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Growth factors controlling the thyroid gland
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PHYSIOLOGICAL CONTROL OF CELL PROLIFERATION IN
THYROID TISSUE IN VIVO

The thyroid tissue is mainly composed of thyroid follicular cells, the thyro-
eytes (70%), arranged in follicles, and of their supporting mesenchymal
tissue and cells, the endothelial cells of the capillaries (20%) and fibroblasts
(10%). Scarce calcitonin-secreting parafollicular cells are located at the
periphery of the follicles. After its differentiation in the fetus, the tissue
grows roughly in parallel with body weight and remains at the same size
throughout adult life. As the fetal thyroid weighs about 0.2 g at 20-25 weeks
in the fetus and 20-30 g in the adult, and assuming a grossly similar tissue
composition, this growth requires at least 6-7 cell divisions. Until 3 years
ago, it was still unknown whether the stationary state of the adult human
thyroid reflected any cell turnover or not. It had been argued that thyroid
cells might not divide any more in adulthood. Of course, it was well accepted

_that submitted to chronic stimulation in adults the thyrocytes would

nultiply, i.e. that they had retained the capacity to proliferate (Doniach,
1960). We have shown that human thyroid cells divide about five times in
adulthood, which demonstrates that there is a constant, albeit slow,
turnover of these cells, with cell division and cell death compensating each
other. It is striking that, when corrected for the life of the animal, the
evaluated cell turnover is about five in adulthood for man and for animals as
different as the dog, rat and mouse (Coclet et al, 1989). The calculation of
the cell turnover in the whole gland does not depend on any assumption
about the homogeneity of the cell population. However, if only a fraction f
of the population was involved in the turnover (e.g. f=10.2) (Smeds et al,
1987), the number n of possible divisions in these replicating cells (life span)
would be higher (n=5/f).

Although, under constant conditions, the thyroid maintains its size with a
slow cell turnover, in adults it retains the capacity to grow by cell hyper-
trophy and proliferation in response to a stimulus. The size and function of
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the thyroid are controlled by a physiological negative-feedback mechanism:
the thyroid cell secretes thyroid hormones which inhibit the secretion by
pituitary thyrotrophs of thyrotropin (TSH), the thyroid-stimulating
hormone. Whenever thyroid hormone secretion decreases, as in iodine
metabolism defects, iodine deficiency, or after goitrogen or antithyroid drug
administration, TSH secretion increases, causing an activation of thyroid
function and growth (Doniach, 1960; Dumont, 1971).

In vivo growth, as induced by goitrogen administration in rats, is followed
by a progressive increase in thyroid weight which reaches a plateau after 3
months (at 12 times the original volume). In terms of relative components of
the tissue, it first involves a fall in follicular lumen space and non-vascular
stroma, a rise in epithelial cells and blood vessel space with no further
changes after 7-10 days (Wynford-Thomas et al, 1982a). The proliferation
of endothelial cells precedes that of the thyrocytes (Many et al, 1984)
Capillary vascularization varies more than follicular cell mass with the level
of thyroid stimulation (Wollman et al, 1978; Smeds and Wollman, 1983;
Imada et al, 1986). Global increase in epithelial cell space is due to cell
hypertrophy and cell multiplication; it is accompanied by folliculogenesis
(Denef et al, 1981, 1989). The thyroid capsule also grows {Wollman and
Herveg, 1978).

The fact that growth stops after 3 months despite persistent high levels of
TSH suggests an inherent limitation in the cells or, more simply, a
desensitization at any ievel of the cells to the effect of TSH. The mitogenic
effect of wounding in such tissue shows that the desensitization is TSH-
specific (Wynford-Thomas et al, 1983, 1985). As the mitotic rate at the
plateau level remains elevated, the cell turnover itself has remained higher
than in control tissue. However, if goitrogen is withdrawn from the diet for 3
weeks, bringing back TSH levels to normal, the mitotic rate returns to
normal and the follicular cell number slightly decreases. Restimulation by
goitrogens brings back all parameters to their value before withdrawal. This
does not fit in with a simple TSH desensitization mechanism, which should
be fully reversible (Wynford-Thomas et al, 1982b). Other effects of TSH are
not desensitized, which shows that the desensitization affects only the
growth-promoting action of TSH (Wynford-Thomas et al, 1982a; Stringer el
al, 1985). The effect is observed in cultured cells from the treated animals
which excludes the hypothesis of a chalone (Stringer et al, 1985). It suggests
an inherent, albeit relative, limitation of the growth potential of thyrocytes
1s of other cells (Goldstein, 1990). Similarly, under constant stimulation
after partial thyroidectomy rat thyroids do not recover their normal size

(Doniach, 1960). A similar conclusion is drawn from the growth potential in

vivo, as evaluated from the number of multifollicular clusters developing

after inoculation of 1000 viable cells in a transplanted rat (Mulkahi et al,

1980). Similar results are also obtained in cell cultures in vitro (P. P. Roger

and M. Baptist, unpublished results).

The mechanism of co-ordination between parenchymal and stromal cells
during growth is unknown, as is the mechanism of endothelial proliferation
in thyroid capillaries, in the proximal part of veins and lymphatics, and in the
distal segment of thyroid arteries (Smeds and Wollman, 1983; Many et al,
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Table 1. Hormones and growth factors reportedly secreted by thyrocytes.

Secretion

References

No effect

TSH

System

Growth factor

IGF-I

A R T VS Yo B = N =Y

Human

GH

Ovine

IGF-1, IGF-IT

IGF-II
FGF

FRTL-5 line
Porcine

TSH

I deficiency

TSH

Human
FRTL-5
Human

TGF-8

Glucagon

Atrionatriaretic hormone

Epinephrine
TSH

Human

Methylmercaptoimidazole propylthiouracil

Interferon

TNF

» Maciel et al (1988); 4, Greil et al

Human

Interlenkin-6
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(1989); 5, Grubeck-Loebenstein et ai (1989); 6, Moris et al (1988);

}; 2, Bachrach et al {1988); 3
erson and Blasquez (1984); 8, Sellitti and Hughes {1990); 9, Weetman et al (1990).

i, Ollis et at (1989
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1984: Connors et al, 1988). It implies cross-signalling between these cells.
The thyrocyte is the obvious site of control of the information about TSH
concentration and action, iodine supply and metabolism, and thyroid
hormone formation. Presumably, it is the thyrocyte that must co-ordinate
the response of the other cell populations of the thyroid (Goodman and
Rone, 1987; Denef et al, 1989). This is also suggested by the induction by
grafted donor thyrocytes of angiogenesis from cells of the recipient nude
mice (Mdlne et al, 1987). The intercellular paracrine signals generated by
the follicular cells are not known, although several potential candidate
molecules are or could be postulated to be secreted by thyroid cells in
culture: insulin-like growth factor I (IGF-I} (Bachrach et al, 1988), IGF-I1
(Maciel et al, 1988), plasminogen activator (Mak et al, 1984), nitric oxide
(NO) (Moncada et al, 1989), fibroblast growth factor (FGF) (Greil et al
1989), adenosine (Adair et al, 1990), etc. (Table 1).

PHYSIOLOGICAL AND PATHOLOGICAL EXTRACELLULAR
SIGNALS INVOLVED IN THE CONTROL OF PROLIFERATION
OF"THYROID CELLS

Whereas compensatory hypertrophy after thyroidectomy and goitrous
hyperplasia in iodine deficiency or after goitrogens administration are
caused by the operation of the classical thyroid hormone-pituitary—TSH
feedback and thus prevented by thyroid hormone treatment, other controls
of thyroid cell proliferation exist (Doniach, 1960).

In the embryo the thyroid differentiates and develops before TSH
secretion and even in anencephalic, i.e. hypopituitary, fetuses (Jost, 1953;
Stranicky and Mess, 1967; Hilfer and Searl, 1980). Similarly, a lesion of the
thyroid (wound or cell death and necrosis) provokes an important local wave
of cell divisions (Stringer et al, 1983) even in thyroids desensitized to TSH
action (Wynford-Thomas et al, 1985). Growth occurs in some cases (iodine
treatment after iodine deficiency) when TSH levels are actually decreasing
orin other cases in the absence of TSH (Rognoni et al, 1987). Compensatory

hyperplasia in hemithyroidectomized mice also takes place, though at m% :

reduced level, in dwarf mice which have a hereditary lack of GH, prolactin
and TSH and in hypophysectomized animals (Denef et al, 1980; Lewinski,
1981; Lewinski et al, 1983). These growth processes are obviously indepen-
dent from pituitary control. .

Todine deficiencyin hypophysectomized animals also induces some thyroid
growth. lodine, as such, thus exerts a negative endogenous control on
thyrocyte growth. Moreover, thyroids from iodine-deficient animals are
more sensitive to TSH. This effect partly accounts for the goitrogenic action of
antithyroid drugs in vivo (Stiibner et al, 1987). This inhibitory effect of iodide
has been reproduced in FRTL-5 cells (Saji et al, 1988). An iodolactone has
been proposed as a putative intermediate in iodide action, as it inhibits the
proliferation of porcine thyroid cells (Dugrillon et al, 1990). However, as
these cells require exogenous arachidonate to synthesize the iodinated
derivative, the role of iodolactone remains debatable.
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In general, however, the major element controlling thyroid growth in vivo
is the level of TSH (Drumont, 1971). Proliferation as evaluated by mitotic
activity in young rats follows TSH levels:

1. It increases by a factor of 5 in goitrogen-treated rats (TSH x 34)
(Wynford-Thomas et al, 1982a).

2. Itfollows the circadian rhythm of TSH (Wynford-Thomas et al, 1982c).

3. Its circadian rhythm disappears with the TSH rhythm in goitrogen-
treated rats (Wynford-Thomas, 1982c). The growth of thyroid grafts in
recipient animals greatly increases in thyroidectomized animals (greatly
decreasing the influence of the donor’s age); it increases then decreases
with age of the recipient in paraliel with serum active TSH levels; it
increases in male versus female recipients, but not in gonadectomized
animals, in parallel with TSH levels (Mulkahi et al, 1980). TSH-
increasing treatments markedly enhance the growth of human thyroid
tissue transplanted in nude mice (Peter et al, 1985, 1988). In several
species, including man, TSH promotes the proliferation of thyrocytes in
culture (Roger et al, 1988) (Table 2). The lack of stimulatory or even the
inhibitory effects observed on porcine and beef thyroid cells remain an
exception (Girtner et al, 1985; Watanabe et al, 1985; Heldin et al, 1988;
Gérard et al, 1989), perhaps due to an artefact of the culture system in
the absence of comitogenic factors. There is some in vivo evidence that
the stimulation of thyroid growth by TSH is partly dependent on other
hormones. Growth effects of TSH are reduced in hypophysectomized
(Isler, 1974) or adrenalectomized rats (Jolin et al, 1974). In vitro,
optimal growth effects of TSH require IGF, or insulin, as a comitogenic
factor in several systems (Roger et al, 1983, 1987a, 1988; Smith et al,
1986; Tramontano et al, 1986a, 1988a; Williams et al, 1988).

It would be interesting to investigate whether thyroid hormones by them-
selves exert a direct control on the growth of the thyroid gland. Thyroxine
certainly increases the growth of transplanted autonomous thyroid tumours
in rats in vivo (Sisson et al, 1964) and thyroid cells contain many T3 receptors
(DeGroot et al, 1989). Growth hormone, perhaps through IGF-I as an
intermediate {Bachrach et al, 1988), induces thyroid growth but does not
markedly enhance function, as demonstrated in acromegaly (Miyakawa et
al, 1988). In Snell dwarf mice it induces cell proliferation, but contrary to
TSH no cell hypertrophy (Denef et al, 1980).

Other plasma signals appear only in disease, such as the autoimmune
immunoglobulins directed against thyroid cell membrane receptors. TSAb
(thyroid-stimulating antibodies) and TBAD (thyroid-blocking antibodies)
bind to the adenylate cyclase-coupled TSH receptor. TSADb activate
(Adams, 1980) and TBADb block the stimulation by this receptor of function
and growth. TSAb are responsible for Graves’ disease hyperthyroidism;
TBAD for some todiopathic myxoedemas (Lu et al, 1990).

The concept of specific thyroid growth immunoglobulins (TGI) arose in
the 1980s (Drexhage et al, 1980; Wilders-Trushnig et al, 1990) from the
acknowledgement that some TSH effects were not mediated by cAMP,
which might be explained by the existence of different TSH receptors or



Table 2. Hormones, drugs, growth factors reported to influence thyroid cell proliferation and differentiation expression.

Differentiation
Factor System Growth expression Function References
TSH Human (in vitro, nude mice), dog, FRTL-5, A A A 1
rat, WRT, OVNI
TSH Human neoplasms in nude mice A s v 2
TSH Pig “n A 7 3
TSH Sheep, calf e 7 7 4
Forskolin cholera toxin cAMP anazlogues  Human, dog, FRTL-3, rat A A A 5
Forskolin DB cAMP Pig h A A 6
EGF Human, dog, pig, sheep, calf (WRT) A Ny “ai—7 7
Sheep in vivo, rat in nude mice A N N 8
FRTL-5 0 9
Rat cells (] 10
bFGF Dog, calf, FRTL-5 7 /0?2 ? 11
Prolactin Mice, in vivo 2 12
Somatostatin FRTL-5 N 13
Hydrocortisone Dog, calf, OVNI 0 A 14
FRTL-5 s N i3
TSAb Human in nude mice, FRTL-5 A A Va 16
IGF-1 Human, sheep, OVNI, pig, FRTL-3, rat cells A A 17
Bl
IGF-II Sheep, FRTL-5 (TSH) Vv 18
TGF-B FRTL-5, pig, human N 19
Phorbol myristate ester Pig, sheep, dog, human, FRTL-5 A “u AN 20
IL-1 Human, FRTL-5, human (in vivo) A N o 21
TNF Human (in vivo, in vitro}, mice, FRTL-5 N s “u 22
(TSH, IGF-I)
IFN-y Human ~ ™ Ny 23
FRTL-5 (TSH) N v 24
P Pig A S 25
FRTL-5 N 26
T3 ? ? ?

1, Nitsch and Wollman (1980}, Roger et al {1982, 1988), Wiiliams et al (1987), Huber and Davies (1990), Jin et al (1986), Peter et al (1988), Smeds et al
{1989), Dere and Rapoport (1986), Brandi et al (1987), Fayet and Hovsépian (1985); 2, Miiller-Girtner et al (1989), Smeds et al {1989); 3, Westermark et
al {1986}, Heldin and Westermark {1988), Gértner et al (1983), Fayet and Hovsépian (1979), Watanabe et al (1985); 4, Eggo et al (1984), Gérard et al
{1989a); 5, Roger et al (1982, 1983, 1987b, 1988}, Dere and Rapoport (1986}, Jin et al (1986), Wynford-Thomas et al (1987); 6, Gértner et al (1985},
Watanabe et al {1985); 7, Westermark and Westermark (1982), Westermark et al (1983), Eggo et al (1984), Waters et al (1987), Takasu et al (1988), Roger
and Dumont (1982, 1984), Gérard et al (1989a), Lamy et al {1990), Errick et al (1986), Rottella et al (1989); 8, Thorburn et al (1981}, Corcoran et al
{1986), Ozawa and Spaulding (1990); 9, Eggo et al (1984); 10, Smith et al (1986}; 11, Roger and Dumont (1984), Gérard et al (1989a), Black et al {1990});
12, Mayerhofer et al (1990), 13, Tsuzaki and Moses (1990); 14, Roger and Dumont (1983), Gérard et al (1989a), Fayet and Hovsépian (1985); 13, Sajiand
Kohn (1990); 16, Tramontano et al {1986), Jin et al (1986); 17, Roger et at {1983, 1988), Williams ct al (1987), Eggo et al (1984), Maciel et al {1988},
Bachrach et al (1988}, Santisteban et al {1987), Takasu et al (1989), Saji et al (1987), Smith et a1 (1986), Tramontano et al (1986a, 1988a); 18, Bachrach et
al (1988), Maciel et al (1988); 19, Tsushima et al (1988), Moris et al (1988), Grubeck-Loebenstein et al (1989); 20, Roger et al (1986, 1988), Haye et al
(1985), Bachrach et al (1985), Lombardi et al (1988); 21, Kung and Lau (1990}, Pang et al {1990), Rasmussen et al (1990), Sato et al (1990}, Mine et al
(£987), Yamashita et al (1989}, Kawabe et al {1989}, Enomoto et al (1990); 22, Sato et al (1990), Zakarija and McKenzie (1989), Mooradian et al {1990);
23, Kraiem et al (1990b), Sato et at {1990}, Huber and Davies (1990), Kung et al (1990), Ashizawa et al (1986); 24, Zakarija and McKenzie (1989), Mizaki
et al (1988); 25, Heldin et al (1987); 26, Becks et al (1988}, Saji et al (1988},

el
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effectors (Dumont et al, 1978). Since then, TGI activities have been
reported by some groups, but the methodologies used raise questions
(Dumont et al, 1987). Although the concept may remain valid, its demon-
stration would require an unquestionable double-blind study using accepted
methodologies (Zakarija and McKenzie, 1990). If accepted the concept
should provide an explanation for the thyroid specificity of TGI. Indeed, all
known growth factors and their receptors are remarkably ubiquitous,
specificity being insured by local delivery through autocrine or paracrine
mechanisms.

Human chorionic gonadotropin, and thus luteinizing hormone, at high
concentrations activates the cAMP cascade and consequently proliferation
in FRTL-5 cells (Davies and Platzer, 1986; Yoshimura et al, 1990) and

thyroid cells. The concentrations reached in patients with trophoblastic

tumours or even in pregnancy (Pekonen et al, 1988) are sufficient to activatef”
the human thyroid (Hershman et al, 1988; Kasagi et al, 1989; Yoshikawa et

al, 1989).

Thyrocytes, as other cells, also respond in vitro to a number of paracrine
factors, i.e, factors secreted by neighbouring cells. Some of these factors are
‘also synthesized and secreted by the thyrocytes themselves (autocrine
secretion) (Table 1). Several growth factors have been shown to be
mitogenic or comitogenic (permissive) for thyrocytes (Roger and Dumont,
1982, 1984; Westermark and Westermark, 1982; Roger et al, 1983, 1987a,
1988; Westermark et al, 1983; Fayet and Hovsépian, 1985; Errick et al,
1986; Ollis et al, 1986; Smith et al, 1986; Tramontano et al, 1986a; Brandi et
al, 1987; Maciel et al, 1988; Williams et al, 1988; Gérard et al, 1989a):
epidermal growth factor (EGF), FGF, IGF-1, the secondary factor secreted
in response to growth hormone, IGF-II and insulin, even at physiological
concentrations. IGF-1 is produced by sheep thyroid (Bachrach et al, 1988)
and IGF-II by FRTL-5 cells (Maciel et al, 1988) and FGF by porcine
thyrocytes (Greil et al, 1989). A possible role of insulin and/or IGF-I in
modulating thyroid growth response in vivo has been known for a long time
(Jolin et al, 1970). The action of growth hormone on thyroid cell prolifer-
ation in Snell dwarf mice congenitally deficient in pituitary hormones is

probably mediated by IGF-I (Lewinsky et al, 1984). The removal of..

submaxillary glands in mouse, which presumably greatly decreases serur
EGF, has been reported to lead to thyroid regression (Suarez-Nunez, 1970)
while perfusion of fetal sheep with EGF results in a considerable enlarge-
ment of the thyroid gland (Thorburn et al, 1981). At least one local hormone
has been shown to inhibit growth: transforming growth factor § (TGF-B)
(Grubech-Loebenstein, 1989; Bidey, 1990). The panel of factors active on
thyrocyte growth may vary from one species to another (see Table 2). Of
course, such local hormones (IGF-1, FGF, etc.) also act on the endothelial
cells and fibroblasts of the thyroid and may thus represent the mediators of
the cross-signalling that must exist to allow balanced growth of the gland. As
the number of known growth factors increases one may expect the progres-
sive unravelling of a complex network of cell cross-signalling. In patho-
logical situations, cytokines such as interleukin-1, interferon vy (IFN-y),
tumour necrosis factor (TNF) might be secreted in the gland by cells of the
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immune system. These cytokines strongly influence FRTL-5 and human
thyroid cell proliferation and metabolism (Mine et al, 1987; Zakarija et al,
1988; Kawabe et al, 1989; Zakarija and McKenzie, 1989; Enomoto et al,
1990; Kraiem et al, 1990b; Kung and Lau, 1990; Rasmussen et al, 1990).
Asin other cell types the extracellular matrix also probably exerts a local
control (presumably negative). This is suggested by the growth response
after wounding and by the inverse relation of proliferative response versus
cell density in primary thyrocyte culture. Such local controls would have
great importance in pathology, generating diverse patterns from one area or
one cell to another, i.e. tissue heterogeneity (Ingber and Folkman, 1989).

CASCADES AND MECHANISMS INVOLVED IN THE CONTROL

" 'OF THYROCYTE PROLIFERATION

Although there is no doubt that TSH in vivo stimulates the proliferation of
thyroid cells, there was in the 1970s no evidence that this was a direct effect.
Indeed, the ACTH trophic effect on the adrenal appears to be indirect. We
first started to look at carly steps of growth in slices (Mockel et al, 1980), and
showed that TSH enhances ornithine decarboxylase activity in dog thyroid
cells, which is generally considered as a preliminary to growth. The effect
was mimicked by cAMP analogues and inhibited by agents inhibiting cAMP
accumulation. As these results were against the current dogma, they were
generaliy ignored.

To address the problem of proliferation, we began to use primary cultures
and used a technique derived from Kerkof et al (1964), Fayet et al (1971) and
Rapoport (1976), with a serum-free medium supplemented as proposed by
Ambesi-Impiombato et al (1980). Using several methods, we demonstrated
that TSH stimulates proliferation of dog thyroid cells (Roger et al, 1982,
1983). More recently we confirmed this result in normal human thyroid cells
(Roger and Dumont, 1987; Roger et al, 1988). Despite earlier negative
studies using inadequate culture conditions or pathological tissues (Wester-
mark et al, 1979; Valente et al, 1983b; Errick et al, 1986), the mitogenic

seffect of TSH on human thyroid cells is now well established in vitro
Williams et al, 1987, 1988; Huber and Davies, 1990). Other results
obtained in various culture systems were sometimes contradictory. While in
dog thyroid cells in primary culture, in rat thyroid follicles in suspension
(Nitsch and Wollman, 1980; Smith et al, 1986}, in ovine cell line {OVNI)
(Fayet and Hovsépian, 1985), and in rat cell line FRTL-5 (Ambesi-
Impiombato et al, 1980; Dere and Rapoport, 1986) and WRT (Brandi et al,
1987), thyrotropin has been demonstrated to enhance or induce cell
proliferation, to our knowledge no such effect has been obtained in porcine
{(Fayet and Hovsépian, 1979; Girtner et al, 1985; Watanabe et al, 1985;
Heldin et al, 1988), calf (Gérard et al, 1989a) or ovine (Eggo et al, 1984)
thyroid cells in primary culture. Whether this is due to inaccessibility of the
TSH receptor(s), lack of an essential element in the culture medium,
alteration of the cell programme in culture or true unresponsiveness to
direct TSH action is not known. It should be mentioned here that the
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stimulating effects of ACTH on the proliferation of adrenal cells in vivo have
not been convincingly reproduced in vitro. In this case, there are arguments
that the stimulating effect may be indirect: adrenocorticotrophic hormone
(ACTH) would induce the synthesis and secretion of growth factors by the
adrenal cells which would then, acting as extracellular signals, trigger the
cell proliferation.

In porcine thyroid cells, TSH through ¢cAMP induces EGF receptors
making these cells more responsive to EGF (Westermark et al, 1986;
Atkinson et al, 1987). In rat thyroid, propylthiouracil-induced goitrogenesis
is accompanied by an increased concentration of IGF-II receptors (Poly-
chronakos et al, 1986). In the control of thyroid cell proliferation comple-
mentary mechanisms as well as differences of strategy from one species to
another are possible.

In the thyroid at least three distinct pathways have been well defined: ﬁm
the hormone receptor-adenylate cyclase—cAMP protein kinase system, (2)

the hormone receptor—tyrosine protein kinase pathway and (3) the hormone
receptor-phospholipase C cascade (Dumont et al, 1989; Maenhaut et al,
1990). The receptor-tyrosine kinase pathway may be subdivided into two
branches: some growth factors, such as EGF, induce proliferation and
repress differentiation expression, others, like FGF or IGF-I and insulin,
are either mitogenic or are necessary for the proliferation effect of other
factors without being mitogenic by themselves, but they do not inhibit
differentiation expression in dog thyroid (Pohl et al, 1990). In dog (Roger et
al, 1983, 1987a) and human (Roger et al, 1988; Williams et al, 1988) thyroid
cells IGF-I or insulin are generally required by the mitogenic action of TSH
or EGF but do not by themselves stimulate proliferation. In FRTL-5 and rat
cells IGF-1is weakly stimulatory per se (Smith et al, 1986; Tramontano et al,
1986a}. In pig thyroid cells, IGF-I produces a stronger mitogenic signal (Saji
et al, 1987).

It should be noted that, in dog thyroid cells, TSH directly stimulates
proliferation while maintaining the expression of differentiation. Differen-
tiation expression, as evaluated by iodide transport, or thyroperoxidase and
thyroglobulin mRNA content or nuclear transcription, is induced by TSH,

moawo::,nwo_mamﬁoﬁ:mnan}y\_w m:m_owcomAWommam:mUEmosrGma.“
Roger et al, 1985; Gérard et al, 1989b). Similar results, albeit partial, EE%

been obtained in human cells (Roger et al, 1988; Lamy et al, 199G). These
effects are obtained in all the cells of a culture, as shown by in situ
hybridization experiments (Pohl et al, 1990). They are reversible; they can
be obtained either after the arrest of proliferation or during the cell division
cycle (Pohl et al, 1990}, Moreover, the expression of differentiation, as
measured by iodide transport, is stimulated by lower concentrations of TSH
than those required for proliferation (Roger and Dumont, 1984; Roger et al,
1988).

EGF also induces proliferation of dog thyroid cells (Roger and Dumont,
1984; Roger et al, 1987a) (Table 2). It also stimulates the growth of thyroid
cells from other species in culture (e.g. porcine, ovine, bovine and human,
but not of the FRTL cell line which lacks EGF receptors) (Westermark and
Westermark, 1982; Westermark et al, 1983; Errick et al, 1986; Gérard et al,
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1989a). This effect is often weaker than the effect of TSH. However, the
action of EGF is accompanied by a general and reversible foss of differen-
tiation expression (Roger and Dumont, 1982, 1984; Westermark et al, 1983;
Eggo et al, 1984; Roger et al, 1985, 1988; Pratt et al, 1989: Lamy et al. 1990)
assessed as described above. Similar results have been obtained in sheep in
vivo (Thorburn et al, 1981; Corcoran et al, 1986) and in newborn rat thyroids
transplanted in nude mice (Ozawa and Spaulding, 1990). The effects of EGF
on differentiation can be dissociated from their proliferative action. Indeed,
they are obtained in cells that do not proliferate in the absence of insulin
(Lamy et al, 1989; Pohl et al, 1990} and in human cells in which the
proliferative effect is weaker (Lamy et al, 1990) or in pig cells at concentra-
tions lower than the mitogenic concentrations (Waters et al, 1987).

Finally, the tumour promoting phorbol esters, the pharmacological
.robes of the protein kinase C system and analogues of diacylglycerol also

“enhance the proliferation and inhibit the differentiation of dog as well as

other thyroid cells (Bachrach et al, 1985; Haye et al, 1985; Roger et al, 1986,
1988; Lombardi et al, 1988) (Table 2). These effects are transient owing to
desensitization of the system by protein kinase C inactivation (Roger et al,
1986). The activation of the PIP2 cascade by physiological agents, such as
carbamylcholine and bradykinin in dog thyroid cells, does not reproduce all
the effects of phorbol esters. In particular, prolonged stimulation of the
cascade inhibits rather than stimulates proliferation (E. Raspé et al, in
preparation) as well as the induction of ornithine decarboxylase (Mockel et
al, 1980). Thus, we cannot necessarily equate effects of phorbol esters and
prolonged stimulation of the PIP2 cascade. Similarly, prolonged enhance-
ment of intracelular Ca*" level might explain the mitogenic effects of IGF-I
on FRTL-5 cells (Takada et al, 1990) but does not stimulate growth in dog
thyroid cells (E. Raspé, unpublished). The dedifferentiating effects of
phorbol esters do not require their mitogenic action either. Thus, the effects
of TSH, EGF and phorbol esters on differentiation expression are largely
independent of their mitogenic action.

In several thyroid cell models, very high insulin concentrations are
necessary for growth even in the presence of EGF {Ambesi-Impiombato et
al, 1980; Roger et al, 1983, 1987, 1988; Smith et al, 1986: Tramontano et al,

+<986a). We now know that this mainly reflects a requirement for IGF-1

(Czech, 1989). It is interesting that in the FRTL-5 cell line {Maciel et al,
1988}, as in cells from thyroid nodules (Williams et al, 1989), this require-
ment may disappear as the cells secrete their own somatomedins and thus
become autonomous with regard to these hormones. However, low physio-
logical concentrations of insulin can replace IGF-I to allow growth stimu-
lation by TSH in dog (Roger et al, 1987a) but not in human thyrocytes
(Roger et al, 1988). Serum and FGF also induce growth in dog and calf
thyroid and in FRTL-5 cells (Roger and Dumont, 1984; Gérard et al, 1989a;
Black et al, 1990). IGF-I per se also stimulates the proliferation of FRTL-5
cells (Tramontano, 1986a). Although serum fully inhibits differentiation
expressionin calf thyrocytes (Gérard et al, 1989a) and partially in dog thyroid
cells, IGF-I and insulin have no such effect. In fact, IGF-I and insulin
acting through IGF-I receptors have some positive effects on specialized
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gene expression in FRTL-5 cells (Santisteban et al, 1987), and insulin even
at low concentrations is a moderate inducer of thyroglobulin gene expres-
sion in dog cells (Gérard et al, 1989b; Pohl et al, 1990). This therefore
represents another type of receptor-tyrosine protein kinase pathway which
leads to mitogenesis and to some extent to differentiation expression.

The question arises of the role of cAMP in the TSH effects. Thyrotropin
induces within minutes a striking morphological change in dog thyroid cells
in culture: a rounding up following the disruption of the actin network
(Rapoport, 1976; Roger and Dumont, 1984; Nielsen et al, 1985; Rogeret al,
1989). All the cells are affected. TSH also enhances the accumulation of
cAMP in these cells within less than 5 min. cAMP remains elevated for 48h
in the continuous presence of the hormone. In the dog thyroid cells,

analogues of cCAMP as well as general cyclase activators (forskolin, cholera,
toxin) reproduce all the effects of TSH: acute morphological changed,’

proliferation, expression of differentiation (Roger et al, 1982, 1983, 1985,
1987b). Moreover, combinations of cAMP analogues which are synergistic
on the two cAMP-dependent kinase isoenzymes are also synergistic on these
effects (Van Sande et al, 1989). cAMP is therefore a general intracellular
positive signal for function, proliferation and differentiation in the dog
thyroid cells. For proliferation, similar results have been obtained with
human {Roger et al, 1988; Kraiem et al, 1990) and rat thyroid cells in culture
(Wynford-Thomas et al, 1987) and despite a first contradictory report
(Valente et al, 1983b), in FRTL-5 cells (Dere and Rapoport, 1986; Jin et al,
1986; Ealey et al, 1987). In the latter cells, TBAD inhibit in parailel TSH
binding and TSH-induced cAMP accumulation and [*H]thymidine uptake
(Brown et al, 1990). It is interesting that in cloned, dedifferentiated
tumourigenic FRTL-5-derived cells, cAMP, as in fibroblasts, inhibits pro-
liferation (Endo et al, 1990). Thus, changing the phenotype of these cells
may reverse the role of cAMP. In other cloned mutated FRTEL-5 cells
growth becomes independent of TSH and ¢cAMP (Tramontano et al, 1988b).
One argument that cAMP may be the mediator of rat thyroid cell prolifer-
ation in vivo is the fact that methylxanthines, inhibitors of cAMP phospho-
diesterases, even at doses which do not further enhance serum TSH levels or
decrease serum thyroid hormones, greatly potentiate the goitrogenic actio
of propylthiouracil (Wolff and Varrone, 1969). The action of methyi~
xanthines is abolished by a high-iodine diet or hypophysectomy (Wolf, 1969).
Analogues of cAMP or cAMP injected in rats or mice in vivo have also been
reported to cause thyroid growth (Pisarev et al, 1970; Lewinski, 1980).
That TSH can act on the growth of human thyroid cells by other pathways
than the cAMP cascade is suggested by the facts that (1) in human thyroid
cells in primary culture the mitogenic effect of the hormone under some
conditions is not fully reproduced by cAMP enhancers (Roger et al, 1988)
and (2) the hormone is mitogenic in a human hybrid cell line GEJ (Karsenty
et al, 1988) in which it does not enhance cAMP accumulation. Similarly,
clones of FRTL-5 cells with low ¢cAMP but normal mitogenic response to
TSH have been reported (Davies et al, 1987). If these results cannot be
explained otherwise, another pathway of TSH action might be involved. We
know that TSH in human thyrocytes but not in dog thyroid cells nor in the
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FRTL-5 cell line activates both the cAMP and the phosphatidylinositol
cascades (Laurent et al, 1987).

The effects of EGF on dog thyroid cell (proliferation, inhibition of differ-
entiation expression) are mimicked by phorbol esters tumour promoters
(Rogeretal, 1986). However, these compounds also inhibit EGF action: the
effect of phorbol esters which is lower than the effect of EGF is not increased
by EGF. In several cell types, EGF not only activates a tyrosine-specific
protein kinase, but also induces a rapid rise in cytoplasmic free Ca®*
concentration. This rise in Ca®* concentration following EGF stimulation
has been linked to an activation of the phosphatidylinositol Ca®* cascade,
although it has been suggested recently that it might result from an entry of
extracellular Ca®* through the plasma membrane. It would therefore be
onceivable that EGF action on the thyroid cell might result from an increase

. "z Ca®* entry or from an activation of the Ca®* phosphatidylinositol cascade

with generation of diacylglycerol, the action of which is mimicked by phorbol
esters. However it should be noted that this activation of the PIP2 cascade by
EGF apparently only occurs in cells in which EGF receptors are over-
expressed (Levitzki, 1990). EGF induces a rise in intracellular Ca** in
porcing thyroid cells (Takasu et al, 1988}, but such an effect, if it exists, is
minor in dog cells. Moreover, carbamylcholine, the most potent activator of
the Ca®* phosphatidylinositol cascade in these cells is not mitogenic
(E. Raspé, unpublished). Onthe other hand, neither EGF nor phorbol esters
enhance cAMP accumulationin these cells. Itis thereforelikely that EGF acts
through the phosphorylation of key proteins on tyrosyl residues. The three
cascades are therefore fully distinct at the level of their primary intracellular
signal and/or of the first signal-activated protein kinase (Contoret al, 1988). It
is interesting that iodide, through an as yet unknown oxidized derivative(s),
acutely inhibits the cAMP and the Ca®* phosphatidylinositol cascades and in
a more delayed and chronic effect decreases the sensitivity of the thyroid to
the TSH growth response. In FRTL-5 cells it inhibits the TSH-, IGF-I- and
tumour promoters (TPA), i.e. phorbol myristate ester-induced cell pro-
liferation (Becks et al, 1988; Saji et al, 1988); these effects are relieved,
according to our general paradigm (Van Sande et al, 1975), by perchlorate

#%md methimazole.

THE KINETICS AND INTERACTIONS OF THE THYROID
MITOGENIC PATHWAYS

The kinetics of the induction of thymidine incorporation into nuciear DNA
of dog thyroid cells is very similar for TSH, forskolin, EGF and TPA (Roger
et al, 1987a). Whatever the stimulant, there is a similar minimal delay of
16-20h before the beginning of the labelling, i.e. of DNA synthesis. This is
the minimal time required to prepare the necessary machinery. For the
cAMP pathway, the stimulatory agent has to be present during this whole
prereplicative period: any interruption of the activation {e.g. by washing out
the stimulatory forskolin) greatly delays the start of DNA synthesis (Roger
et al, 1987b).
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Figure 1. Mitogenic pathways in the thyroids: data from the thyroid cells system are msﬂ_nmmmﬂoa
into the present scheme of cell proliferation cascades. DAG, diacylglycerel; EGF, epidermal
growth factor; FGF, fibroblast growth factor; IGF, insulin like growth factor ?oEEoBOQHX
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sequence for which the causal relationships remain to be proved.

We have thus studied the phenomenology of EGF, TPA and TSH
proliferative action on dog quiescent cells with the aim to identify steps in
this action. Three biochemical aspects of the proliferative response
occurring at different times of the prereplicative phase have been con-
sidered. The pattern of protein phosphorylation induced within minutes
TSH is reproduced by forskolin and cAMP analogues (Contor et al, 1988}
The phosphorvlation of at least 11 proteins is increased or induced. ZmOE
treatment of the gels does not reveal any remaining phosphorylation on
these proteins suggestive of tyrosine phosphorylation. In EGF-stimulated
cells, the phosphorylation of five proteins is stimulated, two of them
phosphorylated on tyrosines (42k}. These two proteins are similar (iso-
electric points, approximate molecular weight, composition in ﬁrom.ﬁwogg
lated amino acids) {Contor et al, 1988) to the two 42k proteins described in
other systems, which have been implicated in the mitogenic response to
diverse agents and recently identified as the MAP-kinase Aanm.oEo:ao et
al, 1989). This kinase phosphorylates the S6 kinase I which is involved in
the control of protein synthesis at ribosome level. Phorbol esters induce the
phosphorylation of 19 proteins, including the tyrosine phosphorylated
proteins mentioned above. There is no overlap in the patterns of protein
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phosphorylation induced by TSH and cAMP enhancers on the one hand,
and by EGF and phorbol esters on-the other (Contor et al, 1988).

The expression of c-myc and c-fos has been studied by Northern analysis
of RNA extracts (Reuse et al, 1990). As in other types of cells, EGF and
TPA enhance first c-fos, then c-myc mRNA concentrations also (Heldin and
Westermark, 1988). On the other hand, TSH or forskolin enhances strongly
but for a short period c-myc mRNA concentration and with the same
kinetics as for EGF/TPA, ¢-fos mRNA concentration. In fact, cAMP first
enhances, then decreases c¢-myc mRNA accumulation. This second
phenomenon is akin to what has been observed in fibroblasts in which cAMP
negatively regulates growth (Heldin et al, 1989). The enhancement but not
the decrease has been observed for TSH and agents increasing intracellular
AMP in FRTL-5 cells (Dere et al, 1985; Tramontano et al, 1986b). In pig

.«hyroid cells TSH and cAMP are not mitogenic and do not enhance c-myc

and c-fos gene expression (Heldin and Westermark, 1988). The effect of
TSH and ¢cAMP on ¢-fos gene expression in FRTL-5 cells is transcriptional
(Damante and Rapoport, 1988).

The pattern of proteins synthesized in response to the various prolifer-
ation stimuli has been studied (Lamy et al, 1989). Again two patterns
emerge. TSH and forskolin induce the synthesis of at least eight proteins and
decrease the synthesis of five proteins. Epidermal growth factor, phorbol
ester and serum induce the synthesis of at least two proteins and decrease the
synthesis of two proteins. The only overlap between the two patterns
concerns the decrease in the synthesis of a protein (18k) which is also
reduced by EGF after proliferation has stopped. Only one protein has been
shown to be synthesized in response to the three pathways: PCNA, the
auxiliary protein of DNA polymerase 3 but the kinetics of this synthesis are
very different, with an early synthesis in the cAMP cascade (consistent with
arole of signal} and a late, S phase synthesis in the other cascades (Lamy et
al, 1989). Thus, obviously two different phenomenologies are involved in
the proliferation response to TSH through cAMP on the one hand, and EGF
and phorbol ester, presumably through protein tyrosine phosphorylation,
on the other hand. Although this conclusion needs to be further sub-
tantiated, it certainly suggests that the proliferation of dog thyroid cells is
ontrolled by at least two largely independent pathways.

The studies of protein phosphorylation, proto-oncogene expression and
protein synthesis in the dog thyrocytes allow discrimination between two
models of cAMP action on proliferation in this system: a direct effect on the
thyrocyte or an indirect effect through the secretion and autocrine action of
another growth factor. If the effect of TSH through cAMP involved such
an autocrine loop one would expect faster kinetics of action of the growth
factor, and at least some common areas in the patterns of protein
phosphorylation and protein synthesis induced by cAMP and the growth
factor. The results do not support such a hypothesis, at least for the growth
factors we have tested.

It has been suggested that part or all the TSH growth effect on FRTL-5
cells is secondary to their autocrine secretion of IGF-IT and other factors
(Takahashi et al, 1990). This is not general as IGF-11I, which is secreted by
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FRTL-5 cells and is mitogenic for them (Maciel et al, 1988} is not a growth
factor for dog thyroid cells by itself. Moreover, our experiments arc in
general carried out in the presence of high concentrations of insulin that
would saturate the IGF receptors {Roger et al, 1987a). In the FRTL-5 cells
themselves anti-IGE antibody (Sm 1.2) only inhibits the effects of low
concentrations of TSH (Maciel et al, 1988) and does not inhibit the
synergism between TSH and high concentrations of insulin, In the papers of
Takahashi and Maciel, there is no evidence that TSH does stimulate the
production of IGF-II or other autocrine factors. An effect of TSH and
cAMP through protein kinase C activators or EGF is also very unlikely in
dog thyroid cells. The kinetics of action of TSH or forskolin is similar for the
end-point of DNA synthesis for the three types of agents. Moreover, the
kinetics of proto-oncogene c-myc and c-fos expression is not delayed fo
TSH and cAMP. Finally, the patterns of protein phosphorylation and
protein synthesis induced by EGF and phorbol esters show partially
common responses while there was no overlap with the pattern of TSH or
cAMP action. Thus there is no evidence in favour of the involvement of an
autocrine loop with a growth factor in the action of TSH and cAMP on dog
thyroid cells in primary culture. This does not exclude that such a
mechanism may operate in thyroids of other species as suggested by the
induction by TSH of EGF receptors in porcine thyroid cells (Westermark et
al, 1986; Atkinson et al, 1987).

CHARACTERISTICS OF THE TSH—AMP CASCADE WHICH
MAY EXPLAIN A DUAL ROLE IN THE STIMULATION OF
PROLIFERATION AND THE INDUCTION OF
DIFFERENTIATION EXPRESSION

The incompatibility at the cellular level of a proliferation and differentiation
programme is commeonly accepted in biclogy. In general, cells with a high
proliferative capacity are partly differentiated and during development such
cells lose this capacity as they progressively differentiate. Some cells cven
jose all potential to divide when reaching final differentiation; this is calle¢
terminal differentiation. Conversely, in tumour cells there is an inverse
relationship between proliferation and differentiation expression. It is
therefore not surprising that in thyroid cells, the general mitogenic agents
and pathways, phorbol esters and the protein kinase C pathway, EGF and
the protein tyrosine kinase pathway induce both proliferation and the loss of
differentiation expression (Roger and Dumont, 1984; Roger et al, 1986;
Gérard et al, 1989a). The effects of the cAMP cascade are in striking
contrast to this general concept. Indeed, TSH and cAMP induce prolifer-
ation of the dog thyrocytes while maintaining differentiation expression:
both proliferation and differentiation programmes can be triggered by TSH
in the same cells at the same time (Pohl et al, 1990). It is tempting to relate
this apparent paradox to the role and expression of proto-oncogene in these
~cells. c-fos expression is enhanced in a great variety of cell stimulations,
leading to either proliferation or differentiation expression (Miiller, 1986).
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“On the other hand,if there is one generalization that could be made on

proto-oncogenes, ‘it is the dedifferentiating role of c-myc. A rapid and

" dramatic decrease in c-rnyc mRNA has been associated with the differen-

tiation of a variety of cell types (Heikkila et al, 1987; Griep and Westphal,
1988; Prochownik et al, 1988). It is thercfore striking that in the case of the
thyrocyte in which the activation of the cAMP cascade leads to both
waowmnmmao: and differentiation, the kinetics of the c-myc gene appear
tightly controlled. After a first phase of 1h of a high level of c-myc mRNA,
c-myc expression is decreased below control levels (Reuse et al, 1990). In
this second phase, cAMP decreases c-myc mRNA levels, as it does in
proliferation-inhibited fibroblasts. It even depresses EGF-induced expres-
sion (Reuse et al, 1990). The first phase could be necessary for proliferation
hile the second phase could reflect the stimulation of differentiation by
SH. This down-regulation is suppressed by cycloheximide, which suggests
m:n.Eg?mBnE of a neosynthesized (by an autoregulatory mechanism) or a
labile protein in the inhibition at the transcriptional level or at the stabiliza-
tion of the mRNA.

Preliminary results indicate that TSH down-regulates, at least at a post-
transcriptional level, the c-myc mRNA expression: as soon as TSH is in the
medium, a destabilization of c-myc mRNA is observed when transcription is
blocked by actinomycin D. We now therefore hypothesize that the first rise
of c-myc mRNA expression reflects a very high induction of transcription
combined to a destabilization mechanism. Later, the positive transcription
effect is repressed and the destabilization mechanism would persist, leading
to a resulting down-regulation of the c-myc mRNA level. The transcription
could be repressed either at the initiation (Hay et al, 1989; Takimoto et al
1989; Penn ct at, 1990) or at the elongation level (Miller et al, 1989). It would
be interesting to test whether cloned tumourigenic FRTL-5 cells, in which
cAMP inhibits proliferation (Endo et al, 1990), have lost the first positive
nomﬁE of c-myc expression. In a feedback mechanism, the neosynthetic
protein could even be the c-myc protein itself, specifically modified at the
post-translational level by the ¢-AMP pathway. Such an autoregulatory
mechanism of blockade of transcriptional initiation requires additional
ansacting factors and could act as a homeostatic regulator of c-myc
¢xpression in vivo (Penn et al, 1990). It is interesting that transformed
FRTL-5 cells have lost the positive effect of TSH and cAMP on proliferation
and express only a negative control (Endo et al, 1990). This suggests that in
normal cells a dual control exists with a dominant positive regulation.

GROWTH CONTROL AND THYROID DISEASE

Therole .Ow \.mrm %m:mmw and cascades controlling thyroid cell proliferation and
differentiation in pathology has been until now little studied. In a few cases
thyroid pathology can be explained straightforwardly within the framework

presented above,
= 'The disease in which goitre is easiest to explain is Graves’ disease. In this

disease autoantibodies directed against the TSH receptor (TSAb) activate
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this receptor and consequently the whole cAMP cascade. At the highest
concentrations reached in pathology, these TSAb do not activate, as TSH
does, the Ca* phosphatidylinositol cascade (Laurent et al, 1991). Thus,
hyperthyroidism in Graves’ disease appears to result from a chronic hyper-
stimulation of the cAMP cascade. The effects of this cascade on cultured
thyroid cells are to ephance function and proliferation while maintaining
differentiation, i.e. they represent the in vitro counterparts of what is
observed in Graves’ disease thyroids in vivo. It is interesting to note that, as
in in vitro or in vivo chronically stimulated thyroids, the growth of thyroid in
Graves’ disease is generally limited. This apparently simple and unicausal
disease may lead in time to heterogeneous goitre. Also, in these chronically
stimulated thyroids, in which proliferation and the increasing number of

mitoses are bound to allow the fixation of more mutations, cancer incidencg,

is increasing (Mazzaferi, 1990). Thus, even though the cAMP cascade its
maintains differentiation while promoting proliferation, the greater number
of mitoses will give a higher probability of occurrence to the rare mutagenic
events which lead to carcinogenesis.

_The goitre resulting from congenital defects in iodine metabolism by the
gland is also simply explained by classical concepts of thyroid regulation.
Deficiency in thyroid hormone formation resulting from the defect relieves
the thyroid hormone feedback on the hypophysis and leads to increased
TSH secretion and stimulation of the thyroid. In addition, a deficiency in
iodine metabolism, at the level of trapping or iodination, will relieve the
negative feedback of iodide and increase the sensitivity of the gland to the
TSH growth-promoting effect. Impaired iodination due to a congenital
defect or to inhibition by antithyroid drugs has been shown to relieve the
inhibitory effect of iodide on cAMP accumulation (Demeester-Mirkine et
al, 1984). Defects of iodotyrosine coupling and iodotyrosine deiodination,
which also lead to iodine depletion, will in time have the same effect. It is
interesting to note that defects in iodination which most severely affect the
iodide inhibitory pathway lead to the severest goitres and to the highest
incidence of thyroid cancers. Itis also important to note that even in this case
where a single identified cause of the disease and its goitrogenic conse-
quences exists, prolonged stimulation of the thyroid will in time generaty
heterogeneity and its ultimate result, the multinodular goitre. Simila
considerations apply to endemic goitre in which iodine deficiency and
sometimes goitrogen intake phenotypically reproduce the congenital
defects. However, in this case variations of the stimulation, in time, will lead
carlier to macroscopic heterogeneity. The death of many cells after iodine
administration in iodide-depleted glands, the burst of cell proliferation and
the consequent remodelling of the thyroid may explain these phenomena
(Denef et al, 1989).

The simplest example of a somatic mutation leading to autonomous
hyperfunctioning adenomas has been demonstrated by Bourne’s group
in the hypophysis of acromegalic rats. In the rat somatotrophs, as in dog and
human thyroid cells, the activating hormone GRH acts by activating
adenylate cyclase and the cAMP cascade, which leads to functional acti-
vation and growth. In hyperfunctioning autonomous adenomas of the
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somatotrophs Landis and coworkers (1989) demonstrated a mutation in Gs
-which causes constitutive activation of this transducing protein and conse-
.mcon:u\. of the whole cAMP cascade. A systematic search for similar lesions
in other tumours has allowed the demonstration of several identical
mutations in the Gs of thyroid adenomas (Lyons et al, 1990). Of course, any
somatic mutation leading to the constitutive activation of the first elements
of the cAMP cascade (TSH or other stimulating receptor, cyclase, protein
wEmmo, etc.) or to the inactivation of a negative controlling element (inhibit-
ing receptor, GI, XI) could result in a similar phenotype of constitutive
activation of the cAMP cascade and consequently of the function and
growth of the affected cells, i.e. in an autonomous thyroid adenoma. Thus

although available data on the cAMP system in the human autonomous
thyroid ma.mbo_.:w suggest that the Gs defect demonstrated by Landis will
only explain a minority of cases, it provides a useful paradigm for the study
of other mechanisms of autonomy. Autonomy in these adenomas corre-
mﬁo..zam to a loss of control. Moreover, similar mutations inducing consti-
tutive activation in the elements of genes of proteins of the Omm+ PIP2
nmmom.n_o of cells secreting by an exocytic process could explain autonomous
functional adenoma of such exocrine or endocrine organs. It will be of
mterest to look for such defects in calcitonin-secreting cell tumours.

. The isolated defects in iodide trapping and of iodination in a few well-
studied ‘cold” adenomas could perhaps also explain the growth of these
adenomas. In the absence of iodide trapping or oxidation the negative
control of iodide is relieved, which might confer a selective advantage to the
atfected cells, favouring the appearance of new mutations and of tumouri-
genesis. Undoubtedly, these mechanisms do not account for all thyroid
adenomas and others will be found.

Besides these well-defined pathologies, our expanding knowledge on the
secretion in the thyroid of growth factors and local hormones and on the
effects on thyrocytes of such factors and of cytokines has not been really
translated in the study of discase until now. The recent separations and
Qom:n.m of these factors and of their receptors now give the tools necessary to
investigate, by immunohistochemistry and in situ hybridization on indi-
vidual cells in thyroid sections, the local pathogenetic process involved in
such common diseases as simple goitre and thyroiditis. The next review on
this subject will certainly involve a lot of such information.
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