
Growth Hormone Receptor Antagonists: Discovery,
Development, and Use in Patients with Acromegaly

J. J. KOPCHICK, C. PARKINSON, E. C. STEVENS, AND P. J. TRAINER

Edison Biotechnology Institute (J.J.K., E.C.S.), Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio
University, Athens, Ohio, 45701; and Christie Hospital (C.P., P.J.T.), Department of Endocrinology, Manchester, M20 4BX,
United Kingdom

An understanding of the events that occur during GH receptor
(GHR) signaling has facilitated the development of a GHR
antagonist (pegvisomant) for use in humans. This molecule
has been designed to compete with native GH for the GHR and
to prevent its proper or functional dimerization—a process
that is critical for GH signal transduction and IGF-I synthesis
and secretion. Clinical trials in patients with acromegaly

show GHR blockade to be an exciting new mode of therapy for
this condition, and pegvisomant may have a therapeutic role
in diseases, such as diabetes and malignancy, in which ab-
normalities of the GH/IGF-I axis have been observed. This
review charts the discovery and development of GHR antag-
onists and details the experience gained in patients with
acromegaly. (Endocrine Reviews 23: 623–646, 2002)
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I. Introduction

WITHIN 12 yr the GH receptor (GHR) antagonist has
developed from a scientific concept to a commer-

cially available product (pegvisomant) of proven efficacy.
GH is a protein that contains 191 amino acids with 2

disulfide bonds and 4 �-helices (Fig. 1). Its molecular mass
is approximately 22,000 Da. By combining site-specific mu-
tagenesis studies of the GH gene with the in vivo assay of the
ability of GH analogs to regulate growth of transgenic mice,
a GH antagonist was discovered (1–4). Glycine in the third
�-helix of GH was found to be particularly important for
GH’s biological activity. If it is replaced with arginine, lysine,
or with a variety of amino acids, GH is converted from a
growth enhancer to a growth suppressor or a GH antag-
onist (4).

Subsequent observations describing the interaction of GH
with two identical cell-surface receptors (5, 6) and a second
confirmatory report describing generation of the GH antag-
onist by substituting human (h)GH glycine-120 with arginine
(7) set the stage for the development of a GH antagonist for
clinical uses.

Pegvisomant is a GH analog that includes a single-amino-
acid substitution at position 120 that generates the antago-
nist. Additional changes include amino acid substitutions
within binding site 1 and a further modification by the ad-
dition of polyethylene glycol moieties that increase the half-
life and reduce the immunogenicity of the molecule.

Pegvisomant’s development has been paralleled by in-
creased awareness of the need for tight control of the GH/
IGF-I axis in patients with acromegaly. Despite the best en-

Abbreviations: ALS, Acid labile subunit; bGH, bovine GH; CIS, cy-
tokine inducible Src homology 2-containing protein; CRT, conventional,
three-field, pituitary radiotherapy; GHD, GH deficiency; GHR, GH re-
ceptor; GHS-R, GH secretagogue receptor; hGH, human GH; 11�-HSD,
11�-hydroxysteroid dehydrogenase; IGFBP, IGF binding protein; JAK2,
Janus-kinase 2; LDL, low-density lipoprotein; LFTs, liver function tests;
mGHBP, mouse GH binding protein; mGHR, mouse GHR; PEG, poly-
ethylene glycol; rhIGF-1, recombinant human IGF-I; SMS, somatostatin;
SOCS, suppressors of cytokine signaling; SSTR, SMS-receptor; STAT,
signal transducer and activator of transcription; TC, total cholesterol.
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deavors of dedicated pituitary surgeons combined with
dopamine agonist and somatostatin (SMS) analog therapy, a
significant proportion of patients remain inadequately con-
trolled and in need of additional treatment.

The evidence from early clinical studies indicates pegvi-
somant to be the most potent medical treatment for acro-
megaly, with serum IGF-I being reduced into the age-related
reference range in excess of 90% of patients. A great deal
more knowledge will be gained in terms of long-term effects
of pegvisomant on both the metabolic consequences of ac-
romegaly and on pituitary adenoma tumor growth as these
clinical studies continue. Epidemiological and preclinical
studies suggest pegvisomant may also have a role in the
management of microvascular complications of diabetes
mellitus and certain human malignancies, specifically those
in colon, breast, and prostate. This review will not discuss
these issues but will review and discuss the discovery, de-
velopment, and clinical experience with pegvisomant.

II. GH

A. The GH gene family

GH is a member of a hormone family that includes PRL
and the placental lactogens. The genes that encode these
hormones are believed to have evolved over the last 350
million years via the duplication of a common ancestral gene
(8). In this regard, the primary structure of GH shares a high
degree of identity with both PRL and the placental lactogens
(8–10). Further characterization of these three hormones has
demonstrated that they are structurally (10, 11), genetically
(8, 9), and functionally (10, 11) similar and clearly represent
a distinct family of proteins. Based on structural studies,
mouse proliferin, mouse proliferin-related protein, rat de-
cidual PRL-like protein, and somatolactin have been iden-
tified as additional members of the GH gene family (12–16).
These four helical bundle hormones have structural homol-

ogy with other members of the class 1 cytokine family such
as leptin and erythropoietin (11).

B. GH gene structure and regulation

The hGH gene is located on the long arm of chromosome
17 as part of a gene cluster composed of five closely related
genes (17). This cluster spans 66.5 kb and is composed of the
genes for GH, choriosomatomammotrope hormone L, cho-
riosomatomammotrope hormone A, GH variant, and cho-
riosomatomammotrope hormone B (17). The 5� flanking area
of the cluster contains a transcriptional control region con-
sisting of the following cis elements (from 5� to 3�): enhancer
region, glucocorticoid responsive element, two copies of the
pituitary-specific GH transcription factor (GHF-1 or pit-1), a
cAMP responsive element, and a TATA box (18).

GH is synthesized and secreted by the somatotroph cells
in the anterior lobe of the pituitary gland (8, 10). The GH gene
is approximately 3 kb long, consists of 5 exons and 4 introns,
and encodes a 217-amino-acid precursor protein (8). An ami-
no-terminal signal peptide is subsequently removed by pro-
teolytic cleavage yielding a mature single-chain polypeptide
that contains 191 amino acids with a molecular mass
of approximately 22 kDa (8, 10, 11, 19–21). A 20-kDa form
of GH has also been found to be secreted by the pituitary
and is produced by alternative splicing of the GH precursor
mRNA (22).

It has been established that the synthesis and secretion of
GH from somatotrophs is a calcium (Ca�)-dependent event
during which an increase in cytosolic Ca� is required for GH
release (23). GH synthesis and secretion are regulated by at
least two hypothalamic peptides, GHRH and SMS, via their

FIG. 2. Regulation of GH synthesis and secretion. The hypothalamic
hormones GHRH and somatostatin elicit an increase and decrease in
circulating GH levels, respectively. Circulating GH binds to the GHR
on peripheral tissue such as muscle, liver, and bone to induce the
secretion of IGF-I. IGF-I itself then has growth-promoting effects on
target tissues. IGF-I can also decrease circulating GH levels via feed-
back inhibition at either the hypothalamic or pituitary level. [Adapted
from J. J. Kopchick and J. M. Andry: Mol Genet Metab 71:293–314,
2000 (267).]

FIG. 1. Computer representation of porcine GH crystal structure.
The four antiparallel �-helical bundles are represented as cylindrical
rods and labeled with Roman numerals I–IV. The amino and carboxyl
termini are indicated with an N and C, respectively. The numbers
indicate amino acid positions at the N and C termini of each inde-
pendent �-helix. [Adapted from S. S. Abdel-Meguid et al.: Proc Natl
Acad Sci USA 84:6434–6437, 1987 (30).]
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opposing effects on intracellular Ca� concentration (Fig. 2
and Ref. 24). The GHRH elicits an increase in intracellular
Ca� via its G protein-coupled receptor by increasing the level
of cellular cAMP (25). In somatotrophs, an increase in cAMP
production leads to an increased transcriptional rate of the
trans-acting pituitary-specific transcription factor, pit-1. Sub-
sequently, pit-1 (also termed GHF-1) is responsible for en-
hancing the transcriptional rate of the GH gene (26). Con-
versely, SMS has an opposing effect on intracellular Ca�

concentration compared with GHRH and, therefore, inhibits
GH synthesis and secretion (25).

Recently, it has been demonstrated that GH release is also
stimulated by a class of molecules known as GH-releasing
peptides (27). The GH-releasing peptides are a group of short
synthetic peptides that stimulate GH release via binding to
a newly identified receptor, the GH secretagogue receptor
(GHS-R) (28). The GHS-R cDNA encodes a seven-transmem-
brane G protein-coupled receptor of 364 amino acids and is
highly conserved between rat, human, and pig (28). Kojima
et al. (29) have identified and purified an endogenous GHS-R
ligand termed ghrelin, a 28-amino-acid peptide found in both
rat and human stomachs that, when n-octanoylated at
serine-3, stimulates the release of GH both in vitro and in vivo
(Fig. 2). The identification of ghrelin suggests that GH release
can be regulated by peripheral signals, independent of those
generated by the hypothalamus.

C. GH tertiary structure

The three-dimensional structures of porcine GH and hGH
have been determined by x-ray crystallography (Fig. 1 and
Refs. 6 and 30). As expected from their sequence similarities,
these molecules share similar topographies. Both molecules
contain two disulfide bridges and a four-helical bundle in
which the helices are arranged in an “up-up-down-down”
topology. Helices 1, 2, 3, and 4 are located between residues
9–34, 72–92, 106–128, and 155–184, respectively, in hGH. The
disulfide linkages in hGH occur between residues Cys35-
Cys165 and Cys182-Cys189. Three shorter connective helices
also exist in hGH, two between helices 1 and 2 and one
between helices 2 and 3. GH also contains a hydrophobic
central core that is composed of approximately 20 hydro-
phobic amino acids. Residues in the lower half of helix 3 are

hydrophobic and they are buried in this hydrophobic core
(see Fig. 3).

III. GHR

A. Class I cytokine receptor superfamily

GH exerts its biological effects by binding to specific cell
surface receptors. The GHR belongs to the class I cytokine
receptor superfamily that includes receptors for PRL, eryth-
ropoietin, leptin, interferons, granulocyte colony stimulating
factor, and the interleukins (31). These receptors are single-
pass transmembrane proteins that contain an extracellular
region, a single hydrophobic transmembrane domain of 24
amino acids, and an intracellular region. Although the over-
all sequence homology of these receptors is relatively low,
they do contain highly conserved regions of amino acids. The
family members contain two conserved pairs of cysteine
residues involved in disulfide linkages and, with the excep-
tion of GHR, contain a conserved WSXWS (tryptophan,
serine, any amino acid, tryptophan, serine) motif at the mem-
brane proximal region of the extracellular domain (32, 33).
The intracellular regions of these receptors also share two
conserved motifs. Box I is a proline-rich membrane proximal
region that consists of eight conserved amino acids (32, 33).
Box 2 is a conserved region located approximately 30 amino
acids C terminal of Box 1 that is characterized by a cluster of
hydrophobic and charged amino acids (32, 33).

B. GHR gene and primary structure

The hGHR gene is localized on the short arm of chromo-
some 5 in the region p13.1-p12 (34). The 5� untranslated
region of this gene contains multiple exons that alternatively
serve as exon 1 (35). A secretory signal peptide is encoded by
exon 2, exons 3–7 encode the extracellular domain, exon 8
encodes the transmembrane domain, and exons 9 and 10
encode the intracellular domain of the receptor (36). The
mouse GHR (mGHR) gene was cloned, characterized, and
determined to be similar in size and sequence to the hGHR
gene but contains two additional exons (37). These include an
exon 4B, which is downstream of exon 4, and an exon 8A,
which is upstream of exon 8. Exon 4B encodes an eight-

FIG. 3. Edmondson wheel projection of
the third �-helix (amino acids 109–126)
of bGH and hGH (amino acids
110–127). Each amino acid position is
given. Amino acids in red are hydro-
philic (top half of wheel) and those in
blue (bottom half of wheel) are hydro-
phobic. Glycine-119 (bovine) and gly-
cine-120 (human) are indicated in
black.
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amino-acid segment of the extracellular domain of the re-
ceptor and is present in all known mGHR transcripts. Exon
8A serves as an alternative splice site for the mGHR and rat
GHR gene (37, 38). Alternative splicing via this exon gives
rise to the mouse GH binding protein (mGHBP) transcript
that contains the first seven exons of the mGHR gene as well
as exon 8A but lacks the transmembrane and cytoplasmic
domains. Thus, the transcript for the mGHR does not include
exon 8A, as splicing occurs directly from exon 7 to exon 8. In
humans, GHBP is produced via proteolytic cleavage of mem-
brane-bound GHR; however, in mice, the mGHBP transcript
gives rise to the soluble binding protein (35, 37, 38).

The GHRs are a single polypeptide chain that range from
614–626 amino acids in length with a predicted molecular
mass of approximately 70 kDa. However, the observed ex-
perimental molecular mass of GHR ranges from 100 to 130
kDa due to posttranslational glycosylation and ubiquitina-
tion (33, 35, 39). The extracellular region of GHR contains
seven cysteine residues and five potential N-linked glyco-
sylation sites that are highly conserved between species.
Also, the GHR contains a 24-amino-acid transmembrane do-
main and the intracellular Box 1 and Box 2 regions that are
characteristic of the class I cytokine receptor family (32, 33).
As stated above, members of the class I cytokine receptor
superfamily contain an extracellular WSXWS motif (33, 40).
In the GHR, this region contains the amino acid sequence
YXXFS (tyrosine; X is glycine, serine, lysine, or glutamic acid;
phenylalanine; and serine; Ref. 40). The importance of the
GHR for the growth phenotype has been shown by disrup-
tion of the mGHR gene (41). These animals possess a dwarf
phenotype and are a model for Laron syndrome (42). One
particular and important characteristic of these animals is
their extended lifespan (43). If removal of GH action results
in lifespan extension, it would certainly be interesting to
show a similar effect when using GH antagonists. However,
no data exist in support of this notion.

C. GHR tissue distribution

GHRs are present in many biological tissues and cell types.
Although first identified in hepatic tissue, GHRs are present
in bone, kidney, adipose, muscle, eye, brain, and heart (44–
48). GHRs have also been identified in various immune tis-
sues including cultured human B cells (49), IM-9 lympho-
cytes (50), spleen, and thymus (51). The fact that GHRs are
so ubiquitous suggests the pleotrophic nature of GH’s effects.

D. GHR signal transduction

Although the mechanism(s) by which GH elicits biological
responses are not fully understood, GH-induced GHR
dimerization is thought to be the first step in the GHR signal
transduction pathway (6, 33, 52). It has been shown that
GH-induced GHR dimerization induces the activation of a
121-kDa GHR associated protein (53) that was later identified
as Janus-kinase 2 (JAK2). Activation of JAK2s is thought to
be the result of transphosphorylation after two JAK2s are
brought together by hormone-induced dimerization. JAK2 is
a member of the Janus-associated kinase family of cytoplas-
mic tyrosine kinases (54, 55), consists of 993 amino acid

residues, and has a molecular mass of 130 kDa (55). JAK2
noncovalently associates with GHR via the Box-1 region, the
area critical for JAK2 binding and phosphorylation (56). Fur-
thermore, once activated, JAK2 is believed to promote self-
tyrosine phosphorylation and tyrosine phosphorylation of
the GHR at multiple tyrosine residues (57–59).

Upon GH-induced GHR dimerization and subsequent
phosphorylation of JAK2 and GHR, a host of other intracel-
lular proteins is phosphorylated. Among these are several
approximately 95-kDa proteins termed the signal transduc-
ers and activators of transcription or STATs (60, 61). The
STATs are a family of proteins that serve as intracellular
signal mediators for cytokine-family members. GH induces
the phosphorylation of STAT1, STAT3 (61, 62), and STAT5
(60, 61, 63, 64). Also, the GHR contains several intracellular
tyrosine residues that become phosphorylated and provide
docking/binding sites for the STAT proteins (57, 64). After
binding to the GHR, STATs subsequently become phosphor-
ylated (57, 64), form homo- or heterodimers, enter the nu-
cleus, and regulate GH-specific gene transcription (65). Tem-
poral patterns of GH secretion have been shown to
differentially regulate liver STAT5 activation (66).

Recent studies have shed insight into the mechanism by
which the GH-induced JAK/STAT signaling pathway is
switched off. As well as rapidly activated tyrosine phospha-
tases [SHP1 and -2 (67)], a novel family of cytokine-inducible
inhibitors of signaling, referred to as suppressors of cytokine
signaling (SOCS), has been described to down-regulate JAK2
(68–70). The SOCS family currently consists of eight mem-
bers [SOCS1–SOCS7 and cytokine inducible Src homology
2-containing protein (CIS)] that participate in a negative feed-
back loop to regulate cytokine signaling (70). The SOCS
genes are highly conserved among species but have limited
homology to other family members, suggesting that each
member may have a specific role in the feedback signaling
(69). The primary target of SOCS activity in the JAK/STAT
pathway appears to be at the level of the JAKs and STATs
themselves. SOCS-1 has been shown to associate with and
reduce the activity of JAK2 (67). SOCS-3 and CIS also have
been shown to inhibit the JAK/STAT pathway via compet-
itive binding to STAT5 docking sites on cytokine receptors.
Additionally, CIS has been shown to increase proteosome-
mediated destruction of the GHR complex (69, 70). There-
fore, the method by which SOCS disrupt the JAK/STAT
pathway seems to be variable.

IV. Biological Activities of GH

In the early part of the last century, it was demonstrated
that a pituitary factor, now known to be GH, regulated
growth (71, 72). Although a significant physiological effect of
GH is the promotion of postnatal longitudinal growth (73),
GH also has been associated with alterations in lipid, car-
bohydrate, nitrogen, and mineral metabolism (74–81). Other
activities of GH include its ability to regulate differentiation
of preadipocytes to adipocytes (82), to aid in the maintenance
and development of the immune system (83), and to have
various effects on the brain and cardiac function (84–86).

In 1957, Salmon and Daughaday (87) proposed the so-
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matomedin hypothesis, which stated that the observed ef-
fects of GH are mediated by the activation of IGF-I. Green et
al. (88), in 1985, proposed the dual effector theory of GH
action, which states that GH induces differentiation of target
cells directly and also induces the secretion of IGF-I. IGF-I
was then postulated to promote clonal expansion of the dif-
ferentiated cells. More recently, IGF-I has been shown to be
produced and secreted in response to GH stimulation in
many tissue types including liver and bone (Fig. 2 and Refs.
89 and 90). Although all actions of GH are mediated through
the GHR, it still is not certain which effects are IGF-I directed
and which effects are directly caused by GH.

The IGF-I gene has recently been disrupted conditionally
in mouse liver (91, 92), resulting in significantly depressed
serum levels of IGF-I, but no corresponding diminution of
growth was seen. These data suggest that circulating IGF-I
may not be the important agent in growth promotion, but
paracrine- and/or autocrine-derived IGF-I may be the salient
molecule.

We must point out that the molecular mechanisms result-
ing in autocrine, paracrine, and endocrine actions of IGF-I are
still to be determined. However, independent of the mech-
anism of IGF-I action, GH stimulation of IGF-I synthesis and
secretion is presumed to occur via interaction of GH with the
GHR. Therefore, a GH antagonist would be expected to in-
hibit endocrine, autocrine, and paracrine actions of IGF-I.
The correction by pegvisomant of the major metabolic com-
plications of acromegaly, such as insulin resistance, cortisol
metabolism, and lipoprotein abnormalities (see Section
IX.E.5), indicates that this therapy does more than just lower
circulating IGF-I.

Abnormal secretion of GH is observed in multiple disease
processes. In children, hyposecretion of GH results in short
stature, whereas hypersecretion before epiphyseal fusion
yields gigantism. Although GH is clearly not important for
longitudinal bone growth in adults, deficiency is associated
with reduced well-being, central obesity, increased fat mass,
dyslipidemia, and increased mortality. Hypersecretion in
adults is usually caused by a pituitary somatotroph tumor
and results in acromegaly. In animals, transgenic mice that
express bovine (b)GH are significantly larger than nontrans-
genic controls and develop severe kidney disease (93). A link
between GH and the occurrence and progression of malig-
nancies has been shown (94, 95). Elevated levels of GH have
also been correlated with diabetic complications (96–100). In
addition, overexpression of GH has been associated with
increased renal and glomerular growth (101). Thus, scenarios
in which GH levels are elevated have been implicated in
several physiological disorders.

V. Development of a GH Antagonist

A. Early GH structure-function studies

Early structure-function studies attempted to determine
specific regions of the GH molecule that were important for
the binding of GH to GHR. Via homolog-scanning mutagen-
esis, three such epitopes on the hGH molecule were identi-
fied (102). These GHR binding determinants include the loop
between amino acids 54 and 74, the amino-terminal region of

helix 1, and the central portion of helix 4 to the carboxyl
terminus. Subsequently, alanine-scanning mutagenesis was
performed on these GH determinants to identify specific side
chains required for the hGH-hGHR interaction (103). These
studies identified a total of 12 amino acids, located in helix
1, the loop connecting helix 1 and 2, and helix 4, that are
involved in the ligand-receptor interaction. Alanine-scan-
ning mutagenesis of hGHR revealed that tryptophan-104 and
-169 were key amino acids that made contact between GH
and the GHR (6, 33, 33, 102, 103).

B. The importance of GH’s helix 3

Independently, after the elucidation of the three-dimen-
sional structure of GH (30), Chen et al. (1) observed that the
amino acids composing the third �-helix, residues 109–126
in bGH and 110–127 in hGH, are arranged in an amphiphilic
orientation (Fig. 3). Furthermore, it was noted that three
amino acids, 117, 119, and 122 of bGH, are positioned so that
this helix 3 does not form an idealized amphiphilic helix.
Because it was previously shown that peptides containing
the third �-helix of GH possessed low but significant growth-
promoting activity (104), it was hypothesized that the gen-
eration of a perfect amphiphilic helix 3 would result in a GH
analog with enhanced biological activity. Thus, a mutant
bGH gene was engineered, bGH-M8, which encoded the
following amino acid substitutions: glutamate-117 to leucine
(E117L), glycine-119 to arginine (G119R), and alanine-122 to
aspartate (A122D) (1). Surprisingly, transgenic mice express-
ing this bGH analog had decreased circulating IGF-I con-
centrations and exhibited a dwarf phenotype (1, 3). The
growth ratio between the transgenic mice and nontransgenic
littermates ranges from 0.58 to 1.00 and was directly pro-
portional to the circulating concentration of bGH-M8 (1). The
observed dwarf mouse phenotype, and the fact that bGH-M8
inhibited the binding of 125I-bGH to liver membranes, re-
vealed that bGH-M8 was the first reported example of a GHR
antagonist (1). In vitro, this GH antagonist was also shown to
antagonize other actions of GH including adipocyte differ-
entiation and the insulin-like effect of stimulating glucose
oxidation and lipolysis by adipose tissue (2, 105). Similar
studies with the hGH analog, hGH G120K, were performed
and yielded similar results (106).

Additional bGH analogs, with single amino acid substi-
tutions at positions 117, 119, and 122 were generated to
investigate further which residues are critical for the growth-
promoting activity of GH. These studies revealed that the
glycine at position 119 of bGH and glycine-120 of hGH are
critical for the growth-promoting activity of the respective
molecule. Expression of these mutated GH genes in vivo
resulted in dwarf mice (Fig. 4 and Ref. 4). Thus, alteration of
one residue (i.e., glycine-119 of bGH or glycine-120 of hGH)
changed the molecule from a growth enhancer to a growth
suppressor or GH antagonist. It was further demonstrated
that substituting the glycine residue in the third helix with
any amino acid other than alanine converted the GH mol-
ecule from an agonist to an antagonist (4). Subsequently,
these results were confirmed by a second group (6) who
demonstrated that substitution of glycine-120 of hGH with
arginine resulted in a GH antagonist.
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C. The GH-GHR interaction

The aforementioned data prompted Chen et al. (4) to hy-
pothesize that the antagonistic properties of bGH-M8 and
bGH-G119R were due to the inability of these GH analogs to
interact with a secondary target protein. It was predicted that
a cleft was located near the center of the third �-helix, pri-
marily due to glycine (Fig. 5). Thus, it was also hypothesized
that this secondary target protein fit into the cleft to generate
a GH-GHR-X trimeric complex that is critical for the growth-

promoting activity of GH (4). This secondary target protein
was later identified by De Vos et al. (6) to be a second GHR.
These crystallography studies of the GH-GHR complex dem-
onstrated that two molecules of GHR interact with one mol-
ecule of GH to form a GHR-GH-GHR heterotrimeric complex
(Fig. 6 and Ref. 6). The crystal structure revealed that glycine-
120 of hGH, which is equivalent to glycine-119 of bGH, is
closely apposed to tryptophan-104 of GHR 2 (6, 33). The
binding of GH to two GHRs was determined to be a sequen-
tial process that involves the trapping of GH by the first
receptor via a high-affinity binding site 1, consisting of amino
acid residues in the large loop and fourth helices of GH,
followed by the binding of a second GHR to the same GH
molecule at a low-affinity binding site 2, consisting of amino
acids primarily in the first and third helices of GH (6, 33).
These data confirmed the previous findings of Chen et al. (1)
relating to the “second target hypothesis of GH action” and
demonstrated the mechanism by which the GH antagonist
acts, i.e., it fails to induce proper or functional GHR
dimerization.

VI. Engineering of a Long-Acting GH Antagonist

The potential of a GHR antagonist for the treatment of
clinical conditions resulting from elevated GH, such as ac-
romegaly, or those in which GH or IGF-I may play a patho-
physiological role was immediately recognized. However,
for this novel class of antagonists to be developed as a useful
therapy, the issue of the molecules’ short half-life needed to
be addressed. Due to its relatively small size (approximately
22 kDa), GH is normally cleared via the kidneys and/or GHR
internalization and has a serum half-life of approximately 30
min. Clark et al. (107) have shown that addition of polyeth-
ylene glycol (PEG)-5000, a 5-kDa reagent that selectively
conjugates to primary amino groups, to GH significantly

FIG. 4. Transgenic mouse expressing bGH G119K. The mouse with
a dwarf phenotype (right) expresses bGH G119K and is pictured
beside a sex-matched nontransgenetic littermate (left).

FIG. 5. Partial space-filling model of the third
�-helix of bGH. A, The “cleft” due to the glycine
residue in the third �-helix of GH is indicated.
B, Partial space-filling model of GH. When GH
is altered such that the glycine residue is sub-
stituted, in this case with arginine, the cleft is
filled preventing proper interaction of the GH
molecule with a second GHR.
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expanded the effective molecular mass, resulting in a long-
acting GH analog with a half-life of over 2 d. The same
strategy was employed for the hGH antagonist. For these
studies, the hGH antagonist with lysine substitute for glycine
at position 120 was used. Although the addition of PEG-5000
increased the half-life of hGH G120K, it resulted in a mol-
ecule with a decreased site 1 binding affinity. To circumvent
this problem, it was reasoned that one could restore the
antagonistic potency of PEG-5000 G120R by engineering a
molecule that retained the G120K mutation while at the same
time introducing additional mutations that increased site 1
binding affinity.

Independently, and at the time the GH antagonist was
reported by Chen et al. (1–4), Cunningham and Wells (108)
were attempting to engineer more potent GH analogs via
identifying critical binding determinants in site 1 of the GH
molecule. Eight separate amino acids were identified that,
when altered, increased the binding affinity for site 1. Fur-
thermore, it was noted that these mutations had an additive
effect and, when combined, greatly increased the affinity of
GH analog for binding site 1 (7, 108). Thus, a GH analog was
produced that contained these eight amino acid substitutions
(which increased the binding affinity of GH to the GHR) plus
the original G120K substitution (the amino acid substitution
that generates a GH antagonist) and would be expected to
yield a GH antagonist with high potency. Furthermore, when
these nine mutations were combined with the aforemen-
tioned addition of PEG-5000, the resulting molecule, known
as PEG-hGH G120K (B2036 peg), was shown to maintain
both its binding and antagonistic properties. PEG-hGH
G120K (pegvisomant) is now in the final stages of clinical
trials, under the trade name Somavert (Pharmacia, Peapack,
NJ) for sc injection in the treatment of acromegaly.

After GH binding to the GHR, the complex is internalized.

The precise mechanisms responsible for the GH/GHR in-
ternalization is outside the scope of this review; however,
Refs. 109–115 describe these events. In this context, the non-
pegylated GH antagonist binds to the GHR with approxi-
mately the same affinity as GH, forms dimers, and is inter-
nalized (52) but cannot transduce an intracellular GH-
specific signal. Recently, pegvisomant, like the nonpegylated
form of the GH antagonists, has been shown to form dimers
with the GHR and to be internalized (52, 116, 117). Thus, the
antagonists do not inhibit dimer formation, but presumably
prevent “proper” or functional dimerization of the GHR.

As stated above, it was believed that the GH antagonist
with eight amino acid residue changes in site 1 would bind
to the GHR with increased affinity and that the G120K sub-
stitution would prevent GHR dimerization. Although the
site 1 amino acid substitutions increase affinity for antagonist
binding to GHBP, recent evidence has suggested that the
eight amino acid substitutions within site 1 do not increase
binding of the nonpegylated GH antagonist for the cell-
surface GHR (116). However, of the eight amino acid changes
made within binding site 1, two (namely lysine to alanine and
lysine to arginine at positions 168 and 172, respectively) are
nevertheless critical with regard to site 1 binding of the
pegylated antagonist. Pegylation at these lysine residues
would block or sterically hinder binding of the antagonist to
the first GHR. Substitution of these residues removes po-
tential pegylation sites within binding site 1 and, thus, en-
sures that site 1 of pegvisomant remains accessible to the
GHR (116). Nevertheless, pegylation of the antagonist does
reduce site 1 binding affinity and, thus, large doses of pegvi-
somant are required to effectively antagonize GH action in
patients with acromegaly.

Although not specifically pertinent to the efficacy of the
GHR antagonist, recent evidence has altered our concept of

FIG. 6. “Stick model” of the co-crystal struc-
ture of one molecule of hGH (blue) and two
molecules of the extracellular domain of the
GHR (red and green). The two GHR molecules
utilize almost identical binding determinants
to interact with different determinants on
hGH. Glycine-120 hGH is indicated in yellow
interacting with tryptophan-104 of hGHR, in
white.
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GHR dimerization, as data suggest that rather than inducing
sequential binding of two GHRs, ligand binding may pro-
duce a conformational change within preformed GHR
dimers. Therefore, GH antagonists containing the G120K
mutation may not inhibit the recruitment of a second GHR
after site 1 binding, but instead prevent functional dimer-
ization by sterically inhibiting conformational changes
within these GHR dimers (116).

VII. In Vivo Experience with Pegvisomant

A. Rodent

As discussed previously, glycine at positions 119 and 120
of bGH and hGH, respectively, is critical for their respective
growth-promoting activity. Unlike bGHG119R, the G120R
molecule is relatively ineffective in rodents (118) and, as a
result, pharmacological studies of pegvisomant have con-
centrated on primates and humans. The treatment of hy-
pophysectomized and GH-deficient dwarf rats with G120R
during GH infusion failed to antagonize GH action (118). In
these animals, G120R paradoxically stimulated skeletal
growth, and co-infusion of G120R with hGH produced an
additive effect. In normal mice, pegvisomant lowers serum
IGF-I to 70% of baseline values when doses of 4 mg/kg (over
10 times the standard daily dose used for the treatment of
acromegaly in humans) are administered. Lower efficacy of
pegvisomant in rodents is presumed to be due to the amino
acid substitutions within the antagonist having been de-
signed to increase binding to the hGHR. This is supported by
in vitro studies in which pegvisomant binds to mouse hepa-
tocyte microsomal membrane preparations with 20- to 50-
fold less affinity than similar preparations of human liver.
Rat hepatocytes have a 10-fold reduced affinity for hGH than
mouse cells. Rodents are therefore not an ideal model of GHR
blockade by pegvisomant, but at high doses some suppres-
sion of IGF-I is observed.

Thus, mice and rats are not good models in which to
determine the efficacy and activity of pegvisomant. How-
ever, nonpegylated molecules with a single amino acid
change, namely glycine to lysine at position 119 within the
third �-helix, are potent GH antagonists in mice. Several
studies have shown that these GH antagonists inhibit the
progression of diabetes-induced glomerulosclerosis (96, 98–
101), inhibit hypoxia-induced retinal neovascularization
(119), and inhibit the size and progression of dimethyl
butyric acid-induced breast tumors in rodents (120).

B. Primate

Two separate studies in which a 1-mg/kg sc injection of
pegvisomant was administered to ovariectomized female
rhesus monkeys (Macaca mulatta) demonstrated significant
reductions in serum IGF-I and other GH-dependent factors.
In the first study (121), serum IGF-I fell by 61% within 3 d of
administration after a single dose, was maximally sup-
pressed by d 10, and returned to normal levels within 14 d
of drug withdrawal. The reduction in serum IGF-I was ac-
companied by a significant increase in serum GH. Mean

serum GH was 86 � 11 �g/liter in pegvisomant-treated
monkeys compared with 15 � 6 �g/liter in controls.

In a second study (122), five monkeys were treated with
the same 1.0-mg/kg sc dose of pegvisomant at weekly in-
tervals. Serum IGF-I was observed to fall within 24 h of
administration and continued to decline until d 5, with a fall
of 78 � 4% from baseline. Serum IGF binding protein
(IGFBP)-3 and acid labile subunit (ALS) were also signifi-
cantly suppressed by d 5 to 30 � 5% and 36 � 10% below
baseline, respectively. Administration of recombinant IGF-I
during GHR antagonism restored serum IGF-I and IGFBP-3
values to normal, but the ALS response was inconsistent
(122).

C. Human

A phase I, double-blind, randomized, placebo-controlled,
single rising-dose study of pegvisomant in healthy male
volunteers has recently been reported (123). Thirty-six sub-
jects (mean age of 25 yr) were randomized into four groups
(n � 6) and received either placebo or pegvisomant at a dose
of 0.03, 0.1, 0.3, or 1 mg/kg as a single sc injection. Serum
pegvisomant concentrations showed a dose-dependent in-
crease with peak concentrations occurring approximately
36 h after administration and values greater than 5000 �g/
liter from 24–144 h after administration in the 1.0-mg/kg-
dose group. Mean serum IGF-I fell in a dose-dependent man-
ner and reached statistical significance on d 3 with doses of
0.3 mg/kg or more. In the 0.3-mg/kg group, there was 28%
suppression of serum IGF-I compared with baseline at 72 h,
and 49% on d 5 in the 1.0-mg/kg group. There was no effect
of pegvisomant on other hormone systems studied.

VIII. Acromegaly

A. Mortality and acromegaly

Acromegaly is the result of GH hypersecretion, in the vast
majority of cases, from a pituitary somatotroph tumor. GH-
secreting pituitary adenomas may occur as part of the mul-
tiple-endocrine neoplasia syndrome type I, and, when GH
hypersecretion develops before epiphyseal fusion, pituitary
gigantism results.

The first clinical description of acromegaly is generally
attributed to Marie and de Souza-Leite (1886; Ref. 124), who
noted hypertrophy of the extremities including the face,
hands, and feet. In 1887, Minkowski (125) noted that such
hypertrophy was accompanied by enlargement of the pitu-
itary gland, and later, in 1894, Tamburini (126) documented
the presence of a pituitary adenoma. In 1909, Cushing (127)
postulated that the production of a growth-promoting hor-
mone by the hyperfunctioning pituitary resulted in the clin-
ical condition of acromegaly.

Acromegaly occurs with equal frequency in both sexes
with a prevalence of between 55 and 59 patients per million
and an incidence of 3–4 per million (128, 129). The diagnosis
is often made incidentally, as less than 20% of patients ac-
tively seek medical attention for a change in appearance or
enlargement of the extremities (130). The condition develops
insidiously over many years and, in most cases, the diagnosis
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is established after 4–10 yr of active disease. Clinical features
reflect excess secretion of GH, local effects of an expanding
pituitary mass, and hypopituitarism and include bony pro-
liferation, coarsening of the facial features, soft tissue swell-
ing, hyperhidrosis, macroglossia, headache, visual distur-
bance, amenorrhea, impotence, diabetes mellitus, or, more
commonly, impaired glucose tolerance, hypertension, carpal
tunnel syndrome, and sleep apnea (130). Increased serum
IGF-I and the failure of GH suppression to below 1 �g/liter
after oral glucose (75 g) administration are diagnostic.

Acromegaly is associated with considerable morbidity and
mortality, primarily from cardiovascular causes (128, 129,
131–135). In one case-note review of 79 individuals with
acromegaly treated between 1964 and 1989 in Stoke-on-
Trent, United Kingdom, the ratio of observed to expected
deaths was 2.68 (132). This review also documented that
normalization of serum GH was the best determinant of
therapeutic outcome, as the mortality rate for subjects in
whom serum GH was suppressed below 2.5 ng/ml (5 mU/
liter) was not statistically different than that of the normal
population (132). The importance of tight control of the GH/
IGF-I axis has also been demonstrated in two long-term
outcome studies after surgery, where mortality rates
achieved by patients with a biochemically defined postsur-
gical “cure” were equivalent to those of matched normal
controls (136, 137). In contrast a 2.4- to 4.8-fold increased rate
of death was observed in those patients with persistent dis-
ease activity after treatment (136, 137). Rajasoorya et al. (134),
in 1994, reported a series of 145 individuals with acromegaly
over the period of 1964 to 1989 in which the last known serum
GH value was significantly higher in patients who had died
compared with those alive (33 � 17.5 vs. 4 � 0.5 ng/ml
respectively; P � 0.0002). Other determinants predicting out-
come were age and serum GH level at the time of diagnosis
and the presence of hypertension or cardiac disease. In the
cohort described by Rajasoorya et al. (134), survival, irre-
spective of treatment, was reduced by an average of 10 yr.
Although the most common cause of death is cardiovascular
disease, there are significant increases in death rates due to
lung infections and possibly malignancies (131, 138, 139). Up

to 46% of patients with acromegaly harbor colonic polyps,
which are frequently precursors of colonic carcinoma, and a
2.45-fold increased incidence of malignant tumors was re-
ported in one study (139, 140). In a further multicenter ret-
rospective cohort study of 1362 subjects with acromegaly
(133), overall cancer incidence was not elevated, but mor-
tality from colonic malignancy was increased. This study also
confirmed that serum GH values below 2.5 ng/ml after treat-
ment were associated with a reduction in mortality, and,
along with earlier studies, clearly demonstrated the crucial
importance of achieving biochemical control in acromegaly
and, to that end, the need for aggressive management. Sub-
sequently, a retrospective analysis has alluded to a reduction
in mortality after normalization of serum IGF-I by trans-
sphenoidal surgery (137).

B. Criteria for “remission”

Therapeutic goals in acromegaly include protection of the
optic chiasm, amelioration of symptoms, preservation of pi-
tuitary function, and treatment of the pituitary tumor, but the
primary goal of treatment is the restoration of normal serum
GH and IGF-I levels, as this is associated with normalization
of life expectancy (132–134). An epidemiologically safe mean
serum GH value after treatment (2.5 ng/ml) should, ideally,
be accompanied by serum IGF-I reduction into the normal
range for age and sex (137). Thus, the recent consensus state-
ment defined acceptable biochemical “cure” as the achieve-
ment of an age- and sex-matched serum IGF-I value, in ad-
dition to a serum GH level of less than 1 �g/liter after 75 g
of oral glucose (141).

C. Current treatment of acromegaly

1. Surgery. Existing treatment modalities for acromegaly
modify disease activity by reducing pituitary GH release
(Table 1). Consequently, their efficacy is defined by tumor-
dependent characteristics. Surgery is the first-line treatment
for acromegaly, as it offers the prospect of cure in a propor-
tion of subjects with rapid reduction of serum GH and

TABLE 1. Summary of the efficacy of surgery, radiotherapy, conventional drug therapy, and pegvisomant in the treatment of acromegaly

Treatment Safe GH (%) Normal IGF-I (%) Tumor size
reduction

Efficacy
dependent on

tumor
characteristics

Comments

Transsphenoidal surgery 23–65 (Macro)
60–90 (Micro)

— Yes Yes Outcome dependent on expertise of
surgeon, pretreatment GH, tumor
position

Conventional
radiotherapy

90 60–80 Yes Yes Efficacious but slow reduction of GH
and IGF-I

Dopamine agonists 10–20 10–43 May be seen in
PRL
cosecreting
tumors

Yes More efficacious in PRL cosecreting
tumors

SMS analog 22–55 (sc)
60–70 (LA)

45 (sc)
50–60 (LA)

Uncertain Yes Tumor shrinkage in selected patients,
no randomized studies

Pegvisomant NA 97 No No Top of IGF-I dose response cure not
reached

Appropriate references quoted in text. LA, Long acting; macro, macroadenoma; micro, microadenoma; NA, not appropriate.
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improved well-being in the remainder. Ideally, pituitary
surgery should completely remove the GH-secreting
adenoma while preserving or restoring normal anterior pi-
tuitary function and protecting the optic apparatus where
appropriate. Numerous factors determine surgical outcome
with respect to biochemical cure, but of paramount impor-
tance is the choice of pituitary surgeon. In a study conducted
in Manchester, United Kingdom, 73 patients with acromeg-
aly were operated on by any one of nine surgeons between
1974 and 1997, and in fewer than 20% of subjects did serum
GH levels fall below 2.5 ng/ml (142). In a similar study
conducted in Birmingham, United Kingdom, 8 surgeons op-
erated on 89 patients with acromegaly between 1963 and
1993, 33% of whom achieved a serum GH value less than 2.5
ng/ml. However, remission rates (�2.5 ng/ml) increased to
64% when practice was altered, and all transsphenoidal sur-
gery undertaken by a single dedicated pituitary surgeon
(143). Other centers have reported similar findings (137, 144–
146). Factors influencing postsurgical GH concentration in-
clude pituitary tumor size, degree of extrasellar extension
(particularly into the cavernous sinus), and high presurgery
serum GH levels (136, 137, 142, 144–147). Sheaves et al. (145),
in 1996, observed a 65% remission rate when the preopera-
tive serum GH level was below 20 mU/liter (50 ng/ml) but
only 18% in subjects with values above 100 mU/liter (200
ng/ml). When strict criteria for surgical remission are
adopted (i.e., serum GH � 2.5 ng/ml, or normalization of
serum IGF-I), surgical remission is possible in 61–91% of
subjects with microadenomas, but for macroadenomas, re-
mission rates may be as low as 23% (137, 145, 146, 148). Such
variable surgical results have led some to question the role
of pituitary surgery in acromegaly for all patients (149, 150).

Although retrospective studies have suggested that SMS
analogs before surgical decompression may improve post-
surgical hormonal parameters and remission rates, random-
ized studies are lacking (151–156).

2. Radiotherapy. Conventional, three-field, pituitary radio-
therapy (CRT) has a well-established role in the treatment of
acromegaly, either to effect remission after the failure of
surgery or when surgery is contra-indicated or refused. Stan-
dard treatment schedules involve the administration of
4000–5000 cGy delivered in 160- to 180-cGy fractions over
5–6 wk. Such regimes do not damage the optic chiasm but
do cause hypopituitarism (157, 158). The possibility of sec-
ond brain tumors after CRT has been the subject of debate,
and this question has yet to be satisfactorily answered, but,
if anything, the possibility appears to be low (159, 160).
Serum GH falls slowly after CRT with, in general, a 50%
decline within 2 yr, improving to 75% within 5 yr (161–165).
However, it may take 20 yr before 90% of patients achieve
serum GH values below 5 ng/ml (163, 165). Barkan et al.
(166), in 1997, reported the failure of CRT to normalize serum
IGF-I values despite the achievement of epidemiologically
safe serum GH concentrations, but more recent data suggest
that serum IGF-I is often normalized after pituitary radio-
therapy (165–167).

Although randomized trials of stereotactic and conven-
tional radiotherapy are lacking, stereotactic radiotherapy is
attractive, because, by restricting the treatment field to en-

compass only tumor, it is possible to deliver a larger dose of
highly focused radiation exclusively to the pathological le-
sion. This may lead to more rapid inhibition of tumor growth
and GH secretion, with a lower incidence of hypopituitarism
and less damage to surrounding tissues. It may also allow the
treatment of tumors beyond the reach of the surgeon, par-
ticularly in the cavernous sinus.

There are three forms of stereotactic radiotherapy: proton
beam therapy, the Gamma Knife (Electa Instruments AB,
Stockholm, Sweden), and the linear accelerator (LINAC).
Facilities for proton beam therapy are very restricted such
that most experience has been gained with photon therapy
(Gamma knife and LINAC; Refs. 168–170).

3. Medical therapy. The first effective medical treatment of
acromegaly was dopamine agonists that stimulate GH se-
cretion in normal individuals but paradoxically suppress GH
secretion in a proportion of patients with acromegaly (171).
In 549 cases reported in 31 series in which the dose of bro-
mocriptine ranged from 7.5–60 mg/d, GH levels were re-
duced below the suboptimal value of 5 ng/ml in just 20% of
patients. Seven of the 31 reports measured serum IGF-I,
which normalized in only 10% of those treated (172–179).
Newman (180) recently reviewed the efficacy of two dopa-
mine agonists, cabergoline and quinagolide, in acromegaly.
Two reports including 28 subjects with acromegaly treated
with quinagolide (a dose of 0.15–0.6 mg/d) reported serum
IGF-I normalization in 43% of patients, and 5 reports includ-
ing a total of 96 subjects treated with cabergoline (0.3–7.0
mg/wk) suggest IGF-I normalization is achieved in 34% of
patients (181–186). In the largest of the cabergoline series, 64
patients treated with between 1 and 3.5 g/wk (1 patient
received 7 g/wk), 39% were observed to have serum IGF-I
concentrations below 300 �g/liter (183). A random measure-
ment of serum GH was less than 2 ng/ml in 46% of patients.
However, in the 16 PRL-cosecreting tumors, a random serum
GH of less than 2 ng/ml was observed in 50% of cases (183).
As these data demonstrate, dopamine agonists are more
effective in the 33% of GH-secreting tumors that also secrete
PRL (185). Overall, dopamine agonist therapy is of limited
efficacy in acromegaly and is less effective than the SMS
analog octreotide (174, 175).

Analogs of SMS are the most widely used form of medical
therapy for acromegaly. Native SMS inhibits GH release and
exists in two forms, SMS-14 and an amino-terminal extended
SMS-28, with both peptides being encoded by a common
preprosomatostatin gene located on chromosome 3q28 (187,
188). The various actions of SMS are mediated through spe-
cific cell-surface receptors expressed in the central nervous
system, leptomeninges, anterior pituitary, mucosa of the gas-
trointestinal tract, and both the endocrine and exocrine pan-
creas (189). Five human subtypes of the SMS receptor have
been cloned, all of which possess seven membrane-spanning
domains (190–193) and are functionally linked to adenylate
cyclase through coupling mechanisms involving guanine nu-
cleotide-binding (G) protein (194–196). Octreotide (San-
dostatin, Novartis Pharma, Basel, Switzerland), a synthetic
octapeptide, was the first analog introduced into clinical
practice and is 45 times more effective than SMS-14 at in-
hibiting GH secretion (Fig. 7 and Ref. 197). Unlike native
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SMS, which binds with equal affinity to all five SMS-receptor
(SSTR) subtypes, octreotide binds with high affinity to
SSTR-2 and -5, with moderate affinity for SSTR-3, but does
not bind to SSTR-1 and -4 (196, 198, 199). The acute sup-
pression of GH secretion in response to octreotide adminis-
tration in patients with acromegaly is dependent on SSTR
availability (200), which in turn predicts the long-term effect
of octreotide therapy on serum GH and IGF-I concentrations
in most patients (201–203). Maximal suppression of serum
GH and IGF-I is seen with sc doses of 300–600 �g/d with
little additional benefit from further increments (204, 205).
Most long-term studies of octreotide therapy in acromegaly
report statistically significant suppression of serum GH, with
serum IGF-I normalization in approximately 50–60% of pa-
tients (204–207), although the ability of octreotide to nor-
malize serum IGF-I is dependent on preoctreotide serum GH
levels and SSTR number (206). In the largest series analyzing
the efficacy of octreotide over 6 months, GH levels fell below
2.5 �g/liter (5 mU/liter) in 22–45% of cases, with normal-
ization of serum IGF-I in 45% (206, 207). The combination of
octreotide and bromocriptine may prove more effective than
either drug alone, although this finding has been questioned
(208, 209). In nonrandomized clinical trials, octreotide is re-
ported to reduce somatotroph tumor size in up to 50% of
patients (201, 204, 206). In one study, a reduction in tumor
size of more than 20% was observed in 15 of 34 (44%) patients
receiving octreotide (207).

The observation that, for a given dose of octreotide, con-
tinuous infusions are more effective than sc bolus regimes
(210), along with the inconvenience of three-times-daily ad-
ministration, has led to the development of long-acting im
preparations administered fortnightly (lanreotide) or every

4 wk [Sandostatin-LAR (Novartis Pharma) and Lanreotide
Autogel (Ipsen Biotech Lab, Paris, France)]. These prepara-
tions have improved patient acceptability and compliance
and produce similar control of serum GH and IGF-I to that
observed with short-acting octreotide (211–214). Sandosta-
tin-LAR is octreotide incorporated into microspheres of
poly(d-l-lactide-co-glycolide). In a prospective, open-label,
multicenter study of Sandostatin-LAR every 4 wk (10–30 mg)
involving 151 selected patients in whom mean serum GH
was below 10 �g/liter on sc octreotide, a serum GH con-
centration below 2.5 �g/liter was recorded in 69.8% of pa-
tients and a normal serum IGF-I in 65.8% (212). In 128 sub-
jects continuing therapy for 48 wk, 94% demonstrated serum
GH values below 5 �g/liter and 56.1% below 2 �g/liter (212).
The most frequent adverse events reported in this study were
diarrhea (11.3%), abdominal pain (6%), flatulence (4.6%), and
injection site pain (212). There are few studies reporting the
efficacy of Sandostatin-LAR beyond 12 months. Flogstad et
al. (211) reported stable and consistent suppression of serum
GH below 2 �g/liter in 9 of 14 octreotide-sensitive patients
receiving 20, 30, or 40 mg of Sandostatin-LAR for 18 con-
secutive injections.

Slow-release lanreotide (Somatuline, Ipsen Biotech Lab;
Fig. 7) has a fixed injection dose of 30 mg given at variable
intervals of 14, 10, or 7 d. During a six-month, open-label,
prospective study involving 14 patients with acromegaly
that was not controlled after transsphenoidal surgery and (in
10 cases) pituitary radiotherapy, mean serum GH levels fell
from 21.4 �g/liter to 7.3 �g/liter and mean serum IGF-I fell
to 272 �g/liter (215). In a further open-label study involving
57 patients of whom 50 received 6 months of lanreotide
therapy, serum GH suppressed below 2 �g/liter in 66% and

FIG. 7. Peptide structure of native SMS 14 and the
SMS analogs octreotide and lanreotide. The presence of
D-tryptophan, a nonphysiological amino acid, within
the ring structure of these analogs stabilizes the mol-
ecule and reduces enzymatic degredation. Half-life is
thereby prolonged in comparison to native SMS.
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IGF-I normalized in 38% of patients (216), with similar results
having been observed other groups (214, 217).

Two studies have suggested that Sandostatin-LAR pro-
duces improved suppression of serum GH and IGF-I, com-
pared with lanreotide, using established dosing schedules
(218, 219). Together, these studies involved a total of 22
patients who initially received lanreotide and subsequently
switched to Sandostatin-LAR. Of the 22 patients involved in
both studies, GH was suppressed below 2.5 �g/liter (5 mU/
liter) in 10 individuals during lanreotide therapy and in 12
patients during Sandostatin-LAR treatment. Serum IGF-I
was suppressed into an age-related normal reference range
in 9 patients with lanreotide therapy and 12 patients with
Sandostatin-LAR therapy. In both studies, Sandostatin-LAR
produced a significant further suppression of mean serum
GH compared with lanreotide (218, 219). More recently
Chanson et al. (220) have described similar findings in group
of 125 patients with acromegaly.

The use of a new formulation of lanreotide (Autogel), four
weekly deep sc injections, has been reported to be as effective
as conventional lanreotide for use in acromegaly (221). There
are, however, no comparative studies of Lanreotide Autogel
and Sandostatin-LAR.

Both SMS analogs and dopamine agonists have side effects
that may limit their clinical usefulness. In particular, SMS
analogs are known to inhibit the release of glucagon, insulin,
and serotonin, as well as other gut hormones, and are asso-
ciated with cholesterol gallstone formation (222).

IX. Pegvisomant in Acromegaly

With appreciation of the importance of vigorous control of
the GH/IGF-I axis, and even more stringent outcome criteria
against which to judge the efficacy of therapy, has come the
recognition that despite the use of all current modes of treat-
ment, a significant cohort of patients with acromegaly remain
inadequately controlled. Pegvisomant is an analog of hGH
and represents an exciting new prospect in the medical man-
agement of acromegaly. As previously stated, the ability of
current treatment modalities to achieve biochemical remis-
sion is inextricably linked to pituitary tumor characteristics.
Tumor size and position, pretreatment serum GH, and the
expression of SSTRs all influence treatment outcome.
Whereas SMS analogs bind centrally to specific tumor re-
ceptors to mimic physiological inhibition of GH release,
pegvisomant acts on peripheral GHRs, blocking “proper”
GHR dimerization to prevent GH-induced signal transduc-
tion. This approach offers the prospect of higher normaliza-
tion rates and greater specificity of effect in comparison to
current therapies for acromegaly.

A. Monitoring disease activity during pegvisomant therapy

Clearly, serum GH cannot be used as a marker of disease
activity in patients with acromegaly who receive pegviso-
mant, as pegvisomant makes no attempt to lower circulating
GH levels. Furthermore, the structural homology between
native GH and the GH antagonist, which differ by only 9
amino acids, means pegvisomant is detected in conventional
GH assays, resulting in spuriously high serum GH estima-

tion. In the presence of pegvisomant, the direct measurement
of serum GH is possible using a customized two-site GH
immunoassay (123). An indirect measurement of serum GH
using a modified chemiluminescence assay (empirically cor-
rected for pegvisomant cross-reactivity) has been devised
and is reported to correlate well with the results of direct
measurement (123).

In the absence of serum GH as a marker of disease activity,
reduction of serum IGF-I into the age-related reference range
has been the primary goal of pegvisomant therapy in
acromegaly.

B. Phase II studies

A phase II, randomized, placebo-controlled, multicenter
study of pegvisomant provided proof of concept that pegvi-
somant lowers serum IGF-I in patients with active acromeg-
aly (223). Forty-six patients with a serum IGF-I value at least
50% above the age-related upper limit of normal received
placebo, 30-, or 80-mg of pegvisomant once weekly for 6 wk.
Mean serum IGF-I levels were unchanged in the placebo
group but fell by 16 � 4.8% and 31 � 6.7% in the 30-mg (P �
0.04) and 80-mg (P � 0.001) groups, respectively. Free IGF-I
fell by 47% in the 80-mg group (226). Although a dose-related
decline in serum IGF-I and other markers of the GH/IGF-I
axis was seen, serum IGF-I was normalized in only a minority
(n � 3) of patients.

The pharmacokinetics of the drug provided a probable
explanation for the low serum IGF-I normalization rate.
Phase I studies in healthy volunteers had demonstrated peak
serum concentration levels at 36 h and maximal suppression
of serum IGF-I on d 5 after a single sc dose of pegvisomant
(123). As a reversible, competitive receptor antagonist, sus-
tained concentrations of pegvisomant are crucial to efficacy.
With a half-life of approximately 70 h in humans and a
weekly dosing schedule, it was suspected that adequate se-
rum concentrations of pegvisomant were not maintained
throughout the dosing interval. Pharmacokinetic modeling
suggested that the trough concentration of pegvisomant
would be increased by 20% by delivering the same weekly
dose but divided into a daily dose.

C. Phase III studies

A 12-wk, phase III, multicenter, double-blind, random-
ized, placebo-controlled study of 112 patients provided con-
vincing evidence of the effectiveness of daily pegvisomant
(10, 15, or 20 mg) in patients with a serum IGF-I level at least
30% above the upper limit of an age-related reference range.
Short-acting SMS analogs and dopamine agonist therapy
were discontinued 2 and 5 wk before study entry, respec-
tively. Clinical/laboratory assessments (including comple-
tion of a questionnaire designed to evaluate five symptoms
and signs of active disease—soft tissue swelling, arthralgia,
headache, perspiration, and fatigue) and ring size measure-
ment using standardized European Jewelers’ rings on the left
fourth digit were undertaken at baseline, 2, 4, 8, and 12 wk
after commencement of therapy or placebo. Pituitary anat-
omy was assessed at baseline and after 3 months using mag-
netic resonance imaging.
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Dose-dependent reductions in serum IGF-I, free IGF-I,
IGFBP-3, and ALS were observed in the three pegvisomant-
treated groups. Mean serum IGF-I levels fell significantly in
a dose-dependent manner in the 10-, 15-, and 20-mg treat-
ment groups (Fig. 8). The percentage of patients achieving a
serum IGF-I value within the age-adjusted reference range
was 54%, 81%, and 89%, respectively (Fig. 9 and Ref. 224).

The serum IGF-I reduction was accompanied by a rise in
serum GH (Fig. 10 and Ref. 224). After 12 wk of pegvisomant
therapy, mean serum GH increased in a dose-dependent
manner in the 10-, 15-, and 20-mg/d groups and reached
statistical significance in the 15- and 20-mg dose groups, with
a mean rise of 2.7, 9.2, and 14.4 ng/ml over baseline, respec-
tively (224). Pituitary tumor volume was calculated from
magnetic resonance images by a blinded single evaluator,
and no change in tumor volume was observed in any patient
(224). The rise in serum GH, and the fall in serum IGF-I (and
other markers of the GH/IGF-I axis), occurred within 2 wk
and remained constant thereafter (Figs. 8 and 10).

Importantly, the fall in serum IGF-I was accompanied by
significant improvements in the signs and symptoms of ac-
tive acromegaly. The mean scores for individual symptoms
and signs, and the total score, decreased in all the pegviso-
mant-treated groups. Significant decreases were seen in the
total score and those for soft-tissue swelling, excessive per-
spiration, and fatigue. The improvement in soft-tissue swell-
ing was confirmed by a dose-dependent, and statistically
significant, decline in ring size in the groups receiving 15 and
20 mg of pegvisomant per day; a mean decrease of 2.5 ring
sizes was observed for the latter group (224).

Pegvisomant was well tolerated, and the incidence of re-
ported adverse events was similar in the placebo and three
treatment groups. Injection site reactions were reported in six
patients receiving pegvisomant. Two patients from the pla-
cebo group withdrew from the study, one due to persistent
headache and a second after only 5 d of therapy when optic
chiasmal compression was observed on the prestudy mag-
netic resonance scan. One patient assigned to 15 mg/d with-
drew due to persistent headaches, and a second patient in
this group withdrew after 8 wk of therapy because of ele-
vated serum aminotransferase levels. In this patient serum
alanine aminotransferase and aspartate aminotransferase
rose to 904 U/liter (normal range, 0–47 U/liter) and 389
U/liter (normal range, 0–37 U/liter), respectively. No
change in serum bilirubin or alkaline phosphatase was doc-
umented. The abnormal liver function tests (LFTs) returned
to normal on withdrawal of pegvisomant but rose again
during a 4-wk rechallenge with 10 mg/d. Thereafter, pegvi-
somant was stopped and the abnormal LFTs normalized. No
change in mean serum aminotransferase levels was seen in
the cohort of patients (n � 80) receiving pegvisomant. The
relatively high doses of pegvisomant required to achieve
serum IGF-I normalization in these clinical studies have not
proved to be a problem. As discussed below, the use of such
doses (in some cases over 3 yr) has not been associated with
a major incidence of side effects, significant antibody for-
mation, or tachyphylaxis (225).

D. Long-term experience with pegvisomant in acromegaly

Recently, an analysis of the long-term safety and efficacy
of pegvisomant in 186 patients (mean duration of treatment
was 425 d) receiving pegvisomant in an open-label manner
after completion of the phase II and III studies described
above has been reported (228). Normalization of serum IGF-I
was observed in 97% of those patients receiving pegvisomant
for over 12 months (Fig. 11).

These studies have demonstrated impressive rates of
serum IGF-I normalization in patients with active acro-
megaly receiving pegvisomant. In comparison to existing
medical therapies for acromegaly, pegvisomant represents
a significant improvement: serum IGF-I normalization
rates of greater than 90% are observed in patients with
active disease when receiving daily pegvisomant at doses
up to 40 mg/d. Pegvisomant therefore represents the most
effective medical therapy for acromegaly, and further im-
proved rates of serum IGF-I normalization are expected
when higher doses of the competitive antagonist are
employed. The long-term effectiveness of pegvisomant
has been demonstrated over 1 yr, but many questions
regarding this therapy are still to be answered, particularly
the reliance on serum IGF-I as a marker of disease activity
and long-term safety data regarding changes in pituitary
tumor volume.

E. Outstanding questions for pegvisomant in the treatment
of acromegaly

1. Monitoring of GHR antagonist therapy and the potential for
overtreatment. The consensus statement defining the desired

FIG. 8. Percentage reduction in serum IGF-I in 111 patients with
acromegaly receiving pegvisomant for 12 wk. The data show a dose-
dependent decline in serum IGF-I. All patients had active disease
before starting pegvisomant, based upon a serum IGF-I level at least
30% greater than the upper limit of an age-related reference range.
[Adapted from P. J. Trainer et al.: N Engl J Med 342:1171–1177, 2000
(224).]
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outcome of treatment for acromegaly includes criteria for
both GH and IGF-I (141). As discussed, the longer established
and well-validated GH criteria are not applicable to patients
on pegvisomant. The sole reliance on serum IGF-I as a
marker of disease activity emphasizes the need for improve-

ment in the quality of serum IGF-I assays and a better un-
derstanding of the relationship between serum IGF-I and
disease activity and morbidity/mortality. Melmed (226) has
highlighted the problems with many commercial serum
IGF-I assays and the need for standardization and develop-
ment of age- and gender-specific reference ranges.

In acromegaly, although a tight correlation is seen between
serum IGF-I and GH (134, 227, 228), results are discrepant in
approximately one quarter of patients who have either ele-
vated GH and normal serum IGF-I or more frequently ac-
ceptable serum GH and elevated serum IGF-I (229). Previous
CRT (230) and gender (231) modulate the relationship be-
tween serum GH and IGF-I and, in part, may explain these
discrepancies. However, much more prospective informa-
tion is needed concerning the relationship between serum
IGF-I and mortality/morbidity in acromegaly.

Whether IGF-I acts principally in an autocrine, paracrine,
or endocrine manner, and the extent to which circulating
IGF-I values are a true measure of IGF-I activity, is the subject
of much debate. In support of a role for circulating IGF-I
mediating many of the growth-promoting effects of GH are
studies involving patients with mutations of the GHR gene
resulting in a condition termed GH insensitivity or Laron’s
syndrome. This condition manifests as profound IGF-I de-
ficiency despite normal or high circulating GH (232–234) and
represents a unique biological model allowing the measure-
ment of the effects of injected, and therefore circulating, IGF-I
without the confounding effects of GH. Treatment of patients
with GHR mutations using recombinant human IGF-I
(rhIGF-I) is associated with a fall in serum GH and normal-
ization of serum IGF-I levels, in the absence of any obvious
change in IGFBP-3 concentration (235, 236). rhIGF-I pro-
motes linear growth in children with Laron’s syndrome (235,
237) and causes a reduction in fat mass, an increase in lean
mass, increased protein turnover, a fall in serum insulin, and

FIG. 9. Percentage of patients with acromegaly achiev-
ing a normal age-related serum IGF-I value during 12
wk of pegvisomant therapy. The data demonstrate nor-
malization in 54%, 81%, and 89% of patients in the 10-,
15-, and 20-mg/d groups, respectively. [Adapted from
P. J. Trainer et al.: N Engl J Med 342:1171–1177, 2000
(224).]

FIG. 10. Dose-dependent rise in serum GH during 12 wk of pegviso-
mant therapy in 111 patients with active acromegaly. Serum GH
increased during the initial 2 wk of therapy but thereafter remained
stable. This was not associated with reduced efficacy (see Fig. 8).
[Adapted from P. J. Trainer et al.: N Engl J Med 342:1171–1177, 2000
(224).]
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increased glucose production (238). Excessive rhIGF-I has
been reported to induce features of acromegaly in a girl with
Laron’s syndrome (239). These findings are similar to those
observed after GH replacement in adult GH deficiency
(GHD) (240) and suggest circulating IGF-I, as opposed to
auto- or paracrine, is important in mediating many of the
actions of GH. This supports the appropriateness of serum
IGF-I as a marker of disease activity in pegvisomant-treated
patients with acromegaly.

In our experience, with sufficiently high doses of pegvi-
somant, it is possible to reduce serum IGF-I below the age-
related lower limit of normal in patients with acromegaly,
raising the question of overtreatment and its diagnosis. Even
when serum IGF-I is reduced to the normal age-related ref-
erence range, the potential for overtreatment remains, as
many patients with adult GHD, diagnosed using provocative
tests of GH secretion, have normal serum IGF-I values. Se-
rum IGF-I is of diagnostic value in patients with childhood
onset GHD, but in patients with GHD of adult onset, the
value of serum IGF-I in predicting the response to provoc-
ative tests of GH secretion declines with increasing age (241,
242). In elderly patients with GHD, although serum IGF-I is
significantly lower than that observed in normal age-
matched subjects, values below the lower limit of the normal
reference range are observed in only 17% of patients (243).
GHD may account for the increased mortality observed in
patients with hypopituitarism on full replacement therapy
except GH (244–247). Thus, although a reduction in mortality
is anticipated after serum IGF-I normalization in acromegaly
when pegvisomant is used, the reliance on serum IGF-I data
in the absence of meaningful serum GH data represents a
formidable task. The diagnosis of overtreatment represents
a further challenge, as standard provocative tests cannot be
employed due to high circulating GH levels. Long-term pro-
spective studies are thus required to define the optimal treat-
ment target for serum IGF-I in patients receiving this therapy,
as morbidity and mortality may increase with overtreatment.

In the absence of evidence, it would seem reasonable to titrate
serum IGF-I down to the middle of the age-related reference
range.

2. Elevated GH and tumor growth. The fall in serum IGF-I with
administration of pegvisomant to patients with acromegaly
is accompanied by a rise in serum GH (224). When pegvi-
somant was administered to normal subjects as a single sc
injection, no acute rise in serum GH was observed, prompt-
ing speculation that pegylation of the antagonistic protein
prevents its passage across the blood-brain-barrier, although
the dose of pegvisomant used and the sampling interval are
alternative explanations of the failure to document an in-
crease in plasma GH levels (123). Administration of pegvi-
somant (either weekly or daily) over several weeks is asso-
ciated with increased serum GH (measured using a
customized assay that does not cross-react with pegviso-
mant) in primates and humans. This rise occurs within 2 wk
and is constant thereafter (224). Wilson (121) observed a
6-fold increase in serum GH in rhesus monkeys receiving 1.0
mg/kg of pegvisomant weekly, and Trainer et al. (224) re-
ported dose-dependent increases in serum GH in patients
with active acromegaly. The mechanism by which pegviso-
mant induces a marked increase in serum GH has not been
elucidated and could be the result of increased GH secretion,
delayed clearance, or both. In normal volunteers, recent ev-
idence suggests the mechanism is exclusively due to in-
creased GH secretion as pulse amplitude increased during
pegvisomant treatment, but the half-life of circulating GH
and clearance rate were unaltered (117). However, further
studies are required in patients with acromegaly. GHRH and
SMS are the two principal regulators of GH secretion and are
secreted from the median eminence of the hypothalamus,
which lies outside the blood-brain-barrier but is also mod-
ified through negative feedback loops involving both GH
and IGF-I (248–252). Pegvisomant could stimulate increased
GH secretion by a direct action on the pituitary adenoma or

FIG. 11. Baseline and lowest serum
IGF-I concentration in 90 patients re-
ceiving daily pegvisomant (5–40 mg/d)
for over 12 months. Shaded area repre-
sents age-adjusted normal range for
serum IGF-I. Ninety-seven percent of
patients normalized serum IGF-I.
[Adapted with permission from Elsevier
Science from A. J. van der Lely et al.:
Lancet 358:1754–1759, 2001 (225).]
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the median eminence or, more probably, by an indirect effect
secondary to the lowering of circulating IGF-I acting through
feedback mechanisms within the central nervous system, at
the median eminence, or directly at the somatotroph tumor.

Available data suggest that the increase in serum GH in
patients with acromegaly receiving pegvisomant is not as-
sociated with a loss of efficacy. A concern at the initiation of
the first clinical studies was that GH would continue to rise
and potentially overcome the receptor-blocking action of
pegvisomant (i.e., induce tachyphylaxis). As previously dis-
cussed, the rise in serum GH after the introduction of pegvi-
somant in patients with acromegaly mirrored the fall in se-
rum IGF-I and appeared to plateau after 2 wk of therapy,
with no further rise thereafter in patients receiving therapy
for over 12 months (224, 225).

GH is a tumor marker in acromegaly and, by implication,
elevated serum GH as a result of increased GH secretion may
be a harbinger of future tumor growth. No significant change
in mean tumor volume was observed during the 12-wk pla-
cebo-controlled study reported by Trainer et al. (224), but 57
of the 112 subjects had previously received conventional
pituitary radiotherapy a minimum of 12 months before en-
rollment. Prior radiotherapy is likely to decrease the poten-
tial for tumor growth during pegvisomant therapy. To date,
there are limited long-term data on the risks of tumor growth
in patients with acromegaly receiving pegvisomant therapy.
In the 131 patients reported by van der Lely et al. (225), for
the group as a whole, no significant alteration in mean tumor
volume was observed after a mean duration of treatment of
1 yr. (Fig. 12). Changes in tumor volume were not related to
patients’ previous history of pituitary irradiation and dura-
tion of therapy (225). Two patients have required treatment
for tumor progression while receiving pegvisomant, but in
both of these cases there is no obvious association between
tumor growth and treatment duration (225). Before pegvi-
somant, both had large globular tumors with impingement
on the optic chiasm despite recent transsphenoidal surgery.
In the first case, baseline tumor volume was 5.53 cm3 and was
subsequently estimated at 5.66 cm3 after three months of 15
mg/d. Pegvisomant was then discontinued, and six months

elapsed before its reinstitution, at which point accurate as-
sessment of tumor size was not possible. Six months later, at
the next routine pituitary magnetic resonance imaging ex-
amination, tumor size had increased to 8.71 cm3 and the
patient received pituitary irradiation (225). The second pa-
tient had a baseline tumor volume of 2.93 cm3 and initially
received weekly pegvisomant (80 mg) for 3 months, during
which time the tumor volume decreased to 2.75 cm3. This
patient then received octreotide for 5 months before restart-
ing pegvisomant. A repeat pituitary magnetic resonance im-
aging scan was not undertaken until 2 months after recom-
mencement of pegvisomant, whereupon a tumor volume of
4.28 cm3 was observed, which had increased to 4.92 cm3 11
months after the restart of pegvisomant. Subsequently, this
patient discontinued pegvisomant but continued tumor
growth on SMS analogs. Insufficient suppression of serum
IGF-I by SMS analogs alone, and a return of symptoms,
prompted referral for a second transsphenoidal procedure to
debulk the pituitary mass (225, 253). We do not believe that
in either of these cases a causal relationship between pegvi-
somant and tumor growth has been established. However,
the total number of patient years remains small, such that
caution is required and regular assessment of pituitary anat-
omy is necessary in all patients receiving this therapy, as the
risk of tumor expansion has not been fully elucidated. Par-
ticular attention will need to be paid to pituitary tumor size
in those patients receiving pegvisomant as primary therapy
as pegvisomant will not protect from tumor growth.

3. Antibody formation and possible tachyphylaxis. Pegvisomant
has nine amino acid substitutions that distinguish it from
hGH as a foreign protein, potentially leading to the formation
of antibodies that could reduce efficacy. Pegylation of the
GHR antagonist protein, in addition to increasing half-life,
has the benefit of reducing immunogenicity by modification
of immune system recognition. In the double-blind study
reported by Trainer et al. (224), anti-GH antibodies were
detected in only eight patients who received pegvisomant, in
titers ranging from 1:4 to 1:64. Pegvisomant antibodies were
detected in 27 patients (16.9%) in the long-term study re-

FIG. 12. Lack of association between
duration of pegvisomant and change in
tumor volume in 131 patients. [Adapted
with permission from Elsevier Science
from A. J. van der Lely et al.: Lancet 358:
1754–1759, 2001 (225).]
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ported by van der Lely et al. (225), in 11 patients on only one
occasion (in titers ranging from 1:4 to 1:16). Three patients
had sustained low titers of anti-GH antibodies, but in all
cases serum IGF-I was normalized and the appearance of
either antibody was not associated with reduced efficacy
(225). Even if the proportion of patients developing antibod-
ies increases with time, we know from patients receiving GH
in GHD that antibody formation is not associated with loss
of efficacy (254, 255).

4. Altered LFTs. The development of altered LFTs in two
patients receiving pegvisomant (15 mg/d) during the phase
III double-blind and open-label studies has already been
discussed (224, 225). Although, to date, only 2 of 160 patients
have shown changes in LFTs, and the true incidence and
mechanism of pegvisomant-induced deranged LFTs remains
unclear. At present, such changes appear to be entirely re-
versible on withdrawal of pegvisomant therapy. Neverthe-
less, monitoring of LFTs is essential in any patient receiving
pegvisomant.

5. The effect of pegvisomant therapy for acromegaly on other hor-
monal parameters and intermediary metabolism. Little data exist
on the effects of pegvisomant on intermediary metabolism
and hormonal parameters other than those directly affected
by GH. Trainer et al. (256) have recently reported the effect
of serum IGF-I reduction using pegvisomant on 11�-hydrox-
ysteroid dehydrogenase (11�-HSD) activity. 11�-HSD type I
is a bidirectional enzyme responsible for the interconversion
of cortisol to its inactive metabolite cortisone. Patients with
active acromegaly are known to have accelerated cortisol
clearance, whereas in adults with GHD the opposite is seen.
Using the urinary ratio of cortisol and cortisone metabolites
as a marker of net 11�-HSD activity, a significant decrease in
cortisol clearance was seen during the administration of
pegvisomant to seven patients with acromegaly (256).

Although no change in mean HBA1c values has been ob-
served in patients with acromegaly receiving pegvisomant,
normalization of serum IGF-I in these individuals is associ-
ated with significant reductions in fasting plasma glucose
and insulin (225). In a separate study (257), insulin sensitiv-
ity, as measured using the Homeostatic Model Assessment
equation, is also improved.

Adult GHD is associated with elevated total cholesterol
(TC), low-density lipoprotein (LDL), and apo-lipoprotein B
levels. These decrease after GH therapy (258–260), which has
also been associated with a significant increase in lipoprotein
a (261), an independent risk factor for cardiovascular disease.
Parkinson et al. (262) have recently demonstrated, compared
with established normal age-matched control data, lowered
serum TC and LDL levels in patients with active acromegaly,
in whom pegvisomant induced normalization of serum
IGF-I, was associated with a significant increase in serum TC,
LDL, and apo-lipoprotein B, as well as a significant decline
in lipoprotein a. After normalization of serum IGF-I, the
distribution of serum TC and LDL levels in this cohort were
not significantly different than those of the general popula-
tion (262). Given that LDL receptor number and activity are
in part mediated by GH (263, 264), these findings are con-
sistent with the theory that normalization of serum IGF-I

using pegvisomant is associated with normalization of li-
poprotein metabolism.

The clinical significance of these changes in intermediary
metabolism remains to be established, but the ability of
pegvisomant to not only control circulating IGF-I but also to
correct metabolic abnormalities associated with active acro-
megaly suggests that GH receptor blockade is an effective
treatment strategy for patients with acromegaly.

6. Comparison with SMS analog therapy. Two recent reports
(265, 266) have confirmed the efficacy of pegvisomant in
patients refractory to all conventional modes of therapy in-
cluding SMS analogs. All 13 patients reported in these stud-
ies had persistently elevated serum GH and IGF-I despite
receiving large doses of SMS analogs. Subsequently, normal
serum IGF-I values were achieved with pegvisomant alone
in all patients studied. It is also apparent that, even at a
pegvisomant dose of 40 mg/d, the top of the serum IGF-I
dose-response curve has not been reached, prompting spec-
ulation that normalization of serum IGF-I can be achieved in
all patients with active acromegaly, when adequate serum
concentrations of pegvisomant are obtained.

7. Combination therapy. An attractive notion is combination
medical therapy, using an agent that reduces pituitary GH
release together with pegvisomant to block GH action. How-
ever, with serum IGF-I normalization in over 90% of patients
with acromegaly receiving pegvisomant, the indications for
combined therapy will be limited. The routine use of SMS
analogs and pegvisomant in combination may also be pro-
hibitively expensive. We have experience of combined oct-
reotide and pegvisomant therapy in one patient. This patient
described dramatic improvement in headache within min-
utes of sc octreotide injection, but despite transsphenoidal
surgery, CRT, and Sandostatin LAR (30 mg every 4 wk) plus
bromocriptine (20 mg daily), persistent disease activity was
observed. Treatment with 40 mg of pegvisomant alone re-
sulted in normalization of serum IGF-I, and all reported
symptoms improved except for headache, which remained
unresponsive to conventional pain relief and prevented the
patient from sleeping or working. Pituitary magnetic reso-
nance scans showed no evidence of pituitary tumor growth.
To control headache, 50 �g of octreotide three times per day,
and subsequently, Sandostatin LAR (30 mg every 4 wk) was
combined with pegvisomant (40 mg/d) and the headache
resolved. An additive effect of pegvisomant and Sandostatin
LAR on serum IGF-I was observed. This case highlights that
although biochemical remission can be achieved using
pegvisomant in patients with octreotide-resistant acromeg-
aly (266), a small subset with octreotide-sensitive headache
may require combined pegvisomant and SMS analog ther-
apy. To date, however, there is limited experience comparing
the efficacy of pegvisomant as a single agent with its use in
combination with other medical therapies. Dopamine ago-
nists, in particular cabergoline, which has the advantage of
being relatively inexpensive, orally active, and with a similar
half-life, could potentially be combined with pegvisomant
for twice-weekly administration, possibly reducing the over-
all dose of pegvisomant required and, therefore, cost.
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X. Summary

An understanding of the molecular events involved in the
interactions between GH and its receptor has led to the rapid
development of a “designer” GH antagonist for use in con-
ditions characterized by excess GH action and elevated se-
rum IGF-I. The efficacy of pegvisomant in lowering serum
IGF-I in acromegaly is no longer in dispute. Attention must
now focus on long-term safety of pegvisomant with regard
to tumor volume changes, alteration of LFTs, effects on the
metabolic consequences of acromegaly, and the potential
differences between pegvisomant and existing medical
therapies.

On a larger scale, pegvisomant has the potential to sig-
nificantly improve treatment of diabetic microvascular com-
plications and human malignancy. We excitedly await the
potential applications of GH antagonists to these other clin-
ically important areas. Also, as studies continue on the in-
teraction between GH and its receptor, hopefully, orally ac-
tive, nonpeptidyl GH agonists and antagonists will be
discovered, developed, and used.
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