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ABSTRACT: Quantification of module size, leaf, rhizome and clonal growth, flowering intensity and 

shoot population dynamics of 7 temperate Western Australian seagrasses [Amphiboljs antarctica, A. 

griffithii, Posidonia australis, P, sinuosa, P. angustifolia, Heterozostera tasmanica, Thalassodendron 

pachyrhizum) developing 8 n~onospecific stands reveals that these plants have different plant mor- 

phologies, display a wide repertoire of growth patterns, and exhibit substantial variabhty in their 

capacity to flower. Leaf production rate ranged between 2.6 (P. sinuosa) and 26 leaves yr.' (A. antarc- 

tica), and leaf life-span varied between 85 (A. antarctica) and 245 d (P. sinuosa). Most of the species 

extended their horizontal rhizomes at rates slower than 10 cm yr-' The highest rate of new short shoot 

formation by vertical rhizomes was observed in A. antarctica (on average each vertical rhizome annu- 

ally produced 1.5 new short shoots), and the lowest in T pachyrhizum (only l new short shoot would be 

recruited from 65 vertical rhizomes). Horizontal rhizomes produced 1 new short shoot every l? (H. tas- 

rnanica) or 582 d (P. sinuosa). Flowering intensity varied from 0 (P. sinuosa) to 7 %  flowering short 

shoots yr-' (P. australis). The median age of the short shoots in these populations ranged from 367 (H. 
tasmanica] to 1000 d (P. sinuosa). Clonal growth was the main mechanism providing short shoots in 

these temperate Western Australian meadows. Short shoot recruitment balanced short shoot mortality 

rate in most populations, indicating that they were in steady-state with the colonisation process. These 

species maintain their meadows through different plant strategies as a result of their different growth 

programmes and the variability in sexual reproduction success. The large differences in flowering 

intensity found across temperate Western Australian seagrasses suggest that sexual reproduction may 

play an important role for meadow maintenance and recovery. 

KEY WORDS. Amphiboljs sp. . Heterozostera tasmanica Posidonja sp . Thalassodendron pachy- 

rhizum Leaf growth Rhizome elongation . Flowering intensity . Demography 

INTRODUCTION 

The coastal zone of the temperate region of Western 

Australia is covered by extensive seagrass meadows 

comprising one-third of the global seagrass flora (den 

Hartog 1970, Larkurn & den Hartog 1989). Despite the 

importance and high diversity of seagrass communities 

in Western Australia (e.g. Kirkman &Walker 1989), the 

rates of clonal growth and sexual reproduction of these 

seagrass species remaln largely unknown. 

Seagrass meadows are formed by genets, ramets, 

and their modules (i.e. leaves, rhizome internodes, 

roots). Genet production depends on the success of 

sexual reproduction, and, hence, on flowering rates, 

fertilisation success and seedling survival. Ramet and 

module production rely on clonal growth patterns 

(Tomlinson 1974, Duarte & Sand-Jensen 1990, Marba 

& Duarte 1998), which regulate the rate of addition 

and size of these seagrass components. The balance 

between production and death of genets, ramets and 

n~odules allows the persistence of seagrass meadows 

over millennia (Larkum 1976). Conversely, the imbal- 

ance between production and loss of seagrass com- 
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- Seagrass growth rates have been 

demonstrated to be largely species- 

specific, although they also have adap- 
- 

tive value (Duarte 199 1). Available 

studies quantifying seagrass flowering 
- intensity also demonstrate that repro- 

ductive effort vanes greatly across spe- 

cies and sites (e.g. Gallegos et al. 1992, 
- 

Cambridge & Hocking 1997, Inglis & 

Lincoln-Smith 1998). Differences in the 

iO relative growth of different seagrass 

modules, and variability in sexual re- 

production success across species may 

lead to contrasting strategies to main- 

tain the~r meadows. Recent studies examining 

the genetic variability of temperate Western 

Australian seagrass populations, for instance, 

have revealed large differences in the degree of 

clonality among species (Waycott 1995, Waycolt 

et al. l996), suggesting that sexual reproduction 

may contribute differently to the maintenance of 

seagrass meadows depending on the species. 

We here quantify seagrass leaf, rhizome and 

clonal growth, flowering intensity, as an upper 

threshold to sexual reproduction, and shoot 

demography of 7 temperate Western Australian 

seagrass species, growing in 8 developed mono- 

specific meadows, using seagrass growth recon- 

structing techniques (Duarte et al. 1994). We 

demonstrate substantial differences in leaf, rhi- 

zome and clonal growth, flowering and shoot 

demography across temperate Western Aus- 

I tralian seagrass species, which result in differ- 

Longitude E (degrees) 

Fig. 1 Location of the area studied in (A) Australia, and location of 
the seagrass meadows examined along (B) the temperate Western 

Australian coast 

ponents leads to the decline or expansion of seagrass 

populations (Duarte & Sand-Jensen 1990). Hence, 

quantification of sexual reproduction success, shoot 

population dynamics and plant growth are the key to 

estimating productivity, as well as forecasting the 

expansion, persistence or decline of seagrass meadows 

(Duarte et al. 1994). However, only Clarke & Kirkman 

(1989), Hillman et al. (1995), Waycott et al. (1996), 

Cambridge & Hocking (1997) and Inglis & Lincoln- 

Smith (1998) have quantified rhizome elongation and 

flowering intensity for a few of the temperate Western 

Australian seagrass species. 

ent strategies for meadow maintenance. 

METHODS 

During February and March 1995 we sampled 

8 monospecific seagrass meadows distributed 

along 230 km of the south Western Australian 

coast. We coll.ected Amphibolis antarctica at 

Parker Point (Rottnest Island), A. grlffithii and 

Posidonia australis at Shoalwater Bay (Warnbro 

Sound), P. sinuosa at Penguin Island (Warnbro Sound) 

and Wonnerup Estuary (Geographe Bay), P. angustifolia 

and Heterozostera tasmanica at Marmion Lagoon, and 

Thalassodendron pachyrhizum at Cowaramup Bay 

(Figs. 1 & 2). We harvested these plants from water 

depths ranging from 1 to 5 m. The waters at these study 

sites are continental shelf waters of tropical and sub- 

tropical origin (Jeffrey 1981), with low levels of nutri- 

ents (0.19 pm01 I-' PO4, 0.19 pm01 1-' NO3-, 0.39 pm01 1-' 

NH4+, McMahon & Walker 1998) and temperatures 

ranging from 15 to 22'C (McMahon et al. 1997). 
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Fig. 2.  Ramet and module morphology of the Western Australian seagrasses studied. Scale bars = 5 cm, for all species 
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In the Inner part of each meadow and within about 

50 m', divers harvested more than 100 living short 

shoots (i.e. leaves plus vertical rhizome bearing them), 

all connected to 20-100 horizontal rhizome pieces, 

and measured short shoot density within 6 replicate 

0.04 m2 quadrats. The plant material collected was 

transported to the laboratory for morphological mea- 

surements (i.e. number of standing leaves, vertical 

rhizome length, number of leaf scars of living short 

shoots, number of vertical branches, number of flowers 

and inflorescence scars, the length and internodes of 

horizontal rhizomes between consecutive short shoots, 

and the proportion of horizontal rhizome apices per 

shoot), measurement of module (leaf, rhizome intern- 

ode, flower or inflorescence) dry weight after over- 

night desiccation at  85OC, and examination of the age 

structure of living short shoots. These measurements 

allowed estimations of short shoot and horizontal rhi- 

zome apex density, module size, leaf formation rate 

and turnover time, vertical and horizontal rhizome 

growth, shoot vegetative proliferation rate, flowering 

intensity, short shoot age, short shoot recruitment and 

mortality rates, and population half-life. Horizontal rhi- 

zome apex density was derived from the product of 

short shoot density and the proportion of horizontal 

apices per short shoot found in the samples collected. 

The average number of leaves produced per short 

shoot annually was estimated from the seasonal vari- 

ability in vertical internodal length, examined on the 

vertical rhizomes of the 5 to 10 oldest living short 

shoots collected from each population. Identification of 

annual cycles in the length of vertical internodes, 

however, required short-term and interannual vari- 

ability to be filtered out to emphasise the seasonal 

signal (Duarte et al. 1994). Therefore, we applied a 

high- and low-frequency filter to each raw data series 

(i.e. running averages of 30 and 150% of the expected 

number of internodes contained in a cycle). We then 

subtracted the low-frequency filtered series (i.e. the 

interannual component of vertical internodal length 

variability) from the high-frequency filtered one, and 

obtained the seasonal trend of vertical internode 

length. The seasonal trend of vertical internodal length 

appeared clear in all shoots examined. Because of the 

1:l. relationship between leaf and vertical internode 

formation, the number of vertical internodes between 

2 consecutive minima, or maxima, equals the number 

of leaves produced that year by a short shoot (Duarte et  

al. 1994). Comparison of the estimates of the annual 

number of leaves produced per shoot derived from 

seasonal fluctuations in the size of vertical internodes 

with those assessed using leaf-marking techniques 

(Table 1) demonstrated an excellent agreement be- 

tween both estimates. Knowledge of the average 

number of leaves produced annually per short shoot in 

Table 1. Estimates of the average number of leaves produced 

annually by short shoots of some studied Western Australian 

seagrasses, calculated from the seasonality in the size of 

vertical rhizome internodes (i.e. using reconstructing tech- 

niques), and by following the production of leaves per shoot 

for 1 yr (i e ,  using leaf-tagging techniques). Standard error of 

the mean is given within parentheses 

Number of leaves shoot-' yr-' 

Reconstructing Tagging 

Amphibolis an tarctica 26.1 (0.89) 32.0 (0.28)a 

Amphibolis griffithii 11.6 (0.47) 13.4 ( 1 . 3 ) ~  

Posidonia a ustralis 6.7 (0.14) 6.4 (0.1)' 

Posidonia sinuosa (Penguin Is.) 2.6 (0.07) 2.1 (0.1)' 

dHillman et al. (1989), bCarruthers & Walker (19971, 

'Cambridge & Hocking (1997) l 
each meadow during the short shoot life-span allowed 

calculation of the annual average leaf plastochron 

interval (PI, the time elapsed between the formation of 

2 consecutive leaves, Akenasy 1880), and, in turn, 

translation of time in plastochron to absolute time 

(i.e. days or years). 

Because the oldest short shoots of Heterozostera tas- 

manica were younger than 2 yr, we calculated the leaf 

PI of this species using leaf-marking techniques. We 

selected 45 shoots of H. fasmanica and punched their 

leaves with a needle at  the level of the petiole. After 

8 d we harvested the punched shoots, and, in the labo- 

ratory, we counted the number of new leaves (i.e. those 

without a hole) and we estimated the leaf PI as, 

number of punched shoots X rnark~ng period (d) 
Leaf PI (d) = 

total number of new leaves 

Because we only estimated the leaf PI of H. tasmanica 

in late summer, i.e. the time of fast growth, the annual 

leaf formation rate calculated for this species, and, 

therefore, those parameters calculated using the H. 

tasrnanica leaf PI may be overestimated. We estimated 

leaf turnover time as the average number of standing 

leaves during the sampling time divided by the aver- 

age number of leaves produced annually per short 

shoot in each meadow. 

Vertical rhizome elongation was calculated by 

regressing the length of vertical rhizomes against short 

shoot age. The slope of the regression equation repre- 

sented the vertical elongation rate. The rate of for- 

mation of horizontal rhizome internodes was estimated 

by regressing the number of horizontal internodes 

between pairs of short shoots connected by an horizon- 

tal rhizome piece against their age difference (Duarte 

et al. 1994). The maximum age difference between 

shoots connected was large, ranging from 2.5 to 5.8 yr 

(Posidonia australis, Thalassodendron pachyrhizum, 

respectively). The slope of the fitted regression equa- 
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tion represented the average number of horizontal 

rhizome internodes produced per leaf PI. Once the leaf 

PI is translated into days, the inverse of this slope 

equals the time the plant spends to produce a horizon- 

tal rhizome internode (i.e. horizontal rhizome plas- 

tochron interval, or rhizome PI). The product of this 

slope, the average length of a rhizome internode and 

the average annual rate of leaf formation provided an 

estimate of the average annual horizontal rhizome 

elongation rate (Duarte et al. 1994). 

A~nphibolis spp. and Thalassodendron pacl~yrhizum 

are dioecious plants producing single flowers, whereas 

Heterozostera tasn~anica and Posidonia spp. are mo- 

noecious species that have inflorescences. We esti- 

mated seagrass flowering intensity by dividing the 

number of female flower marks on short shoots of 

Amphibolis spp. and T. pachyrhizum, and the number 

of inflorescence scars on short shoots of H. tasmanica 

and Posidonia spp., by the total number of leaf scars 

and standing leaves (i.e. the age) of living short shoots 

in the samples. The difficulty of distinguishing male 

flower marks from dead vertical branches in Amphi- 

bolis sp. and T. pachyrhizum prevented estimation of 

male flowering intensity of these species. The number 

of standing flowers and inflorescences found on the 

sampled short shoots were also added to the number of 

flowering marks. We multiplied the flowering inten- 

sity, as flowers per leaf PI (or inflorescences per leaf 

PI), by the inverse of the leaf PI (in yr) to calculate flow- 

ering intensity as flowers (or inflorescences) shoot-' yr-'. 

The population dynamics of the meadow was char- 

acterised by the age distribution of living short shoots, 

and the calculated short shoot recruitment, short shoot 

mortality, and net population growth rates (cf. Duarte 

et al. 1994). Short shoot age was estimated as the 

product of the total number of leaves produced during 

the short shoot life-span (i.e. number of standing 

leaves plus number of leaf scars on the vertical 

rhizome supporting the shoot) multiplied by the leaf PI 

(in d). The annual gross short shoot recruitment rate 

(R ,,,,,, In units yr-') was calculated as, 

m m 

where N, is the number of living shoots and N, 
1 =o 

is the number of living shoots > l  yr. Short :hoot 

mortality rate (M, In units yr-') was derived from the 

exponential decline in the abundance of living short 

shoots (No) with time ( t ,  in PIS) as, 

where No is the number of short shoots with age equal 

to the mode, and N, is the number of short shoots older 

than the modal age at time t (cf. Sheil et al. 1995). 

M was estimated using a semilogarithmic linear re- 

gression model, where we assumed constant mortality 

over short shoot age classes and years. Thus, the mor- 

tality rates estimated here may be slightly altered if 

interannual fluctuations in shoot recruitment and mor- 

tality during short shoot life-span were significant 

(Duarte et al. 1994). The ratio between recruitment 

and mortality rates (RIM) was used to indicate whether 

populations were expanding (i.e. RIM > l ) ,  declining 

(i.e. R h 4  < 1) or in steady state (i.e. RIM = 1; Duarte & 

Sand-Jensen 1990, Duarte et al. 1994). We used the net 

rate of short shoot population growth (R,,, = R,,,,, - M; 

Duarte et al. 1994) to forecast the likely trend in the 

development of the meadows if growth conditions 

were maintained. 

We used linear spline regression analysis to detect 

changes in vertical rhizome elongation rates during 

short shoot life-span (Freund & Littell 1991). We exam- 

ined the coupling between variables with Pearson 

correlation analysis. 

RESULTS 

The temperate Western Australian seagrasses exam- 

ined showed contrasting sizes, with Heterozostera 

tasrnanica being the smallest species and Posidonia 

spp. being the largest. Leaf and internode mass of 

temperate Western Australian seagrasses ranged over 

2 and 3 orders of magnitude, respectively (Table 2). 

Leaf and rhizome internode mass were positively 

correlated (Pearson correlation, r = 0.85, p < 0.01). The 

number of standing leaves on seagrass short shoots 

varied 6-fold across the plants studied (Table 2). 

Amphibolis spp., Heterozostera tasmanica and 

Thalassodendron pachyrhizum develop their canopies 

well above the sediment surface, with their vertical 

rhizomes extending in the water colunln and support- 

ing, on average, 1 to 8 short shoots (Table 2).  The 

canopy of Posidonia spp. is placed just above the sedi- 

ment surface, with the leaf meristems being buried by 

sand. Despite the differences in module size and plant 

morphology, the ramet densities of the species were 

similar across populations, except for the P. sinuosa 

meadow growing in Geographe Bay (Tukey analysis, 

p < 0.0005; Table 3). In contrast, the density of hori- 

zontal rhizome apices varied greatly across the mead- 

ows (Table 3). The leaf biomass maintained by these 

populations varied more than 10-fold (Table 3), due to 

the large differences in leaf standing biomass per 

ramet between the species (Pearson correlation, 

r = 0.93, p < 0.001). 

The length of the vertical rhizome internodes of all 

the species studied here exhibited distinct seasonal 

cycles (Fig. 3). The seasonal cycles imprinted on the 
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Table 2. Plant size of temperate Western Australian seagrasses. Standard error of the mean (within parentheses) is provided 

when poss~ble Mean mass of leaves and rhizome internodes was estimated from a pull with more than 30 modules (na: not 

available) 

Amphibolis antarctica 

Amphi bolis griffithii 

Heterozostera tasmanica 

Thalassodendron pach yrhzum 

Posidonia austrahs 

Posidonia angustifolia 

Posidonia sinuosa (Penguin Is.) 
Posidonia sinuosa (Geographe Bay) 

Rhizome Short 

diameter shoots 

(mm) per stem 

2.60 (0.09) 4.92 

2.19 (0 10) 7.57 

1.97 (0.18) 1.86 

5.64 (0.16) 1 

7.41 (0.29) 1 

5.99 (1.45) 1 

5.59 (na) 1 

5.46 (na) 1 

Standing 

leaves per 

short shoot 

6.13 (0.09) 

2.88 (0 04) 

3.82 (0.08) 

2.80 (0.05) 

2.59 (0.04) 

2.60 (0.04) 

1.81 (0.03) 

1.96 (0 03) 

Leaf 

Module mass (g dry wt) 

Horizontal Vertical 

internode internode 

0.026 0.005 

0.020 0.008 

0.009 0.002 

0.061 0.001 

0.059 0.009 

0.123 0.062 

0.044 0.008 

0.072 0.016 

Flower 

vertical rhizomes revealed large differences in leaf 

formation rates across the species examined. The time 

elapsed between formation of 2 consecutive leaves 

ranged between 14 (Amphibolis antarctica) and 141 d 

(Posidonia sinuosa) (Table 4 ) .  The leaves of temperate 

Western Australian seagrasses lived, on average, 

between 86 (A. antarctica) and 254 d (P. sinuosa), 

resulting in leaf turnover rates ranging from 1.4 to 

4.25 yr-' (Table 4 ) .  The life-span of the leaves of tem- 

perate Western Australian seagrasses was positively, 

and strongly, coupled to leaf PI (Pearson correlation, 

r = 0.97, p < 0.00005), the leaves becoming shorter- 

living the faster they were produced. 

The short shoots of the seagrass species studied were 

able to grow vertically. The vertical rhizomes of Posi- 

donia spp.,  except P. sinuosa from Geographe Bay, 

elongated at rates slower than 10 cm yr-' (Table 4 ) .  The 

vertical elongation rate of Posidonia spp. was indepen- 

dent on short shoot age. Conversely, the vertical growth 

rate of Amphibolis spp.,  Thalassodendron pachyrhi- 

zum and Heterozostera tasrnanica declined with short 

shoot age (Fig. 4).  Vertical rhizomes of A. griffithii, 

A .  antarctica and T pachyrhizum elongated 34, 23, 

and 11.8 cm yr-' during the first year, 

horizontal internodes was observed in H. tasrnanica 

(13 d internode-', Table 4 )  and the slowest in P. sinuosa 

(158 d internode-', Table 4) .  The large differences in 

internode formation rate (Table 4 )  and in internodal 

size (Table 2) among species resulted in horizontal rhi- 

zome elongation rates varying about 30-fold (Table 4).  

Most of the horizontal rhizomes, however, extended at 

rates slower than 10 cm yr-' (Table 4) .  

Vertical and horizontal rhizomes produced short 

shoots as they elongated. However, the rate of short 

shoot proliferation differed greatly across species. 

Short shoot proliferation from vertical rhizomes was 

the fastest in Amphibolis antarctica (i.e. 1 new short 

shoot every 229 d,  Table 4 ) ,  whereas only 1.5% of the 

vertical rhizomes of Thalassodendron pachyrhizum 

produced 1 new short shoot annually (Table 4) .  

Conversely, vegetative proliferation by seagrass hori- 

zontal rhizomes was about 10-fold faster than that from 

vertical ones, except for Amphibolis spp., in which the 

vertical rhizomes produced short shoots faster than the 

horizontal ones did (Table 4) .  The production of short 

shoots from horizontal rhizomes ranged from l new 

short shoot every 17 (Heterozostera tasmanica) to 582 d 

respectively, whereas they only grew 
Table 3. Ramet and horizontal rhizome apex density and aboveground biomass 

at rates of 16, 11 and 4 cm yr-l, re- in temperate Western Australian seaqrass meadows. Standard error of the mean 
spectiveiy, when short shoots became values (within pdrentheses) is provided when available 

older (linear Spline regression analy- 

The horizontal rhizome a ~ i c e s  of tem- I Thalassodendron ~achyrhizurn 667 i28j 96 384.8 1 

sis, p < 0.05). The decline in vertical 

growth with short shoot age was attrib- 

utable to the formation of shorter verti- 

cal internodes (Fig. 4 ) ,  and not to a 

decrease in leaf formation rate as 

shoots aged (Tukey analysis, p > 0.5). 

Ramet Horizontal Leaf 

density apex density biomass 

(ramets m-') (apices m-" (g dry wt m-') 

Amph~bolis an tarctica 642 (85) 18 214.2 

Amphibo,is griffithii 788 (91) 24 531.7 

Heterozostera tasmanica 625 (40) 58 30.5 

. U .  . . . . 
magnitude. The fastest addition of n.ew 

perate Western Australian seagrasses 

added new horizontal internodes at 

rates ranging Over 

A .  

POsidOnia 605 (31) 2 8 241.2 
Posidonia angustifolia 692 (36)  276 254.6 

Posidonia sinuosa (Penguin Is., 413 (61) 60 96.2 

Posidonia sinuosa ( G e o a r a ~ h e  Bavl 1073 (1401 172 321.4 
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Table 4.  Module growth of temperate Western Australian seagrasses (PI: plastochron interval) 

Leaf Leaf Horizontal Vertical Horizontal Vertical Horizontal Flowering 
PI turnover rhizome PI rhizome rhizome shoot PI shoot PI intensity 

(d) time (d) (d) elongation elongation (d) (d) (% of flowering 

(cm yr-') (cm y r ' )  shoots y r ' )  

Amphibolis antarctica 14 85.9 48.3 

Amphibolis griffithii 31.6 90.9 87.7 

Heterozostera tasmanica 22.6* 12.8- 

Thalassodendron pachyrhizum 30.8 86.3 64.2 

Posidonia a ustralis 54.4 140.9 52.8 

Posidonia angustifolia 73.6 191.3 53.3 

Posidonia sinuosa (Penguin Is.) 140.4 254.1 157.7 

Posidonia sinuosa (Geographe Bay) 108 211.7, 91.5 

'Estimates using leaf-marking techniques 
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Fig. 4 .  Changes in mean internode length versus internode age in vertical stems of the seagrasses indicated. Mean internode 
length was calculated from 5 to 10 internodes. For clarity, error bars are not shown 

(Posidonia sinuosa, Table 4 ) .  The variability in short 

shoot formation rate by horizontal rhizomes was 

largely (49%) attributable to differences in the rhi- 

zome elongation rate between plants (Pearson correla- 

tion, p < 0.05). 

The vertical rhizomes of all species, but Posidonia 

angustifolia and P. sinuosa in Penguin Is., presented 

flowering scars (Table 4). Moreover, Thdldssodendron 

pachyrhizum and Heterozostera tasmanica were flow- 

ering during the study period. The short shoots of most 

species only flowered once during their life-span, and 

only very few of the vertical rhizomes of P. australisand 

T. pachyrhizum presented 2 flowering scars. Flowering 

intensity across the species examined ranged between 0 

(P. angustifolia and P. sinuosa at Penguin Is., Table 4) to 

8 % flowering short shoots yr-' (P. australis, Table 4 ) .  

The short shoot age structure in most of the seagrass 

species was characterised by a high abundance of 

short shoots younger than 1 yr old followed by an 

exponential decline in short shoot abundance as short 

shoots aged (Fig. 5). However, short shoot age struc- 

ture in Heterozostera tasmanica, Posidonia angustifo- 

lia and P. sinuosa slightly differed from this general 

pattern. All short shoots of the H. tasmanica population 

were younger than 1.5 yr and, thus, the age structure 

of this population mainly reflected the seasonality in 

short shoot recruitment of the current year's cohort 

(Fig. 5). The abundance of the youngest shoots was low 

for the youngest age classes of P. angustifolia and P. 

sinuosa populations when compared with the abun- 

dance of older short shoots, suggesting a decline in 

short shoot recruitment for the 1 to 2 yr prior to sam- 

pling (Fig. 5).  Most of the short shoots of Amphibolis 

spp., and half of those of H. tasmanica had been pro- 

duced by vertical rhizomes (Fig. 5). The median age of 

living short shoots in the populations studied ranged 

from 367 d in H. tasmanica to 1000 d in P. sinuosa, 

although the maximum life expectancy of short shoots 

of all species, but H. tasmanica, exceeded 1000 d 

(Table 5).  Short shoots produced from branching of 
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Table 5. Short shoot demography of temperate Western Australian seagrasses. Standard error of the mean values (with~n 

parentheses) is provided when available 

Shoot Maximum Shoot 

age (d) shoot life recruitment 

expectancy (In units yr.') 
Main stems Branches (d) Main stems Branches 

Amphibolis antarctica 406 

Amphibolis griffithii 536 

Heterozostera tasmanica 339 

Thalassodendron pachyrhizum 
Posidonia a ustralis 
Posidonia anuustifolia 

0 

Posidonia sinuosa (Penguin Is.) 

Posidonia sinuosa (Geographe Bay) 

Shoot Meadow 
mortality rate state 

(In units yr") 

Main stems Branches 

0.58 (0.08) 1.69 (0.16) Steady 

1.08 (0.22) 1.32 (0.15) Steady 

2.26 (0.81) 4.04 (0.97) Steady 

0.43 (0.06) Steady 

0.37 (0.03) Steady 

1.22 (0.12) Declining 

0.50 (0.04) Declining 

0.45 (0.08) Steady 

vertical rhizomes of Amphibolis spp. and H, tasmanica 

had much shorter life-spans than those on the main 

stems (up to 1/4, Table 5). 

Short shoot recruitment during the previous year of 

sampling varied 10-fold across the meadows examined 

(Table 5). The short shoots of Heterozostera tasmanica 

recruited at the fastest rate and those of Posidonia sin- 

uosa at the slowest one. Most (76 %) of the variability in 

short shoot recruitment rates observed was coupled to 

the large differences in short shoot life-span across the 

meadows (Fig. 6). The abundances of short shoots in 

0 l 1.0 10 0 

shoot life-span (yr) 

Amphibolis spp. and H. tasmanica meadows were 

mainly maintained by fast recruitment rates of shoots 

by vertical rhizomes, which were up to 5-fold faster 

than those achieved by horizontal ones (Table 5). In 

addition, recruitment rates of seagrass ramets were 

closely coupled to horizontal rhizome elongation rate 

(Pearson correlation, r = 0.87, p < 0.0005, Fig. 7) .  

Short shoot mortality rate in the seagrass meadows 

studied ranged from 0.37 to 4.04 In units yr-l. Short 

shoot mortality was to a large extent (49 % of the vari- 

ance) coupled to short shoot life-span (Fig. 6). Short 

shoot recruitment balanced short shoot mortality in 

most of the meadows examined, indicating that the 

meadows were mainly in steady state (Table 5). How- 

ever, the short shoot recruitment rates l yr prior to 

sampling did not suffice to compensate short shoot 

mortality in Posidonia angustifolia and in P. sinuosa 

(Penguin Is.) meadows (Table 5), and a decline of short 

shoot density by 50% would be expected in 1.5 and 

2 yr, respectively. The high density of horizontal 

rhizome apices found in the P. angustifolia meadow 

(Table 3 ) ,  however, suggests that short shoot recruit- 

ment will increase in the future in this meadow. 

0.1 I L 

10 100 

hor~zontal rhizome elongation (cm yr.' ) 

Flg. 6. Plots of (A) short shoot recruitment rate and (B) short Fig 7 Plot of ramet recruitment rate versus honzontal rhi- 

shoot mortality rate, against short shoot life-span across zome elongation rate across temperate Western Austral~an 

temperate Western Australian seagrasses sea grasses 
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DISCUSSION 

Temperate seagrass species of Western Australia 

have different plant morphologies, display a wide re- 

pertoire of growth patterns, and exhibit substantial 

variability in their capacity to flower. Most of the spe- 

cies examined, however, are slow-growing plants. The 

variability in plant growth and flowering intensity indi- 

cates that Heterozostera tasmanica is the only seagrass 

amongst those studied here well fitted to play an effec- 

tive pioneer role in Western Australian seagrass com- 

munities. The slow clonal growth and infrequent flow- 

ering of Posidonia sinuosa, conversely, confirms this 

species to be restricted to slow meadow development 

consistent with its climax role (Clarke & Kirkrnan 1989). 

The observed variability in seagrass growth mainly 

results from the particular growth of the species 

involved, since sympatric species (i.e. Posidonia au- 

stralis and Amphibolis griffithii, P. angustifolia and 

Heterozostera tasmanica, Table 3) differ by 4-fold 

in growth rate. The specificity of seagrass growth 

patterns reflects, in turn, the differences in plant size 

and shape among species. The cost of construction of 

seagrass modules increases exponentially with plant 

size (Duarte 1991). Hence, small seagrass species (e.g. 

H. tasmanica) require less resources to produce their 

modules, and are, therefore, able to grow faster than 

species built by large modules (e.g. P. australis). 

Amphibolis spp. and Thalassodendron pachyrhizum, 

however, spread their horizontal rhizomes at lower 

rates than predicted from the thickness of their 

rhizomes (47 cm yr-' in A. antarctica, 39 cm yr-' in 

A. griffithii, and 13 cm yr-' in T. pachyrhizum, cf. 

Marba & Duarte 1998), which has been demonstrated 

to be a good descriptor of seagrass size (Duarte 1991). 

The fast vertical rhizome growth of these species prob- 

ably constrains their horizontal spread, indicating that 

seagrass growth patterns also depend on the overall 

plant architecture. 

The large variability in flowering capacity observed 

among the seagrass meadows studied reflects specific 

variability in resource allocation to sexual repro- 

duction. Studies on seagrass flowering intensity in 

Western Australian waters demonstrate that flowering 

is rare in Posidonia spp. (Cambridge & Hocking 1997, 

Inglis & Lincoln-Smith 1998) and in some Amphibolis 

antarctica meadows (Waycott et  al. 1996), which 

mainly agrees with our findings. However, the studied 

P. australis meadow flowered profusely when com- 

pared with the sparse flowering reported for this 

species (Cambridge & Hocking 1997, Inglis & Lincoln- 

Smith 1998). The high flowering intensity of P. australis 

may reflect particular local environmental conditions 

such as cold water (Inglis & Lincoln-Smith 1998), or 

intensive sediment dynamics, as observed in other 

seagrass species (Gallegos et al. 1992, Marba & Duarte 

1995). Flowering shoots were also abundant in Thalas- 

sodendron pachyrhizum and Heterozostera tasrnanica. 

The lack of studies on flowering in other T. pachy- 

rhizum and H. tasmanica meadows precludes elucidat- 

ing whether this is a common trait of these species. 

Clonal growth is the main mechanism for providing 

short shoots in temperate Australian seagrass mead- 

ows, as demonstrated by the tight coupling between 

ramet recruitment rates and horizontal rhizome elonga- 

tion (Fig. 7). Vertical rhizomes, moreover, act as the ma- 

jor source of shoot proliferation in some of the species 

studied (i.e. Amphibolis spp. and Heterozostera tas- 

rnanica). Variability in clonal growth across seagrass 

species allows small species, with relatively fast-grow- 

ing rhizomes (e.g. H. tasmanica), to recruit short shoots 

10-fold faster than large, slow-growing ones (e.g. Posi- 

donia sinuosa). Slow-growing seagrass species, how- 

ever, compensate their low rates of short shoot prolifer- 

ation by having long-living short shoots compared to 

species with fast shoot recruitment rates. The close 

scaling between rhizome elongation and short shoot 

recruitment rates to shoot life-span ensures the balance 

required between shoot production and decay in sta- 

ble populations. Short shoot proliferation, however, 

decreases exponentially as shoot life-span increases 

(Fig. 6), involving a much slower flux, or turnover, of 

short shoots within populations of large, slow-growing 

seagrass species than small, fast-growing ones. 

The aboveground biomass of seagrass meadows 

examined was within the ranges reported in other 

Australian localities (Kirkman & Reid 1979, West & 

Larkum 1979, Bulthius & Woelkering 1981, Walker 

1985, Silberstein et al. 1986, Kirkman & Cook 1987, 

Walker & McComb 1988, Bulthius et al. 1992, Car- 

ruthers 1994, Cambridge & Hocking 1997). The variety 

of growth patterns of temperate Australian seagrasses 

and the fact that clonal growth, rather than seed pro- 

duction, controls short shoot population dynamics sug- 

gest that these species display different strategies to 

maintain the biomass of their meadows over interan- 

nual time scales. The small seagrass Heterozostera tas- 

manica, wlth fast-growing rhizomes and fast rates of 

short shoot proliferation, maintains its meadows by the 

continuous replacement of shoots. Indeed, the recruit- 

ment rate in the H. tasmanica meadow indicates that 

the vertical stems have a turnover of 5.8 times yr-l. 

In contrast, the large, slow-growing Posidonia sinuosa 

only replaces 40% of the shoots of the population 

within 1 yr, evidencing that the maintenance of mea- 

dow biomass over years is achieved mainly by the 

production of new leaves on old short shoots. Mainte- 

nance of Amphibolis spp. meadows, with plants of 

an intermediate size and vertical stems profusely 

branched, would rely on replacement of short shoots 
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vegetatively produced by vertical stems. The shoots in 

the Amphibolis spp. meadows have a fast turnover, i.e. 

4.6 times yr-l, but only 40 and 80'1; of the ramets are 

replaced annually in A. griffithii and A. antarctica, 

respectively. The wide seasonal fluctuations in short 

shoot density reported in H. fasmanica (Bulthius & 

Woelkering 1981) meadows compared with the low 

ones in A ,  griffithii (Carruthers 1994) and Posidonia 

spp. (McMahon et al. 1997) confirm that the biomass of 

temperate Western Australian seagrass meadows is 

maintained through different plant growth strategies. 

The persistence of temperate Australian seagrass 

meadows could, thus, exclusively rely on plant growth 

(i.e. leaf and clonal growth), if seagrass genets were 

everlasting, and if seagrass meadows were not altered 

by disturbances promoting important loss of seagrass 

cover. However, meadow maintenance probably also 

depends on genet formation rate, and, thus, on flower- 

ing intensity, the success of fertilisation, the number of 

seeds produced per flower, the number of seeds germi- 

nated and early seedling survival. Despite the impor- 

tance of sexual reproduction for seagrass meadow 

dynamics, there is a lack of information about most of 

these aspects of seagrass ecology. The few studies 

available, however, indicate that abortion of flowers is 

low (Buia & Mazzella 1991, Terrados 1993, Williams 

1995) and flowers are currently pollinated (Verduin et 

al. 1996). Hence, the most critical factors in reproduc- 

tion success of seagrass populations seem to be flower- 

ing and seedling survival, flowering intensity setting 

its upper threshold. The variability in flowering inten- 

sity across the meadows studied suggests that sexual 

reproduction may play a more important role for 

meadow persistence in some populations than in 

others. The profuse flowering in Thalassodendron 

pachyrhizum, Posidonia australis and Heterozostera 

tasmanica meadows indicates that these populations 

might be maintained by continuous formation of new 

genets. Conversely, sexual reproduction would have a 

negligible contribution to meadow maintenance in the 

Amphibolis antarctica, P. angustlfolla and P. slnuosa 

populations studied, as very few genets are expected 

to be produced, aiid replaced, considering the low 

flowering rates of their short shoots. The differences in 

contributi.on of sexual reproduction for meadow main- 

tenance among meadows might be reflected in the 

genetic structure of the populations. Examination of 

the genetic variability in this P. australis meadow 

revealed that it was a multiclonal population, and that 

it was composed of a high number of genotypes (15 dif- 

ferent genotypes within an area of 320 m-2, Waycott 

1995). In contrast, the studied A. antarctica meadow 

was genetically invariant (Waycott et al. 1996), ~ndicat- 

ing that this population was formed by a single or very 

few genotypes. Waycott et al. (1996) attributed the lack 

of genetic variability in this A, antarctica meadow to 

Inbreeding rather than to low genet formation rate. 

However, the observed differences in fl.owering Inten- 

sity anlong temperate Australian seagrass meadows 

seem to be coupled to their degree of genetic vari- 

ability, indicative that the persistence of these seagrass 

meadows could also rely on different genet replace- 

ment rates. Stable meadows of P australis, T pachy- 

rhizum and H. tasmanica may, therefore, be main- 

tained by a flux of genets, whereas the persistence of 

those of Amphibolis spp., P. angustifolia and P. sinuosa 

would exclusively depend on clonal plant growth. 

Most of the meadows examined here were in steady- 

state; the only decline in short shoot density was 

predkted for 2 populations as a consequence of recent 

low short shoot recruitment rates (Table 5, Fig. 5). This 

decrease in short shoot recruitment, and thus clonal 

growth, however, might simply reflect interannual 

environmental fluctuations involving a decline in plant 

growth, as observed for other seagrass components 

(i.e. leaves and rhizomes, Marba & Duarte 1998). 

However, Posidonia sinuosa, P australis, Amphibolis 

antarctica and A. griffithii meadows elsewhere have 

experienced substantial declines of seagrass cover, 

mainly as a consequence of human activities (e.g. 

industrial and residence development and boat moor- 

ings; Cambridge & McComb 1984, Shepherd et al. 

1989, Walker et al. 1989, Larkum & West 1990, 

Kendrick et al. in press). The slow clonal growth, and 

low flowering intensity, of some of these seagrass 

species (i.e. P. sinuosa, A. antarctica), as demonstrated 

in this study, predict that recovery of disturbed P. sinu- 

osa, A. antarctica meadows should involve time scales 

of centuries. Despite the slow clonal growth of A. grif- 

fithii and P. australis, their high capacity to flower indi- 

cates that sexual reproduction may considerably speed 

up their recovery in disturbed meadows, and might 

explain the surprisingly fast recovery of the A. qriffithii 

meadow observed on Success Bank (Western Au.s- 

tralia, Kendrick et al. in press). 

In, summary, growth and flowering intensity vary 

among temperate Western Australian seagrass spe- 

cies, as a result of large differences in plant size and 

form. Maintenance of seagrass meadows is based on 

the continuous replacement of modules, short shoots 

and genets, which is constrained by the close scaling 

between production and life-span of seagrass compo- 

nents. The different growth programmes of seagrass 

species reveal that seagrass species display different 

plant strategies to maintain their meadows, and con- 

trasting capacities to recover from disturbance. More- 

over, the large differences observed in flowering in- 

tensity, which sets the upper th.reshold of sexual 

reproduction success, across temperate Western Aus- 

tralian seagrasses suggest an important role of sexual 
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reproduct ion for m e a d o w  main tenance  a n d  recovery 

in  s o m e  species .  However ,  fur ther  s tudies  quant i fying 

t h e  flux of g e n e t s  th rough  seagrass  m e a d o w s  a r e  

requ i red  to e lucidate  t h e  rea l  contribution of sexua l  

reproduct ion in  seagrass  m e a d o w  dynamics .  
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