AI ? 2 prostate cancer 100
LNCaP Parent line, Mutated metastases 101

AS;
C4 line, AI; 102
C4-2 line, AI; 103
P104-R2 line Stimulated by finasteride 104

Human CWR22 AD ?
xenograft lines CWR22R AI ? 105

PC-82 AD 1

PC-EW AD 1 106
Honda AD 1 107
LuCaP AS 1 1 108
PR-2 ? ? Small cell carcinoma 109

of prostate 110, 111
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lates PSA production, and the C4-2 line metastasizes to
lymph nodes and bone after subcutaneous or orthotopic
inoculation (102, 103). Another subline of LNCaP, LNCaP
104-R2, cultured in androgen-depleted medium for .100
passages, is stimulated by finasteride, causing some con-
cern over the use of antiandrogens for the treatment of
late-stage prostate cancer (104).

human xenograft models
The CWR22 xenograft line is highly AD in vivo and
relapses to an AI line, CWR22R, after androgen with-
drawal (105), thus providing a useful model for studies of
the progression of human prostate cancer. PC-82 is one of
several xenograft lines established in Rotterdam. PC-82
and PC-EW are AD prostate cancer xenograft lines
(106, 107) that are useful for studying AR regulation (119).
Honda and LuCap xenografts are also both AS (108, 109).
The UCRU-PR-2 xenograft line, established from a patient
with prostatic adenocarcinoma, is a small cell carcinoma
of the prostate that secretes pro-opiomelano-corticotropin-
derived peptides (110, 111). Cell lines have not been estab-
lished in vitro from these lines.

transgenic mouse models
Fusion of tissue-specific promoter elements to oncogenes
has been used to target expression of the oncoprotein to a
given organ, sometimes with the development of cancer
in that organ. The use of a viral promoter with the
oncogene INT2 causes benign hyperplasia of the prostate

in transgenic mice (49), whereas TGF-a expressed under
the control of a metallothionine gene promoter produced
prostate epithelial hyperplasia and focal dysplasia resem-
bling carcinoma in situ (121). Regulatory elements of the
rat probasin gene have been shown to target hormonally
regulated expression of heterologous genes in the pros-
tates of transgenic mice (122). Two new transgenic models
have excellent potential for studies of prostate cancer
progression. These are C3(1)/SV40 large T antigen trans-
genic mice, which show a progression to cancer from
intraepithelial neoplasia (123), and the TRAMP (trans-
genic adenocarcinoma mouse prostate) model, in which
metastases develop (124).

Growth Factor Families Important in Prostate Cancer
The growth factor families involved in prostate cancer
progression are shown in Table 1. Some of these families
appear to play a more major role in prostate cancer
progression than others. Their characteristics are de-
scribed in Table 3 (51, 125–144).

the TGF-b family
Three proteins of the TGF-b superfamily, TGF-b1, TGF-
b2, and TGF-b3, are expressed during prostate develop-
ment and in the adult prostate in both normal and
malignant tissue (125, 126). More distantly related pep-
tides, including the activins and inhibins, are not dis-
cussed here. The TGF-b family is highly conserved be-
tween species (145). TGF-b1 predominates in all tissues,

Table 3. Characteristics of growth factors/receptor pathways in prostate cancer.
Factor/Receptor Isoforms/Size, human, mature form Biological activity Comments References

TGF-b TGF-b1, 44.3 kDa 390 aa
TGF-b2, 47.8 kDa 414 aa

Requires proteolytic cleavage TGF-b1 and 2 are homodimers of
25 kDa protein; 75%
homologous

125, 126

TGF-b3, 47.3 kDa 410 aa TGF-b3 is a heterodimer, 80%
homology to TGF-b2

127, 128

TGF-b receptors TbetaR-I, 53 kDa 505 aa
TbetaR-II, 68 kDa 565aa

Transmembrane serine-threonine
kinases

Trigger decreases in expression of
src tyrosine-kinases

129–131

TbetaR-III Membrane proteoglycan Does not transduce signals but
binding of TGF-b activates other
receptors

132

EGF 6 kDa, 53 aa Secreted by normal and tumor
cells

Share 35% homology; signal
through same EGF receptor (170

133, 134

TGF-a 6 kDa, 50 aa Secreted by tumor cells kDa, 1210 aa) 135
bFGF 4 variants

18, 21, 21.5, and 22.5 kDa,
all 155aa

No signal sequence 18 kDa protein found in cytosol;
others nuclear

136–138

aFGF 17.5 kDa, 155 aa No signal sequence On chromosome 5; 55% homology
with bFGF

51, 139

KGF 19 kDa Has signal sequence 30–40% homology with other FGFs 140, 141
IGF IGF-1, 70 aa

IGF-2, 7.5 kDa, 60aa
Cause prostate cell proliferation 142

IGF receptors Type I, 1367aa; Type II Type I binds IGF-1 with higher
affinity than IGF-2; type II prefers
IGF-2

143

IGF-BP Types 1–6, 24–43 kDa, all
200–300 aa

Regulate IGFs by modulating
their receptor access

144

aa, amino acids; kDa, kilodaltons; b, basic; a, acidic.
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whereas the expression of TGF-b2 and TGF-b3 is more
tissue-restricted (126, 127, 146). However, all three iso-
forms share a multiplicity of biological effects (126).
TGF-bs induce angiogenesis in wound healing (41);
stimulate the synthesis of extracellular matrix compo-
nents such as collagen, fibronectin, proteoglycans, and
integrins; and also can inhibit extracellular matrix forma-
tion through down-regulation of a wide variety of pro-
teases (42, 145). TGF-bs also can induce proliferation of
mesenchyme cells and can act as growth inhibitors of
epithelial cells (147) and as important immunoregulatory
molecules (43).

How TGF-b1 works on prostrate cancer cells is unclear.
TGF-b1 binds to the TGF-b2 receptor (TbetaR-II), which
recruits the TGF-bI receptor (TbetaR-I) to initiate a signal
transduction cascade. Although TbetaR-I and TbetaR-II
are transmembrane serine-threonine kinases (129), they
can trigger decreases in the expression of members of the
Src family of tyrosine kinases (130), affecting protein
tyrosine kinase signaling and hence growth regulation
(131). TGF-b3 receptor (TbetaR-III) plays a more indirect
role because it delivers ligands to the signaling receptors
(132). TGF-b1 prevents phosphorylation of the retinoblas-
toma gene product (149) that is involved in cellular
proliferation and should, therefore, inhibit proliferation.
Thus, in the nondiseased prostate, TGF-b is believed to
play a role in regulating cell growth through its antipro-
liferative effects because it can inhibit the mitogenic
effects of EGF/TGF-a on epithelial cells (28) and of basic
FGF (bFGF) on stromal cells (29).

TGF-b1, TGF-b2, and TGF-b3 are important for fetal
prostate development and are expressed at high concen-
tration in 17-day murine urogenital sinus mesenchyme
but not in the epithelium. In adult mice, only TGF-b1 is
increased, with the highest concentrations observed dur-
ing epithelial duct formation (30). The expression of
TGF-b1 and its receptor are negatively regulated by
androgen in the prostate. In apparently healthy rats,
expression of TGF-b and TbetaR-I and TbetaR-II is up-
regulated within 24 h after castration and has been linked
to programmed cell death in the prostate (31). In tumors,
androgen withdrawal results in increased TGF-b1 and
receptor concentrations in both rat Dunning R3327 PAP
(31) and human PC-82 prostatic cancer cells (32). Increas-
ing expression of TGF-b1 appears to be important in
prostate cancer progression, but its exact role remains
uncertain (125). In humans, increased mRNA and protein
expression of both epithelial cell-specific and, to a lesser
extent, stromal cell expression of intracellular TGF-b1 is
associated with prostate cancer progression (33, 34).
Moreover, serum TGF-b1 concentrations in patients with
lymph node and/or distant metastases were markedly
higher than in patients with localized disease but did not
differ substantially among localized cancers as to tumor
extension (35). Similarly, increased TGF-b1 expression is
associated with increasing malignancy in the mouse MPR
model (36) and, in particular, in metastatic versus primary

cell lines (37). Moreover, transfection of TGF-b1 into rat
R3327-MATLyLu prostate cancer cells resulted in larger,
less necrotic, and more metastatic cells than controls (38).

Not only is expression of TGF-b1 increased with pros-
tate cancer progression, but secretion also occurs. A factor
involved in TGF-b1 secretion (150, 151), the latent TGF-b1
high molecular weight complex, is associated with a latent
binding protein (150) that is not expressed in prostate
cancer (150). This suggests the possibility that progression
of this disease is associated with TGF-b1 switching from
an autocrine/paracrine to a juxtacrine mode of action.
This is reflected by secretion of TGF-b1 by the human AI
cell lines DU-145 and PC-3 but not by the AS LNCaPs
(152). Less information is available on the other TGF-b
isoforms in prostate cancer. The PC-3 cells do not respond
to TGF-b2 (153), indicating that an autocrine pathway is
not present. Studies in the MPR model show that TGF-b3
but not TGF-b2 concentrations are increased in carcino-
mas (36). These observations may reflect increased
TGF-b1 concentrations given that TGF-b1 has been shown
to up-regulate the expression of TGF-b2 and TGF-b3 in
many epithelial and stromal cell lines (154).

Studies of human prostate cancer cell lines suggest that
changes in sensitivity to TGF-b1 may play a role in
prostate cancer progression, but different results are ob-
tained in clinical samples and in rodent cells. TGF-b1
inhibits the proliferation of AI PC-3 and DU-145 cells in a
dose-dependent manner but not the proliferation of AS
LNCaP cells (39). TGF-b insensitivity in LNCaP cells has
been attributed to a genetic change in their TGF-b recep-
tor I gene (39) and can be reversed by transfection with
the wild-type type I receptor gene (39). However, in
clinical samples of prostate cancer, an inverse correlation
between the loss of expression of TbetaR-I and TbetaR-II
and tumor grade is observed (40). This could provide a
potential mechanism for prostate cancer cells to escape
the growth-inhibitory effects of TGF-b. In the rodent
models, sensitivity to TGF-b growth inhibition is lost with
tumor progression. In the R3227 Dunning model, func-
tional TbetaR-I and TbetaR-II, as well as decreasing sen-
sitivity to TGF-b1, are found in advanced prostate carci-
noma cells (41), whereas metastatic cell lines derived from
the MPR model secrete but do not respond to TGF-b1 (37).
This suggests the role of TGF-b in the progression of
prostate cancer cell lines from rodent and human cancers.

TGF-b can modulate extracellular matrix proteins and
has effects on bone-derived cells, suggesting the possibil-
ity that it may promote the spread of prostate cancer cells
and provide a suitable milieu in bone for metastatic
growth. TGF-b can induce type IV collagenase matrix
metalloproteinase-9 and plasminogen activator inhibitor 1
in mouse prostate-derived cell lines (37) and procollagen
Ia-chain mRNA in human osteoblast-like cells (131).
TGF-b1 also stimulates adhesion of PC-3 cells to bone
matrix proteins, possibly via the a2 b1 integrin receptor
(155) and the migration of human osteoblasts (44).

In summary, the role of TGF-b in the prostate is highly
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complex (Fig. 1). In the nondiseased prostate, TGF-b can
counterbalance the mitogenic effects of various growth
factors, thus having a role in growth regulation. More-
over, its expression and that of its receptors is associated
with castration-induced prostate cell apoptosis. In cancer,
TGF-b expression is increased as prostate cancer
progresses. It can be secreted and may show autocrine
rather than paracrine regulation, although its autocrine
role is as yet unexplained. The sensitivity of prostate
cancer cells from different species to respond to TGF-b
varies, in one case, because of genetic changes in the
receptor. TGF-b also has the capacity to modulate matrix
metalloprotease production and to stimulate adhesion of
prostate cancer cells to bone cells, providing a possible
role in prostate cancer cell metastases. Given its role in
angiogenesis and as an immunoregulatory molecule, the
secretion of TGF-b by prostate cancer cells could have
important effects on the cancer cell environment.

EGF and TGF-a
EGF and TGF-a are two structurally and functionally
related peptides (Table 3) that signal through the same
170-kDa EGF receptor, a transmembrane tyrosine kinase
(133, 134). Consequently, their biological activities over-
lap and include roles in embryogenesis, cell differentia-
tion, and angiogenesis (135).

Prostatic fluids from nondiseased human prostates
contain large amounts of EGF (64), which appears to be an
important regulator for normal growth in both rat and
human prostate (156). Human prostate epithelial cells
require EGF in serum-free medium for growth in primary
culture (157), and nondiseased human fetal prostatic
fibroblasts can replicate in response to this cytokine (65).
Immunohistochemical studies on nondiseased and benign
prostatic tissue have shown that TGF-a expression occurs
predominantly in the stroma, whereas its receptor is
expressed by epithelial cells, suggesting a paracrine/
juxtacrine mode of regulation (72).

Prostatic cell EGF expression is regulated by androgen.
Castration of mice or rats results in a marked decrease in
EGF expression (66, 67), which can be restored by testos-
terone administration. There is some evidence that TGF-a
may also be androgen-related. Castration of rats, followed
by androgen-induced regrowth, results several days later
in increased TGF-a mRNA (67); because of the timing, this
may reflect the induction of other regulatory factors by
androgen.

Increased expression of EGF/TGF-a has been linked to
prostate cancer development. A slight but important rise
in EGF protein expression is observed in the epithelial
cells of prostate cancer specimens (68, 69), and similarly,
TGF-a protein concentrations are raised in human pros-
tate cancers in comparison with benign tissue (70, 71). In
many tumors, TGF-a and epithelial growth factor recep-
tor (EGFR) are coexpressed in the epithelial cells, suggest-
ing a switch from paracrine to autocrine regulation (72).

These studies are supported by findings in vitro using
human prostate cancer cell lines. LNCaP cells are stimu-
lated in vitro (158) and in vivo (159) by EGF and TGF-a;
in LNCaP cells undergoing AI progression, the EGFR is
up-regulated (160). Both LNCaP and DU-145 cell lines
secrete EGF, with 14-fold higher expression in the DU-145
line (161, 162). Interestingly, although both lines express
single EGF-binding sites of similar high affinities, LNCaP
cells exhibit markedly enhanced DNA synthesis in re-
sponse to exogenous EGF compared with DU-145 cells,
suggesting that locally produced EGF may be an impor-
tant regulator of cell proliferation in the AS cells com-
pared with AI cancer cells (163). Similarly, changes in
TGF-a expression are observed in human prostate cancer
cell lines. The AI lines PC-3 and DU-145 express higher
concentrations of TGF-a mRNA than do LNCaP cells
(164), but at the protein level, PC-3 cells express the least
TGF-a, whereas DU-145 cells express the most (165).
However, PC-3 cells are more sensitive to TGF-a-induced
proliferation than DU-145 cells, although they express

Fig. 1. Changes in growth factor pathways in prostate cancer compared
with the nondiseased prostate.
In the normal prostate (A), most growth factor pathways are paracrine. TGF-a is
produced by stromal cells but binds to the EGFR on epithelial cells; bFGF is
produced by both prostate stromal and epithelial cells, but its receptors (FGFr)
are only found on stromal cells; KGF is produced by stromal cells and binds to
BEK receptors on epithelial cells. TGF-b down-regulates proliferation of stromal
cells in response to bFGF and proliferation of epithelial cells in response to EGF
or TGF-a. Androgen negatively regulates TGF-b and EGFR and positively regulates
EGF. In prostate cancer (B), the requirement for epithelial-stromal cell interac-
tions is reduced. Autocrine pathways for interleukin-6 (IL-6), KGF, bFGF, TGF-a,
EGF, and TGF-b all exist within prostate epithelial cells. Withdrawal of androgen
results in up-regulation of both EGFR and TGF-b expression. The effects of these
changes on prostate cell behavior and the ability of prostate cancer to metas-
tasize are explained more fully in the text.
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lower concentrations of EGFR (165). The differential sen-
sitivity of prostate cancer cells to TGF-a suggests that the
autocrine loop involving TGF-a in prostate cancer cell
lines may be further regulated by other unknown factors.

The importance of these findings may relate to the
ability of EGF to enhance prostate tumor cell invasion.
EGF increased the invasive capacity of PC-3 cells in a
Boyden chamber microinvasion assay. This was associ-
ated with increased expression of urokinase plasminogen
activator, a serine protease, mRNA, and protein (73).

Because both EGF and TGF-a bind to the EGFR,
regulation of receptor expression is mandatory to an
understanding of prostate cancer development and pro-
gression. In the nondiseased prostate, EGFR expression is
largely confined to the basal cell layers (166–168),
whereas in human cancer cell lines, EGFR expression is
increased with increasing malignancy. Thus, the AI DU-
145 prostate cancer cells express 10-fold more EGFR than
do AS LNCaP cells (163). Results from immunohisto-
chemistry of human prostatic tumors are inconclusive.
Some studies reported no difference in EGFR expression
between nondiseased and malignant cells (168); others
noted a decrease in EGFR expression in advanced malig-
nancy compared with nondiseased tissue (166, 167),
whereas still other reports described an increased EGFR
mRNA and protein expression in secretory epithelial cells
that is associated with advanced cancer (166) or with
increasing tumor grade (169) but not with patient survival
(170). Such discrepancies may relate to differences in
methodology, or they may reflect heterogeneity between
prostate tumors in relation to EGFR expression.

EGFR expression in nondiseased prostate tissues ap-
pears to be under negative androgen regulation. Prostate
biopsies from patients with benign hyperplasia show
substantially increased EGFR expression after androgen
withdrawal (171). Likewise in rats, castration induces
increased EGFR expression with a return to normal con-
centrations after administration of dihydrotestosterone
(65), whereas exposure of LNCaP cells to the synthetic
androgen, R1881, up-regulates EGFR expression from
11 500 to 28 500 sites/cell (172). However, the LNCaP data
may be affected by the presence of a mutated AR in these
cells (23). Taken together, these data suggest the possibil-
ity that the regulation of EGFR by androgen may be
disrupted in prostate cancer. What impact this has on the
actions of the EGFR ligands, EGF and TGF-a, remains to
be elucidated.

In summary, in the nondiseased prostate, EGF appears
to be an important regulator of growth (173), and its
expression is positively regulated by androgen, whereas
that of EGFR is negatively regulated by androgen. TGF-a
is predominantly expressed in a paracrine fashion by
nondiseased prostate stroma. In prostate cancer, EGFR
expression is up-regulated with progression as judged
from prostate cancer cell lines, but evidence from clinical
trials leaves its role controversial. However, up-regulation
of EGF, TGF-a, and EGFR suggest their autocrine expres-

sion in advanced cancer. Increased EGF expression ap-
pears to be associated with the invasive ability of prostate
cancer cells.

FGFs
The FGF family consists of nine structurally related hep-
arin-binding peptides that share 40–55% amino acid ho-
mology (174). Four genes have been identified that encode
distinct high affinity (Kd 5 10211mol/L) receptors for
FGFs, fibroblast growth factor receptor 1 (FGFR-1),
FGFR-2, FGFR-3, and FGFR-4 (175). Each encodes trans-
membrane receptor tyrosine kinases, derived from alter-
native mRNA splicing, that give rise to the potential of
multiple binding combinations for each FGF peptide
(176). These receptors also differ in their affinity for each
member of the FGF family. The FGFs show different
cellular locations. Some forms are secreted, and others are
located in the nucleus (176, 177). Three members of this
family, bFGF (FGF-2), acidic FGF (aFGF or FGF-1), and
KGF (FGF-7) have been implicated in prostate cancer.

bFGF
bFGF is encoded by a 36-kb single copy gene (178, 179)
with four variants from alternative splicing (Table 3).
Differing intracellular locations suggest different biologi-
cal functions (175). Despite no signal sequence (178), bFGF
has been found cell-associated or deposited into the
basement membrane (176), with its release possibly due to
cell injury in vivo.

bFGF is synthesized by a wide variety of cell types,
including epithelial cells, stromal cells (45), macrophages
(180), and endothelial cells (181). Its biological functions
include a role in angiogenesis, tissue development and
differentiation (182, 183), and the ability to modulate
neural function (184).

Prostatic stromal and epithelial cells actively synthe-
size bFGF (45). However, in the nondiseased prostate,
only the stromal cells express the bFGF receptor and thus
respond to this growth factor, suggesting that bFGF plays
an important role in maintaining prostatic mesenchymal
homeostasis (46). Human fetal prostatic fibroblasts have
also been shown to proliferate in response to bFGF (185),
which can overcome the TGF-b1 inhibition of these cells
(186). Some conflict concerning the response of the bFGF
pathway to androgen exists. In 7-day-old rats, castration
results in decreased bFGF expression, with increased
bFGF mRNA 16 h after exposure of regressed prostate to
androgen (187). In AS LNCaP cells, androgen causes an
increase in bFGF expression (188), whereas other human
prostatic cancer cell lines produce bFGF independently of
androgen (189). Similarly, AI cells from Shionogi mice
produce a bFGF-like protein (190). These data suggest that
production of bFGF becomes AI as cancer progresses.

Further evidence of a role for the bFGF pathway in
prostate cancer progression comes from studies in the
Dunning tumor model (48). A switch in exon IIIb (which
has a high affinity for KGF) of the FGFR gene to exon IIIc
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(with a high affinity for bFGF and aFGF) occurs in
malignant epithelial cells as they become independent of
their requirement for stroma (48). This suggests that
prostate cancer progression may be associated with a
switch from stromal autocrine bFGF regulation to epithe-
lial autocrine regulation. It has been proposed that bFGF
may enable the epithelial cell to metastasize by promoting
angiogenesis in the malignant tumor. These studies are
supported by findings in human prostate cancer cell lines.
The AS LNCaP cell line produces very low concentrations
of bFGF and FGFR (47) compared with the AI cell lines
PC-3 and DU-145 (47). However, the data are confusing;
although LNCaP and DU-145 cells proliferate in response
to bFGF, the more malignant PC-3 cells do not (47). As
with the rat model, this suggests that some form of
autocrine regulation of bFGF by epithelial cells may be an
important step in prostate cancer progression.

Because bFGF is angiogenic, its increased production
in late stage prostate cancer may promote angiogenesis,
allowing tumors to grow and metastasize (50). The acqui-
sition of metastatic ability in prostate cancer has been
correlated with increasing microvessel density (191, 192),
implying that angiogenic ability is necessary for metasta-
sis to occur.

In summary, bFGF appears to be produced in an
autocrine fashion by nondiseased prostate stromal cells
and is important for maintaining their homeostasis. As
cancer occurs and progresses, the production of bFGF
becomes independent of androgen and becomes regu-
lated in an autocrine fashion by prostate cancer epithelial
cells. The ability to produce bFGF may stimulate angio-
genesis, allowing the cells to metastasize.

aFGF
aFGF (Table 3) is important in the development of the
prostate in rats, but it has not been detected in human
prostatic tissues. In 6- to 8-week-old rats, expression is
confined to epithelial cells and is increased, but it declines
at 14 weeks and cannot be detected by 35 weeks (51).
Epithelial and mesenchymal cells from nondiseased rat
prostate and various grades of rat prostate tumors exhibit
specific aFGF membrane receptor sites (52). In the Dun-
ning model, aFGF alone is expressed only by stromal cells
of the slow-growing AD R3327PAP tumor, whereas fast-
growing metastatic AT-3 cells express both aFGF and
bFGF (52). This suggests that, in rat models of prostate
cancer, progression is associated with a switch in regula-
tion of aFGF from paracrine to autocrine control.

KGF
Another member of the FGF family, KGF (140), is impor-
tant in prostate development (Table 3). In the rodent
prostate, KGF is expressed and secreted by nondiseased
stromal cells, but only epithelial cells express the BEK/
FGFR-2 receptor gene that binds KGF, suggesting that this
cytokine controls epithelial cell proliferation in a para-
crine manner (53). The BEK receptor has been shown to

require an interaction with heparan sulfate proteoglycans
to facilitate binding to its ligands (54). Serum-free organ
culture of neonatal rat ventral prostates, which express
both KGF and BEK receptor mRNA, has been developed
as a model to study prostate development (193). The
addition of an anti-KGF antibody could inhibit testoster-
one-induced branching in this model, and in testosterone-
free conditions, KGF could mimic the effects of the
hormone. These data suggest that, in the developing
prostate, KGF may act as a paracrine mediator of andro-
gen action. An important and similar role for KGF has
also been implicated in the human prostate. KGF and its
receptor are expressed in the stromal and epithelial cells,
respectively, and in both fetal and adult nondiseased
prostates (55). This cytokine is also a potent mitogen for
nondiseased human prostatic epithelial cells in vitro
(141, 194) and promotes the growth of these cells under
serum-free conditions (195).

In human prostatic carcinomas, in situ hybridization
studies have shown increased expression of the KGF gene
and receptor in epithelial cells of high-grade carcinomas
but not in benign hyperplasia of the prostate, suggesting
a switch from a paracrine to an autocrine loop (55, 56).

In summary, multiple autocrine and potentially intra-
crine ligand-receptor loops result from alterations within
the FGF-FGFR family, which may underlie the autonomy
of malignant tumor cells. bFGF and KGF appear to be
produced by nondiseased prostate stromal cells in an
autocrine and paracrine fashion, respectively, and are
important for maintaining prostate homeostasis. As can-
cer occurs and progresses, the production of bFGF be-
comes independent of androgen and becomes regulated
in an autocrine fashion by prostate cancer epithelial cells.
The ability to produce bFGF may stimulate angiogenesis,
allowing the cells to metastasize. Although aFGF appears
to have a role in the rat prostate, its importance in the
human prostate has not been ratified. The production of
KGF by prostate stromal cells appears to control epithelial
cell proliferation in a paracrine manner, but in human
prostate cancer, autocrine production of KGF accompa-
nies the progression to AI disease.

IGFs
IGFs are polypeptide growth factors with functional ho-
mology to insulin, but in contrast to insulin, these proteins
are locally produced by a wide variety of tissues. Regu-
lation of their production and function is extremely com-
plex. There are two IGF peptides, IGF-1 and IGF-2, two
cell surface receptors (the type 1 IGF receptor family and
the type 2 IGF receptor), and at least six specific high-
affinity binding proteins, IGF-BP-1 through IGF-BP-6, that
regulate IGF availability and are in turn regulated by a
group of IGF-BP proteases that cleave IGF-BPs to modu-
late IGF action (Table 3).

In the nondiseased prostate, IGFs are produced only by
stromal cells, but normal epithelial cells express IGF-1
receptors and secrete predominantly IGF-BP-4. However,
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they also secrete IGF-BP-2, IGF-BP-3, and IGF-BP-6, sug-
gesting a paracrine mode of regulation (58, 59). Some
controversy concerning the IGF loop in prostate cancer
exists. Some authors (74) have shown that DU-145 cells
can proliferate in response to IGF-1 but do not produce
this protein, suggesting maintenance of the paracrine
mode of action of IGFs in prostate cancer. However,
others (196) describe autocrine production of IGF-1 in
PC-3, DU-145, and a subline of LNCaP cells, all of which
were reported to grow in serum-free medium, secrete
IGF-1, and display constitutively autophosphorylated
IGF-1 receptors. The LNCaP cell line also proliferates in
response to IGF-1 but does not produce it; however, this
only occurs in synergy with dihydrotestosterone (197).
IGF-1 may act directly through the AR pathway (27) and
in turn may be regulated through an EGF autocrine
growth regulatory loop (74). IGF-2 protein secretion has
been detected in all three human prostate cancer cell lines,
and under serum-free conditions, as described above,
each can produce IGF-1 (196). This suggests that the
capacity for autocrine production of EGFs by prostatic
epithelial cells exists, and that this production may play a
role in prostate cancer development.

This situation is even more complicated, however,
because changes in the expression of the IGF-BPs are
observed in all of these lines. For instance, PC-3 cells
express large amounts of IGF-BP-2 and IGF-BP-3 and less
IGF-BP-4, whereas LNCaP cells express only IGF-BP-2
(60). Thus, dysregulation of the IGF-BP system may be
associated with prostate cancer development (Fig. 2).
Constitutively autophosphorylated IGF-1 receptors are
also displayed by the PC-3, DU-145, and LNCaP cell lines
(196), but proliferation in response to IGF in these cell
lines appears to be regulated by the autocrine secretion of
IGF-BPs (74). In serum-free culture, DU-145 cells produce
IGF-BP-1, but the addition of an antibody that binds this
protein inhibits the effects of IGF-1 (74). There is also
evidence that some IGF-BPs may be under androgen
regulation. PC-3 cells stably transfected with an active AR
construct do not produce IGF-BP-3 and proliferate in
response to IGF-1 or IGF-2, in contrast to untransfected
cells. PSA, a serine protease that is up-regulated by
androgen, can cleave IGF-BP-3 (61), and the nerve growth
factor g-subunit, which has high sequence homology with
PSA, also has this capacity (198). This could release IGFs
locally to stimulate prostate cancer cell growth. These
data have been interpreted to suggest that androgen may
indirectly modulate IGF-induced proliferation of prostate
cancer cells by regulating IGF-BP-3 production (62).

In prostate cancer patients, serum IGF-BP-2 is in-
creased; this is related to a rise in PSA concentrations,
suggesting that the prostate is the source of IGF-BP-2
production (61). Because PSA is a protease for IGF-BP-3, it
likely that the rise in PSA may be related to lowered
concentrations of IGF-BP-3 in prostate cancer patients (61).

A potential role for the IGFs in prostate cancer progres-
sion is in the development of bone metastasis. Both IGF-1

and IGF-2 mRNA transcripts have been detected in non-
diseased human osteoblast-like cells (199) and appear to
have an important role in bone formation (63). Interest-
ingly, studies have shown that factors that decrease the
activity of IGF-BP-3, such as dexamethasone, also inhibit
bone formation (63), suggesting an important role for
IGF-BP-3 in the formation of bone metastasis in advanced
prostate cancer.

In summary, the IGFs appear to have an important role
in the development of prostate cancer. This can be
achieved by modulation of paracrine pathways, which
occur in the nondiseased prostate, to autocrine pathways,
seen in prostate cancer cell lines, and also by modulation
of the concentrations of different IGF-BPs that are differ-
entially expressed in the normal condition vs cancer.
Androgen appears to regulate the expression of some of
these IGF-BPs, and PSA, which is androgen-regulated,
particularly can cleave IGF-BP-3. The local release of IGFs

Fig. 2. Changes in the IGF axis in prostate cancer compared with
nondiseased prostate cells.
In the normal prostate (A), IGF-2 is produced by stromal cells and, like IGF-1,
binds to IGF receptor on prostate epithelial cells. The availability of IGF-2 to
stimulate proliferation of prostate epithelial cells is regulated by IGF-BPs, a
variety of which are produced by both epithelial and stromal cells. In prostate
cancer (B), the balance of IGF-BPs produced is altered; this varies in different cell
lines and is also reflected in changes in serum concentrations found in patients
with prostate cancer (see text). Prostate epithelial cells secrete PSA and
cathepsin D, enzymes that can cleave IGFBP-3 and interfere with its binding to
the IGFs, thus increasing the availability of IGFs for stimulating prostate epithelial
cell proliferation. The IGF axis is down-regulated by the EGF/EGFR autocrine loop,
which is up-regulated after androgen withdrawal.
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in distant tissues as a result of cleavage of IGF-BP-3 may
allow prostate cancer growth as metastatic deposits.

retinoic acid (RA) and vitamin D3
Strong evidence suggests that dietary factors can affect
the incidence of prostate cancer (200). Two such factors
are RA (vitamin A) and 1,25-dihydroxyvitamin D (vita-
min D3). RA can induce the differentiation of a wide
variety of cells and elicit changes in growth factor protein
and receptor expression (201–203). The active form of
vitamin D3, 1,25-dihydroxyvitamin D, affects calcium and
phosphate homeostasis (204, 205) and is an important
modulator of proliferation and differentiation in both
nondiseased and malignant cells (206, 207). Recent evi-
dence suggests a role for these chemical hormones in
regulating the proliferation and differentiation of prostate
cancer cells.

RA has marked but different effects on different hu-
man prostate cancer cells in vitro. LNCaP cells are in-
duced to differentiate in response to RA in the presence or
absence of androgens (208). DU-145 cells are growth-
inhibited by 13-cis-retinoic acid (209). In contrast, RA
induces increased invasiveness of PC-3 cells by up-regu-
lating urokinase plasminogen activator expression, sug-
gesting that in more advanced tumors, RA may promote
disease progression (210). The different cell responses
to RA may relate to their differences in AR expression.
RA can inhibit the binding capacity of the LNCaP AR
(which is mutated) by 30–40% (211), whereas PC-3 cells
lack an AR.

A deficiency in vitamin D has been proposed to in-
crease the risk of prostate cancer (212). This result is still
controversial because a comparison of serum concentra-
tions of vitamin D metabolites between prostate cancer
patients and age-matched controls showed no substantial
differences (213). However, a striking difference between
black and white men in the allelic frequencies of the gene
encoding a vitamin D3-binding protein has been reported,
raising the possibility that this protein may be important
in indicating risk of prostate cancer development (214).

Most evidence concerning the role of vitamin D3 in
prostate cancer comes from studies of prostate cancer cell
lines. The human lines DU-145, PC-3, and LNCaP all
express receptors for vitamin D3, with PC-3 showing the
greatest binding capacity (215). Proliferation of LNCaP
and PC-3 cells is inhibited by vitamin D3 (215, 216), and
proliferation of DU-145 is inhibited only by analogs of
vitamin D3 (217). In LNCaP cells, exposure to vitamin D3

can neutralize the proliferative effects of androgens, sug-
gesting that it is a strong inhibitor of epithelial cell
proliferation (208). Vitamin D3 can up-regulate expression
of IGF-BP-6 mRNA in a dose-dependent manner in all
three human prostate cancer cell lines (216), suggesting
that it may modulate growth via the IGF axis. In Lobund/
Wistar rats, growth of a nontumorigenic AS epithelial cell
line derived from the dorsal-lateral prostate is inhibited
by vitamin D3, whereas its AI tumorigenic counterpart is

insensitive to these effects (217). Taken together, these
results suggest that vitamin D3 may act as a growth
modulator of prostate epithelial cell proliferation, but that
its inhibitory effects may be lost in late-stage prostate
cancer.

A recent study has shown that prostate cancer may be
associated with vitamin D receptor gene polymorphism.
Race-adjusted combined analysis showed that men who
were homozygous for the t allele (shown to correlate with
higher serum concentrations of the active form of vitamin
D) have only one-third of the risk of developing prostate
cancer requiring prostatectomy compared with men who
were heterozygotes or homozygous for the T allele (218).
Because this is a single study, credence awaits confirma-
tion, but this appears to suggest that vitamin D is an
important determinant of prostate cancer risk and could
lead to strategies for chemoprevention.

The vitamin D receptor is thought to act as a het-
erodimer with the retinoid X receptor, suggesting func-
tional interactions between 1,25-dihydroxyvitamin D3 and
retinoids (219). The combination of 1,25-dihydroxyvita-
min D3 and 9-cis-retinoic acid was shown to act synergis-
tically in inhibiting the growth of LNCaP cells.

In summary, different activities of RA on different
cancer cell lines leave its potential role in controlling
prostate cancer in doubt. The ability of RA to differentiate
LNCaP cells has exciting potential for control of the
disease, but its ability to increase invasiveness of PC-3
cells would argue against its use. However, Phase I
clinical trials on the use of liarozole, which binds to the
cytochrome P450-dependent hydroxylating enzymes in-
volved in RA catabolism (220), and Phase II trials of
all-trans-RA for control of hormone-refractory prostate
cancer are in progress (221). Moreover, the use of liarozole
fumarate, a compound that blocks the cytochrome P450-
dependent catabolism of RA and which has been success-
ful in reducing both AD and AI tumor growth in the
Dunning rat model, has been proposed (222). The pro-
gression of prostate cancer to androgen independence is
accompanied by a loss in sensitivity to the antiprolifera-
tive effects of vitamin D3. Hence this vitamin could be of
therapeutic benefit in patients with early disease but not
once progression to late-stage disease has occurred.

interactions of growth factor pathways in
prostate cancer
The IGF axis appears to be under the control of other
growth factor pathways. EGF, FGF, and TGF-b have been
shown to regulate the expression of the IGFs and their
binding proteins. Antibodies to EGFR inhibit the secretion
of IGF-BP (74) and the growth-promoting effects of IGF-1.
The addition of bFGF to the human osteoblast cell line
MC3T-E1 inhibits IGF-1 and IFG-2 mRNA and IGF-BP-2,
IGF-BP-4, IGF-BP-5, and IGF-BP-6 concentrations (223),
whereas TGF-b can increase the expression of IGF-1
mRNA in nondiseased human osteoblast-like cells (224).
Moreover, as mentioned previously, vitamin D3 can up-
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regulate expression of IGF-BP-6 mRNA in a dose-depen-
dent manner in LNCaP, PC-3, and DU-145 prostate cancer
cells (216). This suggests that the interactions of the IGFs
and their binding proteins with other cytokines may in
some way regulate prostate growth. Additionally, any
changes to this complex IGF regulatory system may
promote prostate cancer development. Moreover, several
growth factor pathways including IGF-1, KGF, and EGF
can aberrantly activate the AR in the absence of androgen,
suggesting that the androgen-signaling chain may be
activated by growth factors in an androgen-depleted
environment (27).

Concluding Remarks
These findings suggest that up-regulation of growth fac-
tor production and, in particular, the appearance of sev-
eral autocrine pathways in prostate epithelial cells (Table
4), apparently bypassing any requirement for stromal
cells, may represent an adaptive response to androgen
ablation in the growth regulation of AI tumors. Future
studies may lead to targeted therapy for patients with
advanced prostate cancer, using an understanding of the
changes that occur in growth factor pathways as prostate
cancer progresses (225). A recent example of a possible
antigrowth factor treatment is the use of suramin (225),
which has antiproliferative effects against prostate cancer
cells in vitro. The mode of action of suramin is unclear,
but it may be mediated by its ability to disrupt the cellular
energy balance of prostate cancer cells (226, 227). There
are conflicting reports about the ability of suramin to
interfere with growth factor pathways; it can inhibit the
growth-stimulating effects of exogenous testosterone and
bFGF (228), but it is not counteracted by 10-fold excesses
of exogenous growth factors in vitro (229), and the effects
are reversible. Suramin is a polysulfonated naphthylurea
with substantial activity in prostate cancer. When high
dosages of suramin were used in 38 patients with hor-
mone-refractory prostate cancer, declines in serum PSA of
.75% were obtained in 38% of patients, and measurable

disease response was observed in 35% of patients (225,
230). Although preliminary studies on the effects of
growth factor receptor inhibitors and neural peptide
inhibitors on prostate cancer cells in vitro are very im-
pressive, no definite conclusions regarding the efficacy or
clinical applicability can yet be made. Understanding
growth factors will help novel and innovative therapeutic
approaches, but it will obviously require much refinement
before being translated from bench to bedside.
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