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GH and IGF-I are important regulators of bone homeostasis
and are central to the achievement of normal longitudinal
bone growth and bone mass. Although GH may act directly on
skeletal cells, most of its effects are mediated by IGF-I, which
is present in the systemic circulation and is synthesized by
peripheral tissues. The availability of IGF-I is regulated by
IGF binding proteins. IGF-I enhances the differentiated func-
tion of the osteoblast and bone formation. Adult GH deficiency
causes low bone turnover osteoporosis with high risk of ver-

tebral and nonvertebral fractures, and the low bone mass can
be partially reversed by GH replacement. Acromegaly is char-
acterized by high bone turnover, which can lead to bone loss
and vertebral fractures, particularly in patients with coexis-
tent hypogonadism. GH and IGF-I secretion are decreased in
aging individuals, and abnormalities in the GH/IGF-I axis play
a role in the pathogenesis of the osteoporosis of anorexia ner-
vosa and after glucocorticoid exposure. (Endocrine Reviews
29: 535–559, 2008)
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I. Introduction

GH AND IGF-I ARE IMPORTANT regulators of bone
homeostasis throughout life (1). During the prepu-

bertal period, GH and IGF-I are determinants of longitudinal
bone growth, skeletal maturation, and acquisition of bone

mass, whereas in adults they are important in the mainte-
nance of bone mass (2, 3).

Longitudinal bone growth is determined by chondrocyte
proliferation and differentiation in the epiphyseal growth
plate of long bones, leading to endochondral bone formation.
Within the growth plate, chondrocyte proliferation, hyper-
trophy, and differentiation result in chondrogenesis. The
newly formed cartilage is invaded by blood vessels, and it is
modeled into bone trabeculae. This process, called endo-
chondral ossification, is regulated by genetic and hormonal
factors, the cellular environment, and nutrition (4). During
embryonic development, IGF-I and IGF-II are key determi-
nants of growth, acting independently of GH (5). Postnatally
and throughout puberty, GH and IGF-I play a critical role in
determining longitudinal skeletal growth, (6–8) and chil-
dren with GH deficiency (GHD) display short stature.

In addition to the effects on longitudinal growth, GH and
IGF-I are anabolic hormones and have the potential to reg-
ulate bone modeling and remodeling. Bone remodeling is a
temporally regulated process of coordinated bone resorption
and bone formation carried out in microscopic basic multi-
cellular units (9, 10). There, multinucleated osteoclasts are
attracted to specific sites to resorb bone. When resorption is
completed, there is a reversal period and mononuclear os-
teoblasts are attracted to fill the cavity with newly synthe-
sized matrix. This is followed by a resting phase. Bone re-
modeling is necessary to maintain calcium homeostasis and
to remove potentially damaged bone. Bone modeling occurs
mostly during growth. In contrast to bone remodeling, bone
modeling is a process of uncoupled bone formation and bone
resorption (9, 10). Often it is regulated by mechanical forces,
and it serves to maintain bone shape and mass. GH and IGF-I
exert their anabolic effects on trabecular and cortical bone.
The latter occurs by periosteal bone apposition, a process of
matrix deposition at the outer surface of bone, resulting in
increased bone width, and skeletal strength (11). Effects on

First Published Online April 24, 2008
Abbreviations: ALS, Acid labile subunit; BMD, bone mineral density;

GHD, GH deficiency; GHR, GH receptor; IGFBP, IGF-binding protein;
IGF-IR, IGF-I receptor; IRS, insulin receptor substrate; PAPP-A, preg-
nancy-associated plasma protein-A; PDGF, platelet-derived growth fac-
tor; RANK, receptor activator of nuclear factor �B; RANK-L, RANK
ligand; rhGH, recombinant human GH; STAT, signal transducers and
activators of transcription.
Endocrine Reviews is published by The Endocrine Society (http://
www.endo-society.org), the foremost professional society serving the
endocrine community.

0163-769X/08/$20.00/0 Endocrine Reviews 29(5):535–559
Printed in U.S.A. Copyright © 2008 by The Endocrine Society

doi: 10.1210/er.2007-0036

535



periosteal apposition by GH or IGF-I may explain the char-
acteristic bone deformities occurring in acromegaly.

The anabolic effects of GH and IGF-I in bone are important
for the acquisition of bone mass during adolescence and
possibly for the maintenance of skeletal architecture during
adult life. Late adolescence and early adulthood are critical
periods for the acquisition of bone mass, and the achieve-
ment of peak bone mass (12–14). This is a critical determinant
of future risk of osteoporosis (12, 13). The precise time of the
attainment of peak bone mass is not certain, and it is skeletal-
site dependent. The increase in gonadal steroid synthesis at
the time of puberty is an important hormonal regulator of
bone accretion. Boys with constitutionally delayed puberty
achieve lower peak bone mass than normal boys (15). Sys-
temic and local skeletal IGF-I play a role in bone formation
and the maintenance of bone mass (16). This review will
highlight the mechanisms of GH and IGF-I actions in bone,
skeletal abnormalities occurring in GHD and acromegaly,
and the role of GH and IGF-I in the pathophysiology of
selected forms of osteoporosis.

II. The Growth Hormone (GH)/Insulin-Like Growth
Factor-I (IGF-I) Axis

GH is a single-chain peptide of 191 amino acids. GH was
isolated from somatotrophs, cells of the anterior pituitary
gland, in 1956 and first used for the treatment of pituitary
dwarfism in 1958 (17). The synthesis of GH is under the
control of central and peripheral signals (18). The synthesis
and release of GH are promoted by GHRH and inhibited by
somatostatin and are regulated by a negative feedback mech-
anism (18). IGF-I, which is secreted by the liver under GH
control, inhibits GH secretion directly in somatotrophs and
indirectly by stimulating the release of somatostatin (18).
Ghrelin, a 28-amino acid peptide synthesized by cells of the
gastrointestinal tract, is an endogenous inducer of GH re-
lease, acting on somatotrophs and the hypothalamus (19–22).
Ghrelin also was reported to stimulate the proliferation of
osteoblasts in vitro (23–28). GH secretion is under the influ-
ence of additional hormonal signals, and sex steroids and
thyroid hormone stimulate, whereas glucocorticoids inhibit,
GH secretion (18, 29–32).

Serum GH levels decline with age, reaching a nadir at the
sixth decade (18, 33). In aged men, the daily GH secretion is
1/5 to 1/20 that observed in young adults (34). GH output
decreases twice as rapidly in men as in women so that GH
release remains higher in women than in men after the age
of 50 (35, 36). The age-dependent decline in GH secretion is
secondary to a decrease in GHRH and to an increase in
somatostatin secretion (18). These changes occur at the hy-
pothalamic level, but their cause is unknown. A reduction in
central cholinergic tone leading to an increase in somatosta-
tin release possibly explains the change in GH secretion (37).
The decline in the production of sex steroids, physical ac-
tivity, and the presence of aberrant sleep patterns also may
contribute to the decline in GH levels during aging (38). As
a consequence of the decline in GH synthesis and release,
systemic IGF-I levels decline with advancing age (39). The
changes in GH and IGF-I secretion that occur with aging are

paralleled by a progressive loss of muscle mass and strength,
a decline in physical performance, an increase in body fat,
and a decrease in bone mineral density (BMD) (40–43).

GH circulates bound to a GH-binding protein, which is the
extracellular domain of the GH receptor (GHR) (44, 45). The
GH-binding protein is generated by proteolytic cleavage of
the extracellular domain of the GHR or by mRNA splicing
(46). GH-binding protein is synthesized primarily by the
liver, although synthesis by extrahepatic tissues, such as
muscle and adipose tissue, may contribute to the circulating
level of GH-binding protein (47, 48). The serum levels of the
GH-binding protein serve as a marker of GHR expression
and GH responsiveness in target tissues (46). The function of
the GH-binding protein is incompletely understood, al-
though it may modulate the activity of GH either by pro-
longing its half-life or by reducing its availability to the GHR.

GH exerts its effects by binding to a single-chain trans-
membrane glycoprotein receptor. The GHR consists of an
extracellular, a transmembrane, and an intracellular domain.
Activation of the receptor occurs by ligand-induced dimer-
ization and internalization of the receptor to initiate signal-
ing, primarily by the activation of the Janus tyrosine kinase
2. This leads to autophosphorylation and to phosphorylation
of the internalized GHR and recruitment and activation of
intracellular proteins of which the signal transducers and
activators of transcription (STAT) are the most important,
although additional pathways can operate in GH signal
transduction (49, 50). The GHR is highly expressed in the
liver, adipose tissue, heart, kidneys, intestine, lung, pancreas,
cartilage, and skeletal muscle. GH acts by inducing the syn-
thesis of IGF-I by the liver. However, the physiology of IGF-I
is complex because it acts as a circulating hormone and as a
local growth factor (51). Systemic IGF-I is synthesized pri-
marily in the liver, where its synthesis is GH dependent (51).
IGF-I also is synthesized in multiple extrahepatic tissues,
where it acts as a local growth factor under the control of
diverse hormones. IGF-I circulates as part of a 150-kD com-
plex formed by one molecule each of IGF-I, IGF-binding
protein (IGFBP)-3, the predominant circulating binding pro-
tein, or IGFBP-5, and the acid labile subunit (ALS) (52). There
are six IGFBPs, and IGFBP-1, -2, -4, and -6 also can bind IGF-I
in the circulation and peripheral tissues but do not form part
of the ternary complex. IGFBPs are in concentrations in ex-
cess of IGF-I. Consequently, IGF-I circulates mostly bound to
the complex, and less than 1% of total serum IGF-I circulates
as a free hormone. The 150-kD ternary complex stabilizes
IGF-I, prolonging its circulating half-life and regulating its
availability to target tissues (52). Consequently, the ternary
complex plays an important role in determining the endo-
crine function of IGF-I. ALS is synthesized in the liver under
the control of GH and circulates in excess over the other
components of the complex, so that it plays a critical role in
the storage and release of IGF-I (52). ALS is absolutely nec-
essary for the accumulation and maintenance of serum IGF-I
and IGFBP-3, and als null mice have marked reductions in
serum IGF-I and IGFBP-3 levels, because the ternary complex
cannot be formed (53). Despite this decrease in serum IGF-I,
growth of als null mice is only mildly impaired, but this is
consistent with the modest growth deficit found in mice with
conditional deletions of igf-1 in the liver and confirms that
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systemic IGF-I is dispensable for postnatal linear growth (54).
In addition to its function as a systemic hormone, IGF-I plays
an important role in the autocrine and paracrine regulation
of cell metabolism in a variety of tissues, including cartilage
and bone. Locally, the availability and activity of IGF-I also
is regulated by IGFBPs, and in vitro studies have demon-
strated that at the tissue level most of the IGF is bound to
IGFBPs, with a small fraction present in the unbound free
form. However, in vivo binding interactions between IGF-I
and IGFBPs at the tissue level have not been explored. The
cellular actions of IGF-I are mediated by the IGF-I receptor
(IGF-IR), a receptor tyrosine kinase that is expressed in IGF
target tissues (55).

IGF-II shares biochemical and biological properties with
IGF-I; it is important in skeletal development, but its function
in the adult skeleton is not proven. IGF-II is synthesized by
skeletal cells, but its synthesis is not GH dependent. The
IGF-II/mannose 6 phosphate receptor does not play a major
role in IGF signal transduction and is responsible for clearing
IGF-II, regulating its levels, during fetal development (56).

III. Mechanisms of GH and IGF-I Action in Bone

The skeletal effects of GH and IGF are modulated by
complex interactions between circulating IGF-I and IGFBPs
and the locally produced IGF-I and IGFBPs. IGF-I and IGF-II
are the most abundant growth factors present in skeletal
tissue, and their synthesis and activity are regulated by sys-
temic hormones, such as GH and PTH (57, 58). GH may act
by inducing IGF-I in bone or may have direct effects on
skeletal cells (Table 1).

A. GH

1. GHR and signaling. GHRs are expressed by chondrocytes
and osteoblasts (59–64). The secretion of GH as well as the
expression of GHRs are down-regulated by IGF-I, acting as
a systemic and local feedback control mechanism (65). IG-
FBPs, by binding IGF-I, up-regulate GHR expression (66, 67).
GH signaling in osteoblasts is mediated by a cascade of
protein phosphorylation steps resulting in the activation of
transcription factors. GH signals through Janus tyrosine ki-
nase 2/STAT signal transduction pathway (68). GH utilizes

STAT 5 to regulate IGF-I expression in the liver, but the
function of STAT 5 in bone cells is not clear because stat 5 null
mice appear to have normal bone remodeling (69, 70). Ghr
null mice exhibit decreased bone remodeling, which is res-
cued by IGF-I, suggesting a role of GH/IGF-I in bone re-
modeling that is independent of STAT 5. Using a conditional
deletion approach, STAT 5 was found to mediate the effects
of GH on IGF-I expression in skeletal muscle, but similar
experiments have not been conducted in skeletal cells to
establish the role of STAT 5 in bone remodeling (71). GH also
signals through ERK1 and -2 and MAPKs that regulate os-
teoblastic cell growth (72–75). Acting through STATs and
ERKs, GH may modulate the activity of runt-related tran-
scription factor-2, which is an intracellular protein required
for osteoblast cell differentiation (76, 77).

2. In vitro studies. GH stimulates the proliferation of cells of
the osteoblastic lineage (61, 78–80), although IGF-I is re-
quired for selected anabolic effects of GH in osteoblasts (81).
GH affects the fate of mesenchymal precursors favoring os-
teoblastogenesis and chondrogenesis and opposing adipo-
genesis (82). Mesenchymal precursor cells can differentiate
into adipocytes, osteoblasts, and chondrocytes in a tightly
controlled process (83). Signals that enhance osteoblastogen-
esis often suppress adipogenesis, and adipocytes are in-
creased in the bone marrow of patients with osteoporosis and
are decreased during bone formation and chondrocyte pro-
liferation (82, 84, 85). GH down-regulates the expression of
fetal antigen-1, which is the soluble form of delta like-1 or
Pref-1, and as a consequence may regulate adipogenesis (86,
87). GH also stimulates the expression of bone morphoge-
netic proteins, which are important for the differentiation of
osteoblasts and for bone formation (88–90).

In addition to its effects on the differentiation of cells of the
osteoblast lineage, GH stimulates, either directly or indi-
rectly through IGF-I, the differentiated function of the ma-
ture osteoblast. GH also stimulates the carboxylation of os-
teocalcin, which is a marker of osteoblastic function (91, 92).

During bone remodeling, bone formation is coupled to bone
resorption so that bone-forming osteoblasts fill resorbed bone
surfaces with newly synthesized matrix. In addition, osteoblas-
tic signals are necessary to initiate bone resorption so that bone
resorption and formation are highly coordinated processes and
agents targeting the osteoblast may influence osteoclast forma-
tion and function. Critical to these events are the receptor ac-
tivator of nuclear factor �B ligand (RANK-L) and its decoy
receptor osteoprotegerin (93, 94). RANK-L is synthesized by
osteoblastic stromal cells and, in the presence of colony-stim-
ulating factor-1, induces osteoclast formation. Osteoprotegerin
binds RANK-L and competes with the RANK-L receptor,
RANK, present on the surface of osteoclast precursors. As a
consequence, osteoprotegerin impairs osteoclastogenesis. GH
stimulates the production of osteoprotegerin and its accumu-
lation in the bone matrix (95–98).

GH stimulates longitudinal bone growth, suggesting either
a direct effect of GH on chondrocytes or an effect mediated by
the local IGF-I (99–101) (Fig. 1). GH may act directly to stimulate
the replication of cells in the germinal layer of the epiphyseal
plate or indirectly through its stimulatory effect on IGF-I ex-
pression, acting at later stages of maturation (102). The growth

TABLE 1. Effects of GH on bone

Functions Effects

Growth plate
Replication of condrocytes 11
Endochondral bone
formation

11

Bone remodeling unit
Osteoblastogenesis 1
Proliferation of osteoblasts 1
Function of mature
osteoblasts

71

Production of
osteoprotegerin

1

Production of RANK-L 7
Calcium metabolism

Phosphate retention 1

Effects of GH on bone.7 no effect;1minor stimulating effect;11
major stimulating effect.
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plate consists of three layers of chondrocytes in various stages
of differentiation: the resting zone, the proliferative zone, and
the hypertrophic zone (4). In the resting zone, chondrocytes
replicate at a slow rate and act to replenish the pool of prolif-
erative chondrocytes. In the proliferative zone, chondrocytes
replicate at a high rate, and the resulting daughter cells line up
along the long axis of the bone, where they differentiate ter-
minally into hypertrophic chondrocytes in the hypertrophic
zone. The hypertrophic zone is invaded by blood vessels and
bone cells, the zone is calcified, and new endochondral bone is
formed (102). Cell maturation appears to be an important factor
determining the response of epiphyseal chondrocytes to GH
and IGF-I (103–106).

3. In vivo studies. Mice lacking both the ghr and igf-1 genes
exhibit a more severe growth phenotype than either mutant
alone, suggesting that GH and IGF-I have independent ef-
fects on linear growth (107). Ghr and igf-1 null mice each
exhibited a 25–35% reduction in the length and a 35–45%
reduction in the width of tibiae, whereas double ghr/igf-1
null mutants exhibited a 50% reduction in the length and 60%
reduction in the width of tibiae at 6 months of age (107).
Accordingly, ghr null, igf-1 null, and dual mutants exhibited
a 28, 35, and 67% reduction in body length, respectively. The
phenotype was attributed to decreased proliferation and
maturation of growth plate chondrocytes.

GH also influences bone metabolism indirectly by mod-
ulating PTH secretion and its circadian levels (108). The effect
is mediated in part by changes in serum phosphate levels
(109, 110). Serum PTH peaks around 1700 h, coinciding with
the serum phosphate peak (111–113). GH favors phosphate
retention by increasing the renal threshold for phosphate, an
effect that is independent of PTH and vitamin D activity
(114). In addition, GH and IGF-I modulate the activity of the
renal 1�-hydroxylase and 24-hydroxylase, activating the
former and inhibiting the latter, with an increase in the pro-
duction of active 1,25 dihydroxyvitamin D3 (115). These
mechanisms may contribute to an increase in extracellular

calcium-phosphate product, and possibly bone
mineralization.

B. IGF-I

1. Regulation of local IGF-I synthesis. When synthesized by
peripheral tissues, IGF-I expression is controlled by diverse
hormones and by growth factors. In chondrocytes, IGF-I
synthesis is under GH control, whereas in osteoblasts its
synthesis is fundamentally under the control of PTH (102,
116) (Fig. 1). The igf-1 gene contains six exons and has al-
ternate promoters in exons 1 and 2 (117, 118). The igf-1 gene
generates multiple heterogeneous transcripts due to the pres-
ence of multiple transcription initiation sites in two promot-
ers, alternative splicing, and different polyadenylation sig-
nals. IGF-I splice variants have been reported in muscle,
where their expression can be regulated by mechanical forces
(119). The mature IGF-I peptide is encoded by exons 3 and
4, whereas exons 5 and 6 encode alternate carboxy-terminal
extension peptides of undetermined function. Exons 1 and 2
encode mutually exclusive 5� untranslated regions. The exon
1 promoter has four transcription initiation sites and is re-
sponsible for the regulation of IGF-I expression in most ex-
trahepatic tissues including bone (120, 121). The IGF-I exon
2 promoter has two transcription initiation sites and is re-
sponsible for the transcriptional regulation of IGF-I by GH in
the liver (120). IGF-I exon 2 is minimally expressed by os-
teoblasts, and GH is not a major inducer of IGF-I in these cells
(116, 120). PTH and other inducers of cAMP in osteoblasts
increase IGF-I expression (116). IGF-I mediates selected an-
abolic actions of PTH in bone in vitro and in vivo (122–127).
IGF-I can reproduce selected effects of PTH on cell prolif-
eration and survival (128). Estrogens increase and glucocor-
ticoids decrease IGF-I transcription in osteoblasts (129–132)
(Fig. 1), and selected inhibitory effects of glucocorticoids on
bone metabolism can be explained by reduced IGF-I levels in
the bone microenvironment. However, glucocorticoids have
complex effects on osteoblastogenesis and direct effects on

FIG. 1. Effects of GH and IGF-I on bone. ---� not consistently demonstrated effect; > minor stimulating effect; > major stimulating effect.
FGF, Fibroblast growth factor; E2, estradiol; OPG, osteoprotegerin.
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osteoblastic gene expression. Glucocorticoids oppose Wnt/
�-catenin signaling and activity by destabilizing �-catenin
and, as a consequence, oppose Wnt effects on osteoblasto-
genesis (133). Thyroid hormones are critical regulators of
skeletal development and maturation, and they increase
bone remodeling. T3 increases IGF-I synthesis by osteoblasts,
and IGF-I can mediate anabolic actions of T3 in bone (134,
135). In addition to hormones, skeletal growth factors reg-
ulate IGF-I synthesis. Growth factors with mitogenic prop-
erties, such as platelet-derived growth factor (PDGF) and
fibroblast growth factor decrease IGF-I transcripts and
polypeptide levels in osteoblasts (136). This inhibition of
IGF-I synthesis correlates with their inhibitory actions on
osteoblastic differentiated function (136). In contrast, bone
morphogenetic protein-2, an agent that enhances osteoblastic
differentiation and function, increases IGF-I synthesis in os-
teoblasts (88).

2. IGF-I receptor and signaling. IGF-I signals through the IGF-
IR, a transmembrane glycoprotein tetramer with ligand-ac-
tivated tyrosine kinase activity. Upon ligand binding, the
IGF-IR dimerizes and undergoes autophosphorylation, lead-
ing to the activation of the insulin receptor substrate (IRS)-1
and IRS-2 (55). IRS-1 and -2 mediate the effects of IGF-I in
osteoblasts. IGF-I utilizes the phosphatidylinositol-3 kinase
pathway, which induces the activation of Akt, and the MAPK
pathway, which activates p38, Jun-N-terminal kinases, and
ERK 1/2 (137–139). The usage of each pathway is dependent
on culture conditions and the stage of cell differentiation.
IGF-IR number and affinity are regulated by hormones and
growth factors. In osteoblasts the IGF-IR is modulated by
PDGF, glucocorticoids, and 1,25-dihydroxyvitamin D3
(140–142).

3. In vitro studies. IGF-I and IGF-II are expressed by osteo-
blasts and exert similar biological actions, but IGF-I is more
potent than IGF-II. IGF-I has modest effects on the prolifer-
ation of cells of the osteoblastic lineage, and although IGF-I
does not direct the differentiation of undifferentiated stromal
cells toward cells of the osteoblastic lineage, IGF-I enhances
the function of the mature osteoblast (143, 144). The funda-
mental role of IGF-I is the stimulation of osteoblastic function
and bone formation. IGF-I up-regulates type I collagen tran-
scription and decreases the synthesis of collagenase 3 or
matrix metalloproteinase 13, a collagen-degrading protease
(145). This dual action, an increase in collagen synthesis and
a decrease in its degradation, is important to maintain ap-
propriate levels of bone matrix and bone mass. In accordance
with the effects of IGF-I on osteoblastic function, its synthesis
is regulated by factors that regulate the differentiated ex-
pression of the osteoblastic phenotype (Fig. 1). It is important
to note that whereas IGF-I stimulates the differentiated func-
tion of the osteoblast, it does not have a direct effect on the
differentiation of stromal cells toward mature osteoblasts
(146). Indirectly, IGF-I may favor osteoblastogenesis by sta-
bilizing �-catenin, a signaling molecule used by the Wnt
canonical signaling pathway, which is essential for osteo-
blastogenesis (147, 148). When Wnt signals, �-catenin is sta-
bilized and translocates to the nucleus, where it associates
with members of the T cell factor/lymphoid enhancer factor

family of nuclear proteins to regulate transcription. IGF-I
favors stabilization of �-catenin by inducing phosphatidyl-
inositol-3 kinase and activating Akt, which phosphorylates
and degrades glycogen synthase 3 kinase, the enzyme that
phosphorylates �-catenin for its degradation by ubiquitina-
tion (147, 148). It is of interest that the IGF-I signaling mol-
ecule IRS-1 can associate with �-catenin and regulate its
activity (149). The phosphatidylinositol-3 kinase/Akt path-
way also is used by IGF-I to decrease osteoblast apoptosis.
This effect and the modest mitogenic activity of IGF-I cause
an increase in the number of osteoblasts in vitro. Microarray
analysis of cells of the osteoblast lineage at various stages of
differentiation has demonstrated down-regulation of IGF-I
expression from preosteoblastic cells to fully differentiated
osteoblasts (150). It would appear that a decline in IGF-I
expression is necessary for cellular death to occur and to
allow for the terminal differentiation of osteoblasts.

Less clear is the function of IGF-I on osteoclasts than in
cells of the osteoblastic lineage. Osteoclasts express IGF-I
receptors, and IGF-I has direct effects on their function (151).
In vitro, IGF-I induces RANK-L synthesis and, as a conse-
quence, osteoclastogenesis (152, 153). The induction of
RANK-L by IGF-I may explain the stimulatory effects of
IGF-I on bone resorption, whereas the induction of osteo-
protegerin by GH may temper these effects. The fact that
IGF-I has a dual role enhancing bone formation and bone
resorption may explain why it has modest effects on bone
mass in vivo.

4. In vivo studies. IGF-I has been tested for its effects on bone
metabolism in experimental animals, where the effects on
bone formation observed in vitro have been confirmed. Null
mutations of igf-1, igf-2, or igf-1r in mice cause growth arrest
(154–156). Data from igf-1 and igf-1r gene deletions provide
valuable information on the role of IGF-I during develop-
ment, and conditional deletions of these genes in bone have
provided information on the effects of IGF-I in the adult
skeleton (154, 157). Igf-1 null mutants exhibit impaired chon-
drocyte maturation and shortened femoral length, confirm-
ing the role of IGF-I in the regulation of chondrocyte differ-
entiation (154, 156). Mice that survive exhibit reduced
cortical, but not trabecular, bone, possibly due to a compen-
satory increase in GH secretion or due to a decrease in tra-
becular bone resorption (158). Severe developmental abnor-
malities and frequent lethality have prevented a detailed
analysis of the adult skeletal phenotype of igf-1 null mutants.
Igf-1 null mice also exhibit decreased number of functional
osteoclasts, indicating that IGF-I is required for normal os-
teoclastogenesis (159). As a consequence, igf-1 null mice have
increased bone volume. The null mutation of the igf-1r also
causes severe growth retardation and perinatal lethality
(154). In accordance with these observations, irs-1 null mu-
tants display impaired chondrocyte proliferation and early
closure of the growth plates, resulting in a marked reduction
in growth and weight (160).

The study of genetically engineered mice has provided
additional insight into the actions of systemic and locally
produced IGF-I in osteoblasts in vivo.

a. Effect of circulating IGF-I. Mice carrying mutations of the
ghrh receptor (lit/lit mouse) or the gh receptor have absent GH
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secretion or action and consequently low serum IGF-I levels
(70, 161, 162). These models allow for the determination of
the contribution of systemic IGF-I to the skeleton, and the
phenotype of either mutant is characterized by small growth
plates, osteopenia, and reduced cortical bone, but normal
trabecular bone. This suggests a more pronounced role of
systemic IGF-I on cortical than on trabecular bone. Mice
carrying a liver-specific igf-1 deletion display a reduction in
total serum IGF-I levels, normal free IGF-I levels, and a
modest skeletal phenotype, characterized by a decrease in
cortical volume, secondary to a reduction in periosteal bone
formation (16, 54, 163). The normal serum levels of free IGF-I
are attributed to IGF-I synthesis by nonhepatic sources (54).
Mice carrying deletions of igf-1 and the als display marked
reductions in total serum IGF-I, a more significant decrease
in cortical bone and a decrease in trabecular bone volume.
These observations confirm the contribution of systemic
IGF-I to cortical bone integrity and to a lesser extent to tra-
becular bone. The correlation between IGF-I and bone mass
also has been documented in specific mouse strains that have
allelic differences at key genomic points. The generation of
congenic mice has advanced our understanding of the ge-
netic regulation of selected phenotypes. Two inbred strains
C3H/Hej (C3H) and C57BL/6J display differences in BMD,
which correlate closely with differences in serum IGF-I lev-
els. Quantitative trait locus analysis revealed the presence of
one major quantitative trait locus (Igf1sl-1) in chromosome 6
of the C3H genome with major effects on serum IGF-I con-
centrations (164). Congenic mice carrying Igf1sl-1 on a
C57BL/6J genetic background display a 25% decrease in
circulating IGF-I levels and decreased cortical and trabecular
bone, confirming the role of circulating IGF-I in the main-
tenance of murine bone mass (165, 166).

b. Effects of locally produced IGF-I. Transgenic mice overex-
pressing IGF-I under the control of the osteoblast-specific
osteocalcin promoter exhibit transient increases in trabecular
bone secondary to an increase in osteoblast function and
bone formation (167). Changes in osteoblast number were
not observed, confirming the predominant effect of IGF-I on
osteoblastic function, and not on mitogenesis.

Igf-1r null mice die shortly after birth and exhibit severe
growth retardation. The expression of the Cre recombinase
under the control of the osteocalcin promoter has allowed the
conditional deletion of igf-1 receptor gene, flanked by loxP

sequences, selectively in osteoblasts. Mice carrying this os-
teoblast-targeted conditional deletion exhibit decreased os-
teoblast number and function, causing reduced bone forma-
tion and trabecular bone volume (157). This observation
documents the fundamental role of IGF-I in the maintenance
of trabecular bone structure. Current observations suggest
that systemic IGF-I is necessary to maintain cortical bone
structure, whereas skeletal IGF-I appears to play a more
significant role in the maintenance of trabecular bone. The
function of IGF-I on skeletal homeostasis was confirmed by
the study of mice carrying deletions of the signaling mole-
cules IRS-1 and -2. Irs-1 or -2 null mice exhibit osteopenia
(122, 168). However, their phenotypes are not identical, and
irs-1 null mice display low bone turnover osteopenia and
failure to exhibit an anabolic response to PTH, whereas irs-2

null mice have osteopenia with increased bone resorption
and display a bone anabolic response to PTH (122, 168). The
stimulatory effect of PTH on bone formation in vivo is also not
observed in igf-1 and igf-1r null mice (122–124, 169). Igf-1-
deficient mice failed to show an increase in BMD at the
proximal and distal tibia after PTH administration (170).
Moreover, the deletion of igf-1r in osteoblasts leads to im-
paired stimulatory effects of PTH on osteoprogenitor cell
proliferation (170). These observations do not exclude the
possibility of other factors mediating selected anabolic ac-
tions of PTH on the skeleton. For example, some effects of
PTH in the marrow cellular niche are secondary to the in-
duction of Jagged 1 and the activation of Notch signaling.
PTH decreases the expression of the Wnt antagonist, scleros-
tin, potentially leading to enhanced Wnt signaling, although
Wnt signaling is not required to detect anabolic effects of
PTH in murine models (171, 172). PTH also increases and
activates skeletal TGF � (173).

C. IGF binding proteins (IGFBPs)

IGFBPs are a family of evolutionary conserved-related
proteins, which bind IGF-I and IGF-II (174, 175). IGFBPs have
differential affinity for IGF-I and IGF-II and modulate the
cellular effects of IGFs (174, 175). By binding IGFs, IGFBPs
may sequester the growth factor and preclude its interactions
with cell surface receptors. However, under selected exper-
imental conditions, such as when IGFBPs are associated with
the extracellular matrix, there may be an increase in the
effective concentrations of IGF-I in the cellular environment,
resulting in enhanced IGF-I effects (176, 177). IGFBPs also
have IGF-independent effects.

1. Regulation of local IGFBP synthesis. IGFBP synthesis is reg-
ulated at the transcriptional, posttranscriptional, and post-
translational level. This regulation occurs by cell-specific
mechanisms, and in cells of the osteoblastic lineage the pat-
tern of IGFBP expression is dependent on the stages of os-
teoblast cell differentiation (178, 179). IGFBP-2 and -5 ex-
pression is highest in the proliferative phase of rat
osteoblastic cell cultures, whereas IGFBP-3, -4, and -6 ex-
pression is maximal during terminal cell differentiation
(180). The regulation of IGFBP expression during osteoblastic
cell differentiation may be related to the relative levels of
autocrine and paracrine factors present in the cellular envi-
ronment. IGFs increase IGFBP-5 expression by the osteoblast,
whereas growth factors with mitogenic activity inhibit IG-
FBP-5 and stimulate IGFBP-4 expression (181, 182). Systemic
hormones also regulate IGFBP synthesis in a cell- and culture
condition-dependent manner (178). GH increases IGFBP-3,
and cAMP inducers increase the synthesis of IGFBP-2, -3, -4,
and -5 in osteoblasts (179). The induction of binding proteins
may be a mechanism to control cell exposure to IGF-I. Con-
versely, glucocorticoids inhibit the synthesis of IGF-I, IG-
FBP-3, -4, and -5 and increase the expression of IGFBP-2 in
osteoblasts (132, 183). This may contribute to a reduction in
levels and activity of IGF-I in the bone environment, in ad-
dition to the inhibitory effects of glucocorticoids on IGF-I
synthesis. 1,25-dihydroxyvitamin D3 increases osteoblast IG-
FBP-3 and -4 expression (184).
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2. In vitro and in vivo studies. The ubiquitous overexpression
of IGFBP-1 in mice causes hyperglycemia, suggesting a role
for free IGF-I in glucose homeostasis, but the function of
IGFBP-1 in skeletal cells has not been defined (185). IGFBP-2
is important to transport IGFs, and IGFBP-2 serum levels
correlate with BMD and bone turnover in humans (186). In
vitro, IGFBP-2 prevents the effects of IGF-I on osteoblast
function, and the constitutive and indiscriminate overex-
pression of IGFBP-2 causes impaired growth, decreased bone
mass, and failure to respond to the anabolic effects of GH in
murine bone (187). However, the effects of IGFBP-2 are com-
plex, and igfbp-2 null mice exhibit gender-specific changes in
bone turnover. Female igfbp-2 null mice have increased cor-
tical bone, whereas male null mice display decreased cortical
and trabecular bone secondary to decreased bone formation
(188). These observations suggest that IGFBP-2 is required
for normal bone formation in male mice and are in agreement
with clinical observations indicating a correlation between
serum IGFBP-2 levels and bone remodeling and an anabolic
effect of the administration of IGF-II/IGFBP-2 in disuse os-
teoporosis (189, 190). It is also of interest that mechanical
loading up-regulates the expression of IGF-I and IGFBP-2
transcripts in osteocytes (191, 192). IGFBP-3 is a major com-
ponent of the circulating IGF complex, and its concentrations
are GH dependent (174, 175). In vitro, IGFBP-3 can inhibit or
stimulate IGF activity, the latter by up-regulating IGF-I de-
livery to cell surface receptors (193). However, the constitu-
tive and ubiquitous overexpression of IGFBP-3 in vivo causes
growth retardation and osteopenia (194). IGFBP-4 and IG-
FBP-5 are inhibitors of IGF-I, but under certain experimental
conditions they can simulate bone cell function indepen-
dently of their interactions with IGFs (195). It is important to
note that transgenic mice overexpressing either IGFBP-4 or
IGFBP-5, under the control of the osteoblast-specific osteo-
calcin promoter, exhibit osteopenia secondary to decreased
bone formation (196, 197). The osteopenia is explained by the
sequestration of IGF-I present in the bone environment and
confirms the inhibitory function of IGFBP-4 and -5 in the
skeleton. It is possible that the differential activity of IGFBP-4
and -5 depends on interactions with extracellular matrix
proteins or on the levels of the IGFBP present in a specific
tissue. The inhibitory effects of IGFBP-5 were documented in
vitro using retroviral vectors to overexpress IGFBP-5 in os-
teoblastic cells. Constitutive overexpression of IGFBP-5 in-
hibited osteoblastic cell function, whereas the expression of
IGFBP-5 fragments had no stimulatory or inhibitory activity
(198). The function of IGFBP-6 in skeletal tissue is not known.

3. Regulation of IGFBP action. The abundance of IGFBPs is
regulated by IGFBP proteases. Osteoblasts secrete matrix
metalloproteinases and serine proteases, and these cleave
IGFBPs (199). Pregnancy-associated plasma protein-A
(PAPP-A) is a metalloproteinase expressed by skeletal cells
that plays a critical role in osteoblastic function by modu-
lating IGF-I bioavailability (200). PAPP-A cleaves the inhib-
itory IGFBP-4 in an IGF-dependent manner, and as a con-
sequence the bioavailability of IGF-I is increased (201).
IGFBP-2 and -5 also are substrates for PAPP-A. Addition of
PAPP-A to osteoblast cultures promotes cell proliferation by
increasing IGF-I bioavailability, and transgenic mice over-

expressing PAPP-A under the control of the type I collagen
promoter exhibit increased bone formation and bone area
indicating a bone anabolic effect in vivo (202). Papp-a null
mice lack IGFBP-4 proteolytic activity, and at birth they
exhibit dwarfism secondary to the sequestration of IGF-II by
IGFBP-4 (203). Postnatally, papp-a null mice exhibit decreased
trabecular bone volume, low bone turnover osteopenia, and
delayed fracture healing (204, 205). These observations are
consistent with a decrease in bioavailable IGF-I in the bone
environment due to IGFBP-4 in excess and confirm the fun-
damental role of PAPP-A in the bioavailability of IGF pre-
and postnatally. The expression of PAPP-A in osteoblasts is
enhanced by TGF�, agents that induce cAMP, such as PTH,
and cytokines such as IL-1 and -4 and TNF� (206, 207). The
synthesis and activity of other metalloproteinases, such as
collagenase 3, in osteoblasts also are regulated by cytokines
and hormones, such as IL-6 and glucocorticoids (208, 209).
Limited proteolysis of IGFBPs by a variety of serine proteases
control the bioavailability of IGF-I in the circulation and at
the cellular level, particularly by cleaving IGFBP-3 (174). In
addition, IGFBP-3 is cleaved by plasmin, and the bioavail-
ability of IGF-I in the bone microenvironment can be regu-
lated by activators and inhibitors of plasminogen (210).

IV. Skeletal Manifestations of GH Deficiency and
Excess in Humans

A. Adult growth hormone deficiency (GHD)

Adult GHD is a recognized and treatable clinical entity
(211–213). Severe GHD in adults is associated with adverse
changes in body composition, lipid metabolism, insulin sen-
sitivity, and exercise capacity (211, 212, 214). Adult patients
with GHD suffer from low bone turnover osteoporosis lead-
ing to increased fracture risk, which may contribute to the
increased risk of mortality observed in GHD (1, 215).

1. Bone turnover and calcium metabolism in untreated GHD. GH
and IGF-I play an important role in modulating bone re-
modeling (216). Patients with GHD have a marked reduction
in bone turnover. Bone biopsies from male adult patients
with GHD reveal decreased osteoid and mineralizing sur-
faces and decreased bone formation rate (217). Serum levels
of osteocalcin and bone resorption markers are decreased,
confirming the state of low bone turnover (1, 109, 218–222).
Patients with GHD exhibit renal, skeletal, and intestinal cell
insensitivity to PTH, leading to a mild state of PTH resistance
and increased serum PTH levels (109, 223). Consistent with
a decrease in end-organ sensitivity, the calcemic response to
PTH is delayed (223). GHD also is accompanied by abnor-
malities in the circadian rhythm of PTH, which may affect
bone remodeling (109, 224, 225).

2. BMD and fractures in untreated GHD. Decreased BMD is
reported in patients with GHD, either isolated or combined
with other pituitary hormone deficiencies (1, 215, 226, 227).
Patients with GHD exhibit greater losses of cortical than
trabecular bone, and this observation is in accordance with
the greater effect of systemic IGF-I on cortical than on tra-
becular bone (228, 229). The degree of bone loss is related to
the duration and age of onset of GHD, the severity of the
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disease, and the age of the patients (230–233). About half of
the patients have normal vertebral BMD (234).

GHD is a heterogeneous disorder, and the clinical mani-
festations in patients developing GHD in their childhood are
different than in patients developing the disease after pu-
berty (235). The etiology of childhood-onset GHD is fre-
quently unknown (i.e., idiopathic GHD); however, it may be
secondary to cranial irradiation, neurosurgical removal of
craniopharyngioma, or other hypothalamic-pituitary masses
and infiltrative diseases (e.g., histiocytosis X). Adult-onset
GHD is often secondary to neurosurgery and/or radiother-
apy for a pituitary adenoma, but may be also observed in
other clinical conditions (e.g., empty sella) (236, 237). Patients
with childhood-onset GHD are smaller and have a more
pronounced decrease in muscle and bone mass and lower
IGF-I and IGFBP-3 serum concentrations than subjects with
adult-onset GHD (235, 236). In childhood-onset GHD, ver-
tebral BMD is markedly reduced with T-scores often between
�1 and �2; about one third of the patients have T-scores of
�2.5 or less (238). In contrast, patients with adult-onset GHD
often have vertebral T-scores of �1 or above (222, 225, 238–
253). The reason for the different degrees of bone loss may
be because childhood-onset GHD occurs before the achieve-
ment of peak bone mass, and because the duration of the
disease is longer. In childhood-onset GHD, there may be
impaired acquisition of bone mass during childhood and
adolescence and during the transition period, a period of life
occurring between the closure of the epiphyseal plate and the
attainment of peak bone mass (13, 254–260).

Potential confounding factors in the determination of
BMD in childhood-onset GHD are the presence of decreased
muscle mass and of short stature. The latter occurs in 40% of
patients with childhood-onset GHD, even after replacement
therapy with GH (261). Differences in BMD between child-
hood-onset and adult-onset GHD also are found after cor-
rection for height (262, 263). Consequently, short stature
probably plays a minor role in the lower BMD observed in
childhood-onset GHD, whereas changes in body composi-
tion may play a more significant role (264–266).

The degree of bone loss in adult-onset GHD correlates with
the age of the patients and the duration and the severity of
the disease (222, 228, 230, 239, 252, 267). Patients with severe
GHD, as defined by a GH response in the range of 3.1 to 9.0
�g/liter after GHRH and arginine, or very severe GHD, as
defined by a GH response of 3.0 �g/liter or less after GHRH
and arginine, display significant reductions in BMD (222,
230).

The increased prevalence of osteopenia/osteoporosis in
isolated GHD suggests that GHD per se is the cause of bone
loss. However, in subjects with multiple hormone deficien-
cies, one cannot exclude the possibility that the deficiency of
other pituitary hormones and hormonal replacement may
contribute to the bone loss. In fact, hypogonadism and the
use of replacement therapy with thyroid hormone and glu-
cocorticoids in excess may influence the reduction of BMD in
patients with multiple pituitary hormone deficiencies (268–
270). TSH deficiency may also contribute to the bone loss
(271, 272).

Although untreated GHD can lead to a decrease in bone
mass, data demonstrating an increase in the risk of fractures

are limited. The risk of nonvertebral fractures is increased
about 3-fold in untreated GHD patients (227, 273, 274). Frac-
tures in GHD are frequently localized to the radius, sug-
gesting a loss of cortical bone (227, 274). Patients with GHD
also have an increased incidence of vertebral deformities,
suggesting an increased incidence of vertebral fractures
(234). The prevalence of bone fractures is related to the de-
gree of GHD and seems not to be affected by the presence of
other pituitary hormone deficiencies or by hormonal replace-
ment therapy (227, 268, 275). The different impact of other
pituitary hormone deficiencies or hormonal replacement
therapy on BMD and fractures is consistent with the finding
that fractures do not correlate with BMD in GHD (Fig. 2A)
(234, 268). This is also the case in other forms of secondary
osteoporosis (276–278).

FIG. 2. Scatter plots of BMD T-scores in patients with GHD (A) or
acromegaly (B), with and without fractures. NS, Not significant.
[Adapted from G. Mazziotti et al.: J Bone Miner Res 21:520–528, 2006
(234); and S. Bonadonna et al.: J Bone Miner Res 20:1837–1844, 2005
(276), with permission of the American Society for Bone and Mineral
Research.]
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An additional risk of fractures in adult-onset GHD is a
decrease in muscular strength and, when GHD is secondary
to pituitary tumors, impaired vision. Both factors can lead to
falls and fractures (227, 279).

B. Skeletal effects of recombinant human GH (rhGH) in
adult-onset GHD

1. Bone turnover and calcium metabolism in treated GHD. Re-
placement therapy with rhGH leads to an increase in bone
turnover, as determined by changes in biochemical markers
of bone resorption and bone formation (280). The effect of
rhGH on bone remodeling is biphasic; rhGH causes a max-
imal effect on bone resorption after 3 months and on bone
formation after 6 months. The effect on bone formation is
sustained for prolonged periods of time (1, 97, 246, 280–283).
The effect of rhGH on biochemical markers of bone turnover
is dose dependent (221, 232, 243, 284), but not influenced by
the modality of administration (i.e., continuous vs. daily ad-
ministration, and daily vs. administration three times a week)
(285, 286). rhGH causes an increase in serum and urinary
calcium after 3 to 6 months, an effect caused by calcium
mobilization from the skeleton, an increase in intestinal cal-
cium absorption and in the renal reabsorption of calcium due
to increased sensitivity to PTH (287–290). rhGH is antiphos-
phaturic and increases the intestinal absorption of phosphate
leading to an increase in serum phosphate levels (115, 291–
293). rhGH may normalize the circadian rhythm of PTH
secretion (294).

2. BMD and fractures in treated GHD. The effect of rhGH on
BMD in adult-onset GHD is variable and depends on the
duration of the treatment. Short-term studies failed to show
an increase in BMD, and a decline in BMD may occur in the
initial months of therapy due to an increase in bone resorp-
tion occurring after 3 months without an increase in bone
formation, which occurs after 6 months (240, 250, 295–301).
Subsequently, when bone formation is increased, bone mass
increases, but an increase in BMD can be documented only
after 6 to 12 months in children and after 18 to 24 months in
adults receiving rhGH therapy (1, 302–311). The increase in
BMD is observed for periods of up to 10 yr in patients re-
ceiving continuous rhGH therapy (244, 308). Moreover, BMD
may even continue to increase 18 months after rhGH dis-
continuation (312, 313). In contrast, the effects on body com-
position are lost after the discontinuation of rhGH (312, 313).
rhGH increases bone mineral content to a greater extent than
BMD because rhGH also increases bone area (246, 299). This
is supported by histomorphometric findings demonstrating

an increase in periosteal bone formation during rhGH treat-
ment (301). The effects of rhGH on bone may be potentiated
by antiresorptive drugs, such as bisphosphonates. The ad-
dition of pamidronate or alendronate at the start of rhGH
treatment has been shown to prevent the initial decline of
BMD induced by rhGH treatment (314). The benefits of alen-
dronate are also observed when it is started in patients re-
ceiving long-term rhGH treatment (306, 315). It is unknown
whether bisphosphonates alone can correct the low-turnover
osteoporosis in GHD patients not replaced with rhGH, as
they do in other forms of secondary osteoporosis (278).

Because measurement of BMD in GHD is not a reliable
predictor of fracture risk (234), a direct evaluation of fractures
by a radiological morphometric approach is desirable in
GHD. A concern is the lack of prospective data documenting
a reduction in fractures after rhGH therapy because most
studies have used BMD as primary end-point (304). Cross-
sectional studies have suggested that rhGH treatment re-
duces the risk of vertebral and nonvertebral fractures in GHD
(Table 2). The effect seems to occur even in patients with
untreated hypogonadism (268). The efficacy of rhGH in re-
ducing bone fractures is closely related to the lag-time span-
ning between the diagnosis of GHD and initiation of therapy,
and GH is beneficial only in patients receiving rhGH shortly
after the diagnosis is made (Fig. 3) (234).

3. Predictors of rhGH response in bone

a. Sex. Male and female patients with GHD may display
different responses to rhGH in terms of changes in bone
turnover and BMD. In men, bone formation and resorption
are increased within 1 month of rhGH treatment, whereas in
women the increase occurs after 3 months. The increase in
markers of bone resorption precedes the change in bone
formation markers by about 9 months (316). The early change
of bone remodeling may lead to a greater increase in BMD
in males than in females, in whom only stabilization of BMD
is achieved (253, 281, 282, 305, 309, 311, 317–319). These
gender-dependent differences may also reflect the different
impact of hypogonadism in male and female subjects with
GHD (320–322). Recently, a decreased incidence of clinical
fractures has been reported only in males with treated adult-
onset GHD as compared with the normal population (323).

b. Age of onset of GHD. The effect of rhGH on bone turnover
and BMD is different between childhood-onset and adult-
onset GHD. In adult-onset GHD, bone formation increases
after 6 months of treatment, with little change thereafter (232,
324). In contrast, in childhood-onset GHD there is a progres-

TABLE 2. Risk of fractures in adult-onset GHD patients untreated and treated with rhGH

Study (Ref.) No. of patients Type of fractures
Fracture Risk

Untreated rhGH
treated

Rosen et al. (273) 107 Clinical nonvertebral Increased N.D.
Wuster et al. (227) 2084 Clinical nonvertebral Increased Decreased
Vestergaard et al. (275) 199 Clinical nonvertebral Increased Un-

changed
Bouillon et al. (274) 66 Clinical nonvertebral Increased N.D.
Mazziotti et al. (234) 107 Morphometric vertebral Increased Decreased

N.D., not determined.
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sive increase in bone formation for up to 12 months after
rhGH, which is followed by a return to baseline values after
18 months of therapy (233). Patients with childhood-onset
GHD generally display an increase in BMD after 6 to 12
months of rhGH therapy, whereas patients with adult-onset
GHD require 18 to 24 months of rhGH to exhibit a change in
BMD (246, 305, 324, 325).

c. Dose of GH. In childhood-onset GHD, there is a linear
correlation between the dose of rhGH and the increase in
BMD (326), indicating a need for optimization of the dose of
rhGH in children. In contrast, in adult-onset GHD, low of
rhGH have an optimal effect on BMD, whereas at high doses
rhGH may cause an initial decline in BMD, probably due to
an increase in bone resorption (243, 324, 327–329).

d. Concomitant diseases. The underlying pituitary disease
may alter the effects of rhGH on bone mass. A delayed effect
of rhGH replacement therapy on BMD is observed in patients
with Cushing’s disease and in patients with hyperprolactine-
mia and hypogonadism, when compared with patients bear-
ing nonsecreting pituitary adenomas (330).

4. Monitoring patients with GHD and the response to GH. Pa-
tients with GHD are at high risk for osteoporosis and frac-
tures (212, 213, 238). Therefore, it is important to follow the
patients and monitor changes in skeletal metabolism. Os-
teoporosis, when complicated by fractures, contributes to an
increased mortality (331). Current guidelines from The En-
docrine Society recommend obtaining BMD before initiating
therapy with rhGH (238). An independent assessment of
fractures also could be useful because BMD is not a good
predictor of fractures in GHD. In fact, an early diagnosis of
vertebral fractures is important to assess the future risk of
osteoporotic fractures (332). After the initiation of rhGH, the
measurement of serum calcium, phosphate, alkaline phos-
phatase activity, and osteocalcin levels may be useful to
ensure that a therapeutic response was achieved. After 18 to
24 months of treatment and then every 2 yr, BMD measure-
ments should be considered (238). The measurement of BMD
is important in severe GHD patients during the so-called

transition period, to monitor the achievement of the normal
peak bone mass. The European Society for Pediatric Endo-
crinology recommends measuring BMD at baseline and at 2-
to 5-yr intervals, and the attainment of a normal peak bone
mass is defined in the presence of T-score as greater than �1
sd (333).

C. Skeletal manifestations of acromegaly

Acromegaly is a disease caused by the excessive secretion
of GH, and in more than 90% of the cases its etiology is a
benign monoclonal pituitary adenoma (334). The incidence
of acromegaly is approximately three cases per 1 million
persons per year, and its prevalence is about 60 cases per
million (335). The clinical manifestations of acromegaly
range from subtle signs of GH/IGF-I excess, such as acral
overgrowth and coarsening of facial features, to significant
metabolic, cardiovascular, and respiratory manifestations,
leading to an increase in morbidity and mortality (336–338).

1. Bone turnover and calcium metabolism in untreated acromegaly.
Patients with acromegaly have increased bone turnover, as
determined by changes in biochemical markers, calcium ki-
netics, and bone histomorphometry (339–348). Biochemical
markers of bone formation and bone resorption are in-
creased, but markers of bone resorption are disproportion-
ately increased in relation to markers of bone formation, and
their increase could reflect the degree of bone loss observed.
Serum GH and IGF-I levels correlate with markers of bone
resorption, whereas only circulating levels of IGF-I correlate
with markers of formation (349).

Serum concentrations of PTH, 1,25-dihydroxyvitamin D3,
calcium, and phosphorus are increased in active acromegaly
(343, 350, 351). GH stimulates the parathyroid gland and may
affect PTH pulsatility, but the contribution of PTH to the
skeletal effects observed in acromegaly is not clear (108, 351,
352).

2. BMD and fractures in untreated acromegaly. The effects of GH
excess on BMD are variable in relation to the skeletal site
possibly due to different sensitivity to GH excess of trabec-

FIG. 3. Prevalence of fractures in adult-onset GHD, untreated and treated (early and late in the course of the disease) with rhGH. *, P � 0.05
untreated vs. late treated or untreated GHD. [Adapted from G. Mazziotti et al.: J Bone Miner Res 21:520–528, 2006 (234) with permission of
the American Society for Bone and Mineral Research.]
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ular and cortical bone (1). Decreased BMD has been reported
in acromegaly almost exclusively at the lumbar spine, a site
rich in trabecular bone, whereas increases in BMD may be
observed in the forearm, a site rich in cortical bone (339, 340,
347, 348, 353–358). The variability of data on BMD in acro-
megaly may also be explained by the diversity of densito-
metric techniques used. However, peripheral quantitative
computerized tomography and bone biopsies consistently
demonstrated differential responses of trabecular and corti-
cal bone to excess GH/IGF-I in humans (359).

Age, gender, and the presence or absence of hypogonad-
ism influence vertebral BMD in acromegaly (346, 348, 349,
355, 356, 360–362); vertebral BMD is inversely correlated
with the duration of the hypogonadism (361).

Studies on the prevalence of bone fractures in acromegaly
are limited (276, 363, 364). However, a higher incidence of
radiological vertebral deformities is observed in postmeno-
pausal women with active acromegaly than in nonacrome-
galic postmenopausal women (276). This suggests that ac-
romegaly is associated with an increased risk of osteoporotic
vertebral fractures, although they are often not diagnosed or
detected (332). The occurrence of vertebral deformities in
acromegaly correlates with the duration of the active disease
and with serum levels of IGF-I, but not with BMD, and they
are found in patients with normal or minimally decreased
BMD (Fig. 2B) (276). The mechanisms underlying the met-
abolic bone disease of acromegaly are multifactorial and
possibly include an increase in bone resorption secondary to
IGF-I excess and to sex hormone deficiency.

3. Effects of treatment on skeletal abnormalities in acromegaly.
There are limited data on the effects of treatment of acro-
megaly in bone metabolism, BMD, and fractures. Metabolic
abnormalities observed in acromegaly improve after trans-
phenoidal pituitary surgery or pharmacological therapy
(365–368). The effects of the normalization of GH/IGF-I se-
cretion on PTH levels and activity are variable (367, 369–371).
After hormonal control (372), acromegalic patients develop
a reduction in PTH target organ sensitivity and a reduced
nocturnal rise in PTH (351). Postmenopausal women with
controlled acromegaly have reduced risk of radiological ver-
tebral fractures compared with patients with active acro-
megaly. This reduced risk occurs in the absence of a signif-
icant increase in BMD (276) (Fig. 4). It is of interest that after

therapy, fractures are observed more often in patients with
low levels of serum IGF-I (276).

A sustained normalization of bone turnover occurs after
treatment of acromegaly with the GH antagonist pegviso-
mant, a selective antagonist of the GHR, which controls IGF-I
secretion (371, 373).

4. Monitoring patients with acromegaly. A consensus statement
from the Pituitary Society and European NeuroEndocrine
Association for the diagnosis, treatment, and follow-up of
acromegaly and its complications was published in 2003
(336). The determination of BMD was recommended only in
hypogonadal acromegalic patients. Consequently, hypogo-
nadal and postmenopausal patients should be screened with
BMD. Radiological evaluation of the spine is advisable to
exclude morphometric prevalent fractures (276). As recom-
mended in the cited consensus statement, patients with un-
controlled active acromegaly or with established osteoporo-
sis should be monitored with periodic BMD measurements,
particularly when they are hypogonadal.

V. Skeletal Manifestations of Selected Diseases with
Abnormal GH/IGF-I Axis

A. Postmenopausal and senile osteoporosis

Postmenopausal osteoporosis occurs in approximately
35% of postmenopausal white women and 19% of white
elderly men (374). Estrogen deficiency plays a role in the
pathogenesis of postmenopausal osteoporosis and possibly
male osteoporosis (375, 376). A number of other factors have
been implicated in the etiology of bone loss, including sec-
ondary hyperparathyroidism, vitamin D deficiency, and de-
creased IGF-I levels, which could lead to impaired osteo-
blastic function in an elderly population (377, 378).

There are some analogies between the clinical features of
adult GHD and of advancing age, and a relative GH-deficient
state, the somatopause, may occur during aging. A decline
in GH and IGF-I secretion may play a role in the pathogenesis
of osteoporosis (379–381). There is a correlation between
serum IGF-I levels and BMD in postmenopausal women, and
igf-1 promoter polymorphisms have been linked to bone
mass (382–386). The content of IGF-I in human cortical bone
decreases with age, a decline that parallels the one observed

FIG. 4. Differences in fracture rates and BMD between patients with active acromegaly and those with controlled acromegaly. *, P � 0.05
controlled vs. active acromegaly. [Modified from S. Bonadonna et al.: J Bone Miner Res 20:1837–1844, 2005 (276), with permission of the
American Society for Bone and Mineral Research.]
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in serum concentrations of IGF-I (387). Consequently,
changes in IGF-I content in the cortical bone may be due to
a decrease in skeletal IGF-I accumulation from the systemic
circulation, or due to a decrease in the synthesis of IGF-I by
the aging skeleton.

rhGH increases bone turnover in normal subjects and im-
proves bone mineral metabolism in postmenopausal fe-
males, males with idiopathic osteoporosis and elderly pa-
tients, but the effect of rhGH on BMD is controversial (388–
399). Some studies have reported an increase in BMD after
rhGH treatment of normal subjects and osteoporotic pa-
tients, whereas some have shown a lack of an effect (395–
400). The lack of a response is observed despite increases in
serum IGF-I. A recent meta-analysis has demonstrated no
beneficial skeletal effect of rhGH in older subjects. This find-
ing may be influenced by the scarcity of controlled trials
suitable for the meta-analysis, as well as by the heterogeneity
of the subjects examined (401).

An orally active GH secretagogue (MK677) combined with
alendronate determined an improvement of BMD only at
femoral neck in postmenopausal osteoporosis (402). Recom-
binant human IGF-I can influence bone metabolism in hu-
mans, but the lack of skeletal specificity and potential side
effects would limit its possible use in osteoporosis (391,
403–408).

B. Anorexia nervosa

Anorexia nervosa is a severe eating disorder that leads to
progressive malnutrition (409). The prevalence of the disease
in adolescents and young adults is between 0.5 and 1%, with
an incidence of five to 10 new cases per 100,000 women
between 15 and 19 yr of age per year (410). Osteopenia and
osteoporosis are important features of anorexia nervosa, oc-
curring in about 92 and 38% of the patients, respectively
(411–414). Anorexia nervosa is associated with an increased
prevalence of fractures (415, 416). The bone loss is severe and
rapid with an average annual loss of BMD of 2.5% (412). Bone
loss in anorexia nervosa is due to a reduction in bone for-
mation and an increase in bone resorption (406, 412, 416, 417).
The pathogenesis of the bone loss is multifactorial, and de-
creased body weight is the most important predictor of os-
teoporosis (418). Peak bone mass is not achieved during
adolescence (417–423). Body weight recovery leads to skel-
etal improvement, and lean body mass is the most important
component determining skeletal recovery (412, 417). An-
orexia nervosa is associated with profound metabolic abnor-
malities, including amenorrhea, GH resistance with de-
creased IGF-I synthesis, hypercortisolism, and decreased
serum leptin levels. These abnormalities may play a role in
the pathogenesis of the bone loss, which occurs mostly at
sites rich in trabecular bone (424). Although hypogonadism
may be a factor in the development of osteoporosis, estrogen
deficiency alone does not explain the extreme degree of bone
loss observed in anorexia nervosa (412, 425, 426). In fact, bone
loss is more severe in young women with anorexia nervosa
than in age-matched women of normal weight suffering from
hypothalamic amenorrhea and with an equivalent degree of
estrogen deficiency (427). Preservation of gonadal function
does not protect against the bone loss, although the resump-

tion of menstrual function is an important predictor of ver-
tebral BMD recovery in amenorrheic women with anorexia
nervosa (412, 425). Replacement therapy with estrogen/pro-
gestin in women with anorexia nervosa does not increase
BMD, confirming that factors other than hypogonadism are
important determinants of the bone loss (428, 429).

A state of GH resistance characterized by increased GH
and decreased IGF-I serum levels is present in anorexia ner-
vosa and may be related to the nutritional state of the patient
(424, 430–447). Serum IGF-I, IGFBP-2 and -3 levels are useful
nutritional indicators, and in anorexia nervosa, serum levels
of IGF-I and IGFBP-3 are low, whereas serum IGFBP-2 is
elevated (448–456). The decreased serum levels of IGF-I and
IGFBP-3 and the increased levels of IGFBP-2 may contribute
to the bone loss observed in anorexia nervosa. In fact, these
parameters correlate with markers of bone formation, and
IGFBP-3 is an independent determinant of hip BMD (457–
460). Moreover, an improvement in the nutritional status of
patients with anorexia nervosa leads to an increase in serum
IGF-I levels, followed by a progressive increase in markers
of bone formation (457, 460–462).

IGF-I was assessed for its effect on bone turnover and bone
mass in anorexia nervosa. Short-term rhIGF-I treatment in-
creases bone turnover in a dose-dependent fashion (407).
Interestingly, low doses of rhIGF-I induced an increase in
bone formation without a stimulation of bone resorption
(407). Low doses of rhIGF-I in combination with estrogens
increase BMD (429). These results are encouraging, but ap-
propriate trials to establish the role of rhIGF-I in the treat-
ment of anorexia nervosa are needed.

C. Glucocorticoid-induced osteoporosis

Glucocorticoid-induced osteoporosis is the most common
form of secondary osteoporosis (278). Glucocorticoids have
direct and indirect effects on the skeleton. Glucocorticoids
impair the replication, differentiation and function of osteo-
blasts and induce the apoptosis of mature osteoblasts and
osteocytes (278). These effects lead to a suppression of bone
formation, a central feature in the pathogenesis of glucocor-
ticoid-induced osteoporosis. Glucocorticoids inhibit GH se-
cretion by increasing the somatostatin tone in the hypothal-
amus, and glucocorticoids reduce the GH response to GHRH
(18, 463–466). This also is observed in asthmatic patients
using inhaled glucocorticoids, although serum levels of IGF-I
and biochemical markers of bone remodeling are not altered
by inhaled glucocorticoids (467). In vitro, glucocorticoids
suppress IGF-I transcription in bone cells (468).

The abnormal GH secretion in glucocorticoid-induced os-
teoporosis is associated with abnormal bone turnover and
ultrasonometric data (469). An increase in serum osteocalcin,
carboxy-terminal propeptide of type I procollagen, and car-
boxy-terminal telopeptide of type I collagen was observed
after short-term rhGH treatment in a selected group of pa-
tients on chronic corticosteroid therapy (470). Combined
rhGH and rhIGF-I therapy counteract selective negative ef-
fects of short-term glucocorticoid therapy in healthy volun-
teers (471). Theoretically, due to the kinetics of bone markers
in subjects treated with glucocorticoids and GH, a window
of opportunity exists for GH treatment in patients with glu-

546 Endocrine Reviews, August 2008, 29(5):535–559 Giustina et al. • GH, IGF, and Bone



cocorticoid-induced low bone turnover osteoporosis. How-
ever, bone cells are resistant to the effects of GH and IGF-I
in the presence of glucocorticoids (133, 472), and there is little
evidence for a beneficial effect of GH or IGF-I in glucocor-
ticoid-induced osteoporosis (473). Observational and con-
trolled studies in children receiving glucocorticoid therapy
for juvenile idiopathic arthritis showed that rhGH restores
normal height velocity with a concomitant improvement in
bone mineralization (474–476). Potential side effects of
chronic rhGH administration in long-term glucocorticoid us-
ers are hyperglycemia and hypertension, although addi-
tional benefits on body composition by GH administration
are possible (214).

VI. Conclusions

GH and IGF-I are anabolic hormones with an important
role in the regulation of bone remodeling. GH and IGF-I are
necessary to achieve and maintain bone mass throughout
life. IGF-I mediates most of the effects of GH on skeletal
metabolism, IGF-I increases bone formation by regulating
the differentiated function of the osteoblast, and as a con-
sequence GH and IGF-I increase bone remodeling. Diseases
affecting the GH/IGF-I axis are frequently associated with
significant alterations in bone metabolism that often lead to
bone loss.

Acknowledgments

Received October 16, 2007. Accepted April 3, 2008.
Address all correspondence and requests for reprints to: Prof. Andrea

Giustina, Department of Medical and Surgical Sciences, University of
Brescia, c/o Endocrinology Service, Montichiari Hospital, Via Ciotti 154,
25018 Montichiari, Italy. E-mail: a.giustina@libero.it

This work was supported by Ministero Italiano dell’Istruzione,
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