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Growth of a bubble cloud in CO2-saturated water in

microgravity†

Patricia Vega-Martíneza, Javier Rodríguez-Rodríguez,∗a and Devaraj van der Meerb

The diffusion-driven growth of a dense cloud of bubbles immersed in a gas-supersaturated liquid is

a problem that finds applications in several modern technologies such as solvent-exchange micro-

reactors, nanotechnology or the manufacturing of foamy materials. However, under Earth’s gravity

conditions, these dynamics can only be observed for a very limited time if the cloud is not attached

to a surface, due to the action of buoyancy, i.e. of gravity effects. Here, we present experimental

observations of the time evolution of dense bubble clouds growing in CO2-supersaturated water

in microgravity conditions. We report the existence of three regimes where the bubble cloud

exhibits different growth rates. At short times, each bubble grows independently following the

Epstein–Plesset equation. Later on, bubbles start to interact with each other and their growth rate

diminishes as they compete for the available CO2. When this happens, the growth rate slows

down. This occurs earlier the deeper the bubble is in the cloud. Finally, at long times, only

those bubbles on the husk continue growing. These regimes may be qualitatively described by

a mathematical model where each individual bubble grows in the presence of a constellation of

point mass sinks. Despite the model being only valid for dilute bubble clouds, its predictions are

consistent with the experimental observations, even though the bubble clouds we observe are

rather dense.

1 Introduction

The diffusion-driven dynamics of a dense cloud of bubbles (or

drops) have received lately a renewed attention due to their appli-

cations in modern chemical processes such as solvent extraction1

and in nanoscience2. Besides these immediate applications, un-

derstanding these diffusive dynamics also sheds light on certain

processes taking place in foams, such as coarsening or coales-

cence. Indeed, although many other physical effects are involved

in the evolution of a wet foam, still diffusion-related phenomena

play a central role3. However, despite the diffusive interaction

between nearby bubbles in bubbly liquids or foams having been

studied for a long time, still there is a need for quantitative pre-

dictive models4. In part, this is a consequence of the difficulties

that arise in isolating purely diffusive effects in experiments. In

fact, the large difference in density between the bubbles and the

liquid makes gravity effects manifest rather early in the evolution

of foams or bubble clouds3.

In foams it is hard to disentangle the role of liquid drainage (a

gravity-related effect) from other effects associated to the trans-

port of gas5 or anti-foaming agents6 in the rate of bubble coa-

lescence. Moreover, drainage turns wet foams into dry ones very
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fast, so the former are hard to characterize experimentally3. Even

in a situation where diffusion is the leading effect, such as the

growth of a bubble cloud in a gas-supersaturated liquid, gravity

effects become of comparable importance very quickly. For ex-

ample, a free cloud of sub-millimetric bubbles exhibits a purely

diffusion-driven growth only for a very limited time (hundreds

of miliseconds), even for high gas concentrations such as those

found for instance in beer or champagne, as shown by Rodríguez-

Rodríguez et al. 7 . In this study, a dense bubble cloud was pro-

duced in the bulk of a CO2-saturated liquid (beer) and its evolu-

tion studied using high-speed imaging. This evolution could be

divided into three stages: in a first one, which lasts only about

10 ms, the size of the bubbles increases with the square root of

time, as predicted by the Epstein-Plesset equation for the case of

a single isolated bubble8. Thus, it is reasonable to assume that

in this stage bubbles grow without interacting much with each

other. Then, another stage follows where bubbles moderate their

growth, due to the depletion of the dissolved gas in the space be-

tween bubbles. These two stages, where the dynamics are driven

by diffusive bubble growth, come to an end when gravity effects

become important and make the bubble cloud rise, which occurs

as early as about 100 ms even for a bubble cloud as small as

about 1 mm in diameter. Of course, bubbles could be prevented

from rising by keeping them pinned to a substrate. However, the

pinning introduces additional complexities that obscure, to some

extent, diffusive effects. Moreover, in some situations, gravity
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plays a role even if the bubbles remain pinned to a substrate. In

the case of sessile bubbles in CO2-supersaturated water, Enríquez

et al. 9 and Soto et al. 10 have shown that, although bubbles are

not allowed to move, the depletion of CO2 that takes place around

them induces density gradients in the liquid that ultimately trig-

ger a convection plume, which in turn dominates the flow and

overcomes the effect of diffusion.

Therefore, avoiding or minimizing gravity effects is essential to

study the purely diffusion-driven dynamics of wet foams or bub-

ble clouds. Moreover, besides this purely fundamental interest,

there are situations in which bubble clouds or wet foams evolve

in microgravity or, at least, in reduced gravity conditions. For

example, in the field of planetary physics, the diffusive growth

of bubbles is responsible for the loss of Helium in meteorites11.

Thus, modeling the evolution of Helium content in these objects

is important to understand the history of the formation of our so-

lar system. In the Moon, rocks with a highly vesicular structure,

such as the "Seatbelt Rock", have been found (see figure 4 in Jol-

liff and Robinson 12). This structure suggests that the rock has

formed by solidification of a dense cloud of bubbles containing

volatile gases, as a result of ancient volcanism. From a more tech-

nological point of view, the behavior of foams in reduced gravity

conditions is of interest for the development of advanced manu-

facturing processes in space, as pointed out by Koursari et al. 13 .

These authors study experimentally the drying of a wet foam in

the absence of gravity. Since on Earth gravity is essential to drain

out the water filling the interstices between bubbles, in space they

use a porous medium to soak up the liquid. Note that, if bub-

bles were allowed to grow by supersaturating the liquid with a

gas, their growth could push out the interstitial water without

the need of an external absorbing body.

In summary, studying experimentally the diffusive interaction

of free growing bubbles in dense bubble clouds or in wet foams at

long times requires avoiding the effect of gravity. This has been

done in several studies in the case of foams5,13–15 but, to the best

of our knowledge, there are no studies focusing on dense bubble

clouds growing diffusively in gas-supersaturated liquids in micro-

gravity. With this motivation in mind, we have carried out exper-

iments in which dense bubble clouds grow in CO2-supersaturated

water in microgravity conditions. These experiments were per-

formed in the drop tower of the German Center of Applied Space

Technology and Microgravity (ZARM) using an improved version

of the facility described by Vega-Martínez et al. 16 . Besides, in-

spired by these experiments, we have put together a mathemat-

ical model of the growth of a bubble cloud in a supersaturated

liquid that is able to explain, albeit in a qualitative fashion, the

features of the time evolution of bubble clouds observed in the

experiments.

2 Experimental setup and procedure

The experiment aims at generating a dense bubble cloud in a su-

persaturated liquid, in our case CO2-saturated water, and then

observe its evolution using high-speed imaging in microgravity

conditions. Figure 1 shows the sketch of the experimental setup,

which is based on that described in Vega-Martínez et al. 16 . This

experiment is fitted into a capsule that is then dropped inside the

drop tower of the German Center of Applied Space Technology

and Microgravity (ZARM). This tower has total height of 146 me-

ters and contains in its interior a 120-m-tube where the capsule

falls in near vacuum for about 4 s. This generates a micrograv-

ity environment for the duration of the drop. Then the capsule

decelerates and comes to a stop in a pool filled with polystyrene

pellets.

Fig. 1 Layout of the experimental setup and the drop tower facility. The

two high-speed cameras form an angle of 90o. The chamber has a

cylindrical shape, 24.4 mm of diameter and 200 mm of height. The

bubble cloud is generated at the center of the chamber to avoid the

effect of walls. The right panel is a sketch of the capsule inside the drop

tower (not to scale)

The measurement chamber, where the bubble cloud will form

and grow, is filled with carbonated water. This chamber is im-

mersed in a rectangular tank filled with degassed water to mini-

mize optical distortion. The top wall of the chamber is connected

to a pressurization and depressurization system. At the bottom of

the measurement chamber there are two electrodes connected to

the spark generator. The electrodes are two thin (100 µm) copper

wires that touch each other near their tips. The spark generator

is a discharge circuit similar to that described in Willert et al. 17

but replacing the LEDs by the electrodes, as suggested by Goh

et al. 18 . In our experiments, the discharge has a peak between

50-100 A and lasts for about 10 µs. The discharge induces cav-

itation, and the collapse of the imploding cavitation bubble gen-

erates the bubble cloud, the growth of which is the target of the

experiment. To measure the time evolution of the shape and size

of the cloud, two high-speed cameras, suitable for use in the drop

tower’s capsule, image the bubble cloud from two perpendicular

directions at 2000 fps. They produce images of 512×512 pixels

and a spatial resolution of 25 µm/pixel. As can be seen in the

appendix, the information provided by the two cameras is qual-

itatively similar for all drops. For that reason, in the discussion

of the experimental results we will only use images taken from

camera 1.

The supersaturated water is prepared in a pressurized facility

built to make carbonated water on-the-site which is subsequently

transferred to the measurement chamber at a pressure higher

than the saturation one, such as no gas is lost during the process.
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This procedure is similar to that followed by Enríquez et al. 19 .

Figure 2 compares the evolution of a bubble cloud in micro-

gravity (10−6 g) and 1 g conditions from its generation (the spark)

to the end of the experiment, approximately 3.4 seconds later.

During the first 100 ms, both tests show a similar diffusion-driven

growth. Subsequently, in the 1 g test, the effects of the gravity

become abundantly clear: the cloud starts a buoyancy-induced

rising motion as can be seen in the first row of the figure. In the

microgravity test, however the bubble cloud continues growing

by diffusion and no net motion is observed. For the model devel-

oped in the next section it is important to point out that, despite

the high bubble density of the cloud, we observe that very few

bubbles coalesce during the experiments. Thus, in a first approx-

imation the number of bubbles may be regarded as constant.

3 Mathematical model of transient mass

transfer in a bubble cloud

Let us consider a spherical bubble of radius Ri surrounded by a

cloud of other bubbles of radii R j, with j = 1..N and j 6= i. We

introduce here three hypotheses. First, from the point of view

of mass transfer, one bubble sees the others in the cloud as mass

sinks of intensity ṁ j. Second, we do not consider surface ten-

sion effects. Third, advective effects caused by bubble growth are

neglected in the gas transport equation. This means that the con-

centration of dissolved gas obeys the non-convective heat equa-

tion. Due to the linear nature of this equation, the interaction

of the i-th bubble with the surrounding ones can be treated by

superposition. For this reason, we consider the growth of a bub-

ble, labelled i, in presence of a point mass sink of intensity ṁ j a

distance di j apart from its center (see figure 3). The problem we

will solve now is to determine the gas mass flux entering bubble

i in these conditions. This problem exhibits cylindrical symmetry

around the line connecting the centers of both bubbles, so the

concentration field obeys

∂tC−D

[

1

r2
∂ 2

rr

(

r2 C
)

+
1

r2 sinθ
∂θ (sinθ∂θC)

]

=−ṁ jδ
[

~x−di j~ex

]

.

(1)

This equation must be subject to the boundary conditions at the

bubble surface, r = Ri, and in the far field r → ∞. At the bubble

surface the concentration is given by Henry’s law, in other words

C(R, t) = Cs = kHPs, where kH is Henry’s constant and Ps the am-

bient pressure, whereas in the far field C(~x, t) = C∞. Note that,

although equation (1) is linear, the fact that the radius of the i-th

bubble, Ri, depends on time effectively couples the computation

of the mass fluxes of the different bubbles, as every bubble j af-

fects the concentration field induced by the others through the

boundary condition at r = Ri. Nonetheless, as will be explained

below, this effect can be neglected with the assumptions adopted

here.

The solution of the problem will be sought by exploiting its

linear nature to decompose it into a spherically-symmetric one

that satisfies these boundary conditions plus another one that ac-

counts for the effect of the point sink but that has homogeneous

boundary conditions. The former solution recovers the mass flux

given by the Epstein–Plesset equation8, ṁi0. To calculate the lat-

ter, denoted by ṁi j, we transform equation (1) into the Laplace

plane. In what folows, Ĉ(r,s) and m̂ j(s) are the Laplace transforms

of C(r, t) and ṁ j(t), respectively. With this notation, equation (1)

turns into

sĈ−D

[

1

r2
∂ 2

rr

(

r2 Ĉ
)

+
1

r2 sinθ
∂θ

(

sinθ∂θĈ
)

]

=−m̂ jδ
[

~x−di j~ex

]

.

(2)

To transform the time derivative of the concentration field we

take into account that, with the decomposition explained above,

the concentration field induced by an individual mass point sink

has homogeneous initial conditions, thus ∂C/∂ t transforms to sĈ.

The general solution to this equation is20:

Ĉ =− m̂ j

4πD

exp
(

−
√

s/D
√

d2
i j + r2 −2di jr cosθ

)

√

d2
i j + r2 −2di jr cosθ

+

+
∞

∑
l=0

[

al h
(1)
l

(
√

−s/Dr)+bl h
(2)
l

(
√

−s/Dr)
]

Pl(cosθ),

(3)

where h
(1)
l

and h
(2)
l

are Hankel’s functions of first and second kind,

respectively. Note that, since they contain exponential functions

of imaginary exponent, the minus sign inside the square root of

their arguments guarantees that they take real values. Although

to compute the concentration field it is necessary to determine

the full set of coefficients (al ,bl), the calculation of the mass flux

m̂i j that sink j induces on the bubble only requires knowledge

of the coefficients a0 and b0. Indeed, the mass transfer due to

higher-order harmonics is zero, as

ṁi j =−2πR2
i D

∫ π

0

∂C

∂ r

∣

∣

∣

∣

r=R

sinθ dθ ∼
∫ π

0
Pl(cosθ) sinθ dθ , (4)

with the last expression being zero for l ≥ 1. Moreover, the co-

efficient b0 must vanish, as the function h
(2)
0

(

√

−s/Dr
)

is un-

bounded as r → ∞.

To obtain a0 we introduce (3) into (2) and project onto

P0(cosθ) to find

0 =− m̂ j

4πD

∫ 1

−1

exp

(

−
√

s

D

√

d2
i j +R2

i −2di jRix

)

√

d2
i j +R2

i −2di jRix
dx+

+2a0h
(1)
0

(

√

−s/DRi

)

,

(5)

where the variable change x = cosθ has been introduced. Here

it is good to note that the expression of Eq. (5) is hybrid, as it

mixes expressions in Laplace space with the radius of bubble i,

which generally is a function of time, Ri(t). We will however ig-

nore this fact and treat Ri as a constant in Laplace space to make

analytical progress. Physically, this amounts to saying that we

assume that the time scale with which the concentration field re-

sponds to changes in the configuration is much smaller than that

at which the bubble grows. This is an assumption that is quite

similar to the “frozen bubble” assumption that was employed in

solving the single bubble problem in the original paper by Ep-

stein & Plesset8. Evaluating the integrals, and taking into account
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Fig. 2 Comparison of experiments where the bubble cloud develops with (upper row) and without gravity (lower row). See movie in supplemental

material.

Fig. 3 Bubble of radius Ri in the presence of a mass sink of intensity ṁ j

located a distance di j apart.

h
(1)
0 (
√

−s/DRi) =−e−
√

s/DRi/
√

s/DRi,

0 =
m̂ j

4πD

2e−
√

s/Dd

Ridi j

√

s/D
sinh

(

√

s/DRi

)

+2a0
e−

√
s/DRi

√

s/DRi

, (6)

thus

a0 =− m̂ j

4πDdi j
e−

√
s/D(di j−Ri) sinh

(

√

s/DRi

)

. (7)

Introducing this value of a0 together with b0 = 0 into (3) and

differentiating we get

∫ π

0

∂Ĉ

∂ r

∣

∣

∣

∣

r=Ri

sinθ dθ =− m̂ j

2πDdi jRi
exp

(

−
√

s

D

(

di j −Ri

)

)

. (8)

Transforming this expression back into the time domain and in-

troducing it in the definition of the mass flux (4),

ṁi j =− R2
i D

2
√

π

∫ t

0

1

Ri

(

1− Ri

di j

)

ṁ j(t
′)

[D(t − t ′)]3/2
exp

(

− (di j −Ri)
2

4D(t − t ′)

)

dt ′.

(9)

To obtain the total mass flux into bubble i, this expression must

be summed over all bubbles in the cloud (with the exception of i

itself) and then added to the mass flux provided by the Epstein–

Plesset equation, ṁi0, to yield

ṁi = 4πR2
i D(C∞ −Cs)

(

1

Ri
+

1√
πDt

)

−

R2
i D

2
√

π

N

∑
j=1
j 6=i

∫ t

0

1

Ri

(

1− Ri

di j

)

ṁ j(t
′)

[D(t − t ′)]3/2
exp

(

− (di j −Ri)
2

4D(t − t ′)

)

dt ′.

(10)

To make the above expressions dimensionless we introduce the

following variables (suppressing indices), a = R/Rc, ∆ = d/Rc,

τ = Dt/R2
c and Ṁ = dM/dτ = ṁ/(ρgDRc), where Rc is a fixed char-

acteristic bubble diameter, and ρg is the gas density at the ambi-

ent pressure Ps. Besides, the saturation level, which indicates the

amount of CO2 dissolved in the liquid, is defined by ζ = C∞/Cs.

Let us define also the Ostwald coefficient as Λ=Cs/ρg. With these

definitions, equation (10) results in

Ṁi = 4πa2
i Λ(ζ −1)

(

1

ai
+

1√
πτ

)

−

a2
i

2
√

π

N

∑
j=1
j 6=i

∫ τ

0

1

ai

(

1− ai

∆i j

)

Ṁ j(τ
′)

[τ − τ ′]3/2
exp

(

− (∆i j −ai)
2

4(τ − τ ′)

)

dτ ′.

(11)

This mass flux must be completed with the mass conservation

equation for the i−th bubble, namely

Ṁi = 4πa2
i

dai

dτ
. (12)

The changes in the volume of the bubble induce a velocity field

which, sufficiently far away from its center, can be modelled as

that of a volume point source. Thus, considering the whole cloud,

each individual bubble moves as a result of the superposition of

these flows. In the Stokes limit, the resulting bubble velocity can
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be computed using the solution provided by Michelin et al. 4

Ūi =
1

4π

N

∑
j 6=i

ēij

∆2
i j

(

Ṁ j −
N

∑
j 6=l

a3
j Ṁl

∆3
jl

(

1−3(ēji · ējl)
2
)

)

. (13)

In this equation, ēi j is the unit vector pointing from the center of

the i-th to that of the j-th bubble. In this work, we are going to let

bubbles translate with only the first term of this expression since

we expect
(

a j/∆ jl

)3 ≪ 1.

3.1 Numerical method

The computation of the time evolution of the bubble cloud is di-

vided into two stages. First, we integrate equations (11) and (12)

together assuming that the bubbles do not displace and then, in

a second stage, we compute the motion of the bubbles using the

velocity field given by (13).

The system of integro-differential equations (11-12) is solved

using an explicit Euler method for the temporal derivatives and

a trapezoid method for the integral. Note that the kernel of the

integral equation tends smoothly to zero at the integration limit

τ ′ = τ, which makes the usage of more sophisticated integration

methods unnecessary. We can distinguish two terms in equation

(11): the first one is the mass flux provided by the Epstein-Plesset

equation8, which corresponds to the evolution of an isolated bub-

ble. The second term, the integral, models the interaction be-

tween each individual bubble and the rest of the cloud. For the

calculation of this second term we will adopt the simplifying as-

sumption that the radius of the bubble corresponds to the initial

one (frozen bubble). Note that this hypothesis is also adopted

in the derivation of the Epstein–Plesset equation8. The time step

chosen for the simulations presented in this paper is ∆τ = 10−3,

which has been selected after verifying that taking a smaller time

step does not affect the results.

Once the time evolution of the bubble radii is computed, the

bubbles are displaced using the velocity field given by (13) using

also, for consistency with the previous stage, an Euler method

with the same time step.

The start-up of the numerical computation is done by integrat-

ing solely the Epstein–Plesset equation up to the time step used

for the rest of the calculation, ∆τ. Note that this is possible, since

at very short times the concentration boundary layer is confined

to a thin shell around the bubble of thickness ∼
√

τ, which is much

smaller than the typical bubble-bubble distance. This makes it

possible to neglect the integral term in this first step. This strat-

egy is also used in the computation of the bubble velocities.

4 Results and discussion

We split this section into two parts. First, we explore the predic-

tions of the theoretical model just described for conditions rep-

resentative of our experiments. Then, we compare these predic-

tions, in a qualitative way, with those features of the evolution of

the bubble clouds that could be determined from the experiments.

4.1 Results of the model

In this section we show the predictions of the model for bubble

clouds representative of those observed in the experiments. Since

the number of dimensionless parameters of the problem is large,

we restrict our results to initially spherical bubble clouds with

a number of bubbles large enough to exhibit collective effects,

namely N = 100, and evolving in liquids with different satura-

tion levels, ζ . Furthermore, all the bubbles have the same initial

size, R0 = 30 µm. This radius is consistent with the estimated

size of the bubble fragments that result in a similar cavitation

experiment7. Note that for bubbles of this size it is reasonable

to neglect the effect of surface tension in their dynamics, as the

Laplace pressure, 2σ/R0, with σ ≈ 0.7 N/m the surface tension

coefficient, only becomes of the order of the ambient pressure for

bubbles of size 2σ/Ps ≈ 1.4 µm. In all the calculations we have

adopted Λ= 0.842 and D= 1.92×10−5 m2/s, corresponding to the

values of the system CO2-water at 25oC21. The initial positions

of the bubbles are chosen randomly within a sphere, the cloud, of

radius Rbc such that the average bubble density is approximately

uniform. To clearly identify the moment when bubbles start to in-

teract with each other, it is convenient to seed the bubbles in the

cloud with an average inter-bubble nearest neighbor distance, d,

larger than, but still of the order of, one bubble diameter. Assum-

ing that the volume of cloud available per bubble is Vb ∼ πd3/6,

setting Rbc ≈ 10R0 yields d ≈ 4.3R0, which fulfills the above cri-

terion. In what follows, all length scales are made dimensionless

with R0 and time scales with R2
0/D, using the same notation as in

the previous section.

Figure 4 shows qualitatively the evolution of a modeled bubble

cloud with a saturation ζ = 2. The top left side is the initial state,

τ = 0, whereas the top right one corresponds to the cloud at a

later time τ = 3.2. The color indicates the initial distance from

the bubble to the center of the cloud, growing from light to dark

hue. To illustrate this color coding, the bottom image represents a

cut of the cloud at τ = 3.2. To average results for bubbles located

at a given initial distance from the center, the cloud radius in the

initial state has been divided into B = 10 layers equally spaced

along the radius Rbc, with the color indicating the layer number.

Using this averaging strategy we can show how bubbles grow at

different depths inside the cloud.

Panels (a, c, e) of figure 5 show the time evolution of the radii

of the bubbles in three clouds with saturation levels ζ = 1.1,2

and 4, averaged over each radial layer. Correspondingly, panels

(b, d, f ) show the average bubble radius of each layer at the end

of the simulation (τ ≈ 6.5). The duration of the simulation has

been chosen to allow for the observation of the different growth

regimes. At early stages all the bubbles grow freely, that is, as iso-

lated bubbles. In this situation, their growth is well described by

the Epstein–Plesset equation8, corresponding to the red dashed

line in the figure. Using our notation, this equation reads

da

dτ
= Λ(ζ −1)

(

1

a
+

1√
πτ

)

. (14)

The departure from the growth predicted by this equation is a

consequence of the fact that the thickness of the diffusive bound-

ary layer around the bubble grows as δ ∼
√

τ. Therefore, until
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Fig. 4 . Three-dimensional view of a bubble cloud generated with the

model described in section 3, (a) at time τ = 0 and (b) at a later time,

τend = 3.2, in dimensionless units. Panel (c) represents half the cloud,

consisting of only those bubbles with centers obeying x < 0, at the same

time. The saturation of the liquid is ζ = 2. The color represents the initial

distance of each bubble to the center of cloud, growing from lighter to

darker colors.

times of order τ ∼ (∆/2−1)2 the boundary layers of the differ-

ent bubbles do not interact and bubbles do not feel each other.

However, from that time onwards, the diffusive boundary layers

overlap and bubbles compete for the available CO2. As a conse-

quence, their growth rates diminish quickly, even becoming zero

or slightly negative for bubbles in the innermost layers, where the

access to the CO2 present in the bulk outside the cloud is limited.

Contrarily, the growth of the bubbles in the husk of the cloud con-

tinues, albeit at a much smaller pace. Note that the freezing of

the growth of the innermost bubbles, which is also clearly visi-

ble in figure 4c, is consistent with the experimental observations

(see figure 9 and the associated discussion). Regarding the slight

reduction of the bubble sizes for bubbles deep inside the cloud

for τ & 2, observed in figure 5, although it seems reminiscent of

Ostwald-rippening, where surface tension causes large bubbles to

grow at the expense of small ones22, surface tension is not con-

sidered here. Consequently, this bubble size reduction cannot be

attributed to this effect. In fact, in the absence of surface ten-

sion, the gas concentration at the bubble surface could never be

smaller than the saturation one, Cs, which means that bubbles

should never shrink. The cause of this anomalous effect is the

fact that we model nearby bubbles as point sinks. For a point

sink, imposing a given mass flux means that the concentration is

minus infinity at the sink. So, if the sink is very close to the bub-

ble, it may occur that locally the concentration becomes smaller

than the saturation one, which is a non-physical effect. Naturally,

this would not occur were the sink replaced by a physical bub-

ble, as in its surroundings the concentration verifies C ≥Cs at all

Fig. 5 (a,c,e) Dimensionless time evolution of the bubble radii for

saturation levels ζ = 1.1,2 and 4 respectively. The solid-line shows the

mean radius for each cloud layer, with the color evolving from lighter to

darker according to the distance of the layer to the cloud center. The

error bars mark the maximum and minimum radius of the bubbles for

each layer at that time instant. The red-dashed line represents the

growth of an isolated bubble predicted by Epstein-Plesset equation 8.

(b,d, f ) Final layer-averaged radius of the bubbles in the cloud as a

functions of its distance to the center. Markers represent the mean final

radius, whereas the vertical bars show the maximum and minimum

value of the radius. The horizontal error bars correspond to the

maximum and minimum final distance to the cloud center of the bubbles

contained in each layer. The black horizontal dashed line is the value of

a f predicted by equation (15).

times. Nonetheless, the bubble size reduction created by this sim-

plification is at most about 15% in the case ζ = 4 and smaller in

the others.

The final radius of bubbles belonging to the innermost lay-

ers can be estimated using simple mass conservation arguments.
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Since these bubbles lose access to the CO2 from the bulk liquid,

they almost stop growing when they have absorbed all the ex-

cess CO2 dissolved in the liquid volume of cloud available per

bubble, which we can regard as that of a sphere of diameter d.

Thus, the final dimensional mass, 4π/3R3
f ρg, must the the sum of

the initial one, 4π/3R3
0ρg, plus the excess mass of CO2 dissolved

in the liquid volume with respect to the saturation one, namely

(C∞ −Cs)π/6d3. In dimensionless terms this yields for the final

radius

a f =
(

1+Λ(ζ −1)∆3/8
)1/3

. (15)

For the saturation levels corresponding to the simulations in fig-

ure 5, namely ζ = 1.1,2 and 4, the values of a f = 1.21,2.22 and

3.14 respectively. We must point out here that when we refer to

final radius or bubble sizes, we mean at the end of the simulation.

Note that, even at the center of the bubble cloud, still bubble radii

keep changing with time at long times. However, they do so at

a much smaller pace than that predicted by the Epstein–Plesset

equation, thus we find it reasonable to regard it as quasi-frozen.

As can be observed in figures 5b, d and f , the agreement with

the numerical results is fairly reasonable, given the assumptions

adopted in this estimation. In this figure, markers denote the

layer-averaged final radius, with the vertical error bars indicating

the minimum and maximum bubble size for each layer. In an

analogous way, the horizontal position of each marker represent

the mean radial position of the bubbles in the layer at the end of

the simulation, which are all contained in the segment marked by

the horizontal error bars.

0.04 0.06 0.08 0.1

0.02

0.04

0.06

0.08

0.1

Fig. 6 Rate of change of the radius of the bubbles in the outermost

layer divided by that predicted by the Epstein–Plesset equation, as a

function of the inverse of the number of bubbles in this layer. The solid

line is 1/Nos.

Once bubbles deep into the cloud reach this maximum size, it

seems reasonable to assume that only those in the outer shell con-

tinue growing. Because there is almost no CO2 inside the cloud,

all the mass flux comes across the outer boundary of the cloud.

Moreover, this mass flux must be shared between all the bubbles

in the outer shell. In a first approximation, we can model this

effect by assuming that each bubble does no longer intake gas

from a solid angle 4π (that is, from all directions) but from a

solid angle 4π/Nos, where Nos is the number of bubbles in the

outer shell. This means that the Epstein–Plesset equation can

still be used to model bubble growth in the husk, but dividing

its right hand side by the number of bubbles in the outer shell. To

check this hypothesis, we plot in figure 6 the time derivative of

the radius of the bubbles in the outermost layer at the end of the

simulation divided by the one predicted by the Epstein–Plesset

equation as a function of the inverse of the number of bubbles in

this layer. These results correspond to the same saturation level,

ζ = 2, but to four different realizations. Because in each realiza-

tion the bubbles are distributed randomly, the number of them

in the outermost layer varies. The average value of this number

can be estimated by assuming that the bubble density in the cloud

is constant and that the outermost layer has a thickness of about

d/2. Using simple geometrical analysis this yields Nos ≈ 3Nd/2Rbc.

We conclude this section with a comment about the effect of the

saturation level on the growth rate of the cloud. Although in the

experiments the radius of the individual bubbles cannot be deter-

mined experimentally, it is possible to measure the time evolution

of the projected area of the whole cloud by applying image pro-

cessing to each frame of the high-speed movies. To compare these

results against the simulations, we need to compute the time evo-

lution of the projected area of the simulated cloud. To that end,

we create synthetic images projecting the three-dimensional bub-

ble cloud onto a plane, as sketched in figure 7 and done in fig-

ure 4. Using this technique, we are able to take into account the

effect of bubbles overlapping on the projected cloud area. Note

that, since the cloud is spherical and the bubbles are distributed

randomly, the choice of the projection plane does not have an

effect on the results.

Fig. 7 Schematic of the definition of the projected area.

The physics behind the growth of the bubble cloud becomes

more clear if we focus on the time derivative of the projected

area rather than on the area itself, as we explain in the next sub-

section. Figure 8a shows how, for ζ ≥ 2, the evolution of both the

projected area and the total gas volume is qualitatively indepen-

dent of this value, just affecting the absolute value of the growth

rates.

Indeed, examination of the Epstein–Plesset equation (14) sug-
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gests that, provided the radius of the bubble is sufficiently larger

than the initial one, we can assume a ∼
√

τ. In this case, the

growth rate of a2, which is roughly proportional to the projected

area, scales with (ζ −1). To check this scaling, we plot in Fig-

ure 8b the time derivative of the dimensional projected area di-

vided by the saturation level, ζ −1. As predicted, the curves col-

lapse fairly well at intermediate and long times. At short times,

because the bubble radii are still close to the initial ones, the col-

lapse is not so good. Furthermore, the curve corresponding to the

smallest saturation level, ζ = 1.1, does not exhibit such a good

collapse at any time. This is due to the influence of the initial

bubble radius, which lasts longer due to the smaller growth rate.

0.1 1

0.01

1

100

0.1 1

0.01

0.1

1

Fig. 8 (a) Time derivative of the measured projected area and the

measured 2/3 root of the volume for numerically created bubble clouds

with identical initial configurations but different saturation levels, ζ . (b)

Time derivative of the projected area divided by (ζ −1). Note that, to

facilitate the comparison with the experiments, we show here the

numerical results in dimensional form, using R0 = 30µm and R2
0/D ≈ 0.47

s as length and time scales respectively.

The model predicts the existence of three different stages in the

evolution of the cloud which, despite their noise and variability,

are also observed in the experiments. At short times, the area

grows relatively fast, at a nearly constant rate. Later on, the rate

of change of the area decays slightly faster than the square root of

the time. Finally, at long times, the area grows again at a constant

rate, albeit at a much slower pace.

The last two regimes can be easily explained with a simple

heuristic model. Let us assume that the volume of the cloud is

the sum of that of the N bubbles plus their associated water vol-

ume (a sphere of radius d/2 for each bubble). Since the water

volume in the cloud does not change, the radius of such a cloud

would then be

abc =

(

N

(

d

2

)3

+∑
i

a3
i

)1/3

= N1/3
(

(d/2)3 +a3
)1/3

. (16)

where, for simplicity, we take all bubbles to have the same size.

The projected area, Abc = πa2
bc, has a rate of change

dAbc

dτ
= 2πN2/3 a2ȧ

(

(d/2)3 +a3
)1/3

. (17)

At short times, the radius of the bubble does not differ much from

its initial one, a ≈ 1, whereas its time derivative goes as ȧ ∼ τ−1/2,

as predicted by the Epstein–Plesset equation. Introducing this

into Equation (17), we get dAbc/dτ ∼ τ−1/2. This is in fairly good

agreement with the behavior observed at intermediate times in

both experiments and theory. Actually, the rate of change of the

area seems to decay slightly faster than this prediction, which is

consistent with the fact that bubbles deep inside the cloud stop

growing once they deplete their surroundings from CO2. In other

words, the effective value of N in Equation (17) also decays with

time, until it only refers to those bubbles located in an outer shell

of thickness of order ∆.

At long times, the radius of the bubbles in the outer shell still

grows as a ∼ τ1/2, albeit with a prefactor smaller than that pre-

dicted by Epstein–Plesset, as discussed above. Moreover, a ≫ d/2.

In this limit, Equation (17) yields dAbc/dτ ∼ aȧ, which is constant.

As we will see in the next subsection, this is indeed what is ob-

served to occur in the simulations and is qualitatively consistent

with the experiments as well, despite the noise.

At short times, the model predicts a fast growth rate, not only

in absolute value, which is to be expected as a consequence of

bubbles growing without competing between them, but also in

terms of how slowly it decays. Indeed, although Equation (17)

suggests that dAbc/dτ ∼ τ−1/2 at short times as well, we observe

that dAbc/dτ is rather constant instead. This is a consequence

of the fact that the void fraction inside the cloud grows fast at

short times. Thus, the growth of the projected area is the addi-

tion of two effects: its boundaries grow, as predicted by Equation

(17), and the interior of the projected cloud image becomes more

opaque as more bubbles overlap on the projection. Naturally, if

we compute the total gas volume inside the cloud, V , we observe

a much closer agreement with dV 2/3/dt ∼ τ−1/2, since the fact

that bubbles overlap in the image does not affect the evolution of

the volume. This can be observed in figure 8, where the evolu-

tion of the time derivative of V 2/3 is compared with that of the

projected area of the cloud A for simulations with identical initial

bubble distributions but different saturation levels.
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4.2 Comparison with experiments

In this section we analyze the evolution of the size of the bubble

clouds observed in our microgravity experiments, comparing it

with that predicted by the model. Several key features of the bub-

ble cloud, such as the number of bubbles or their initial size and

spatial distributions cannot be determined experimentally. For

this reason, the comparison will be predominantly of qualitative

nature and restricted to the area of the bubble cloud projected on

an image, which is the magnitude that can be measured experi-

mentally. Nonetheless, despite this limitation, we will show that

the different regimes and growth rate behaviors predicted by the

model are consistent with those observed experimentally.

An important aspect is to determine the saturation level of CO2

of the water in the experiments. Some isolated bubbles appear

in almost all the experiments, and we use them to determine the

saturation level, ζ , as done in16. To this end, we track the evo-

lution of their radii by imaging processing. Then, we estimate ζ

by fitting that evolution to that predicted by the Epstein–Plesset

equation8, obtaining values between 3.5 and 4.3, depending on

the experiment.

As stated above, the high bubble density of the cloud precludes

the observation of its interior. Consequently, it is not possible to

determine experimentally the number of bubbles nor their size

distribution, at least not accurately. However, as soon as the cap-

sule brakes upon reaching the bottom of the tower, the sudden

appearance of a large apparent gravity allows us to instantly ob-

serve those bubbles that were at the center of the cloud (figure

9). This observation reveals that bubbles deep inside the cloud

are much smaller than those near the outer edge, as predicted by

the model (figure 5).

Fig. 9 Snapshot of a high-speed movie showing the cloud during the

deceleration of the capsule (ζ ≈ 4). As the capsule comes to a stop, the

large deceleration makes the bubble cloud rise fast. Because large

bubbles rise faster, this allows us to see those that were inside the cloud

(within the red ellipse region). See also movie in the supplemental

material.

Figure 10 shows the time evolution of the projected area for the

six drops. In this and the following plot, all the magnitudes are

plot with dimensions, to give an idea of the orders of magnitude

of the spatial and temporal scales. The jumps observed in some of

the curves are due to the merging or separation of individual bub-

bles from the main cloud. Besides the fact that all the curves grow

monotonically, it is not obvious to extract any trend, specially not

the existence of different regimes. In part, this is a consequence

of the large dispersion in the growth rates of the projected area,

which arises from the variability in the initial conditions of the

bubble cloud caused by the collapse of the spark-induced cavi-

tation bubble. But also, even if all the clouds were generated

identical, the projected area at a given instant is an integral of all

the previous growth rates. Thus, this magnitude is not suitable to

identify different stages in the cloud growth rate. For this reason,

we focus our analysis on the time derivative of the projected area,

which is an instantaneous magnitude, i.e. not depending on the

bubble cloud history or initial conditions.
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Fig. 10 Evolution of the measured projected area of six bubble clouds.

The level of saturation of the water in these experiments varies between

3.5 – 4.3.

Figure 11 shows in logarithmic scale the rate of change of the

area of the cloud for the six drops carried out in the campaign

(see appendix for details on how the time derivative of the area is

calculated). The curves in the figure have been scaled with their

value at the center of the time range where they follow the law

dA/dt ∼ t−1/2 to be able to compare the evolution of clouds with

very different initial sizes and thus growth rates. We plot also the

rate of change of the area computed from a numerical simulation

with ζ = 4.

In the experiments, the behavior at short times exhibits a larger

variability than that predicted by the model. In some experi-

ments we observe the trend dA/dt ∼ t−1/2 from the first instants,

whereas in others the projected area shows an initially constant

growth rate. We attribute this anomalous behavior to the fact

that, at such short times, some of the clouds still keep some resid-

ual velocity as a result of the implosion of the cavitation bubble

which gave them birth. As this initial velocity dissipates, the pro-

jected area transitions to the regime where it decays as the inverse

of the square root of the time. This residual velocity can be ob-

served in the high-speed movies (See movies in the supplemental

material). Finally, despite the experimental noise, it is possible

to infer that the growth rates stabilizes and decays slower than

t−1/2, consistently with the model predictions.
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Fig. 11 Rate of change of the projected area for the six drops,

compared with that predicted by a simulation with ζ = 4. The curves

have been scaled with their corresponding value at the center of the

time range where they follow the scaling law dA/dt =Ct−1/2, that is

tr = 0.4 s. Here, C is the fitting constant of each experiment.

5 Conclusions

We report here experiments where dense bubble clouds grow

by diffusion in a supersaturated liquid under microgravity con-

ditions. The bubble clouds are created upon the implosion of a

cavitation bubble generated by a spark. Although this way of pro-

ducing the clouds introduces some variability in the experiments,

the evolution of the six bubble clouds studied is qualitatively iden-

tical, which suggests that the diffusive growth mechanism that

we study is fairly independent of the particular size or shape of

the cloud. To achieve microgravity conditions, the experiments

have been carried out in the drop tower facility of the German

Center of Applied Space Technology and Microgravity (ZARM).

The absence of gravity allows us to observe the purely diffusive

growth dynamics of the bubble for several seconds, more than an

order of magnitude longer than what could be observed under

normal gravity7, where bubble buoyancy would quickly become

dominant. Moreover, we avoid other effects such as natural con-

vection9,10 inside the liquid phase.

Inspired by the experimental observations, we have developed

a mathematical model where each bubble grows competing for

the available CO2 with the others in the cloud, which are treated

as point mass sinks. Although, strictly speaking, the model is only

valid in the limit of a dilute bubble cloud, it predicts reasonably

well the qualitative evolution observed in experiments. The rea-

sonably good agreement of the model with the observations has

allowed us to explain, using simple heuristic arguments, the ex-

perimental observations. Moreover, this model has been used to

investigate aspects that could not be determined experimentally,

namely the final distribution of bubble sizes inside the cloud and

the effect of the saturation level.
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Appendix A Experimental data from all drops

We present the post-processing analysis carried out for the high-speed movies obtained for the six drops. Regarding the image analysis,

the projected area of the cloud have been tracked using custom-made image processing software implemented in Matlab. We started

tracking this area from 2 or 3 frames after the spark generates the bubble cloud untill the end of the experiment. Thus, the time span

during which the area is measured runs from 0.05 to 3.2 s.

As we said in section 4, it is easier to observe the physics behind these experiments if we represent the time derivative of the projected

area. To calculate the time derivative of the cloud size we use a central finite difference with a 4th order of accuracy with a uniform

grid spacing, ∆t = 0.001s, despite of our time experimental resolution is 5e-4 s, to avoid the numerical noise. Then, we screen the data

using a ten-point centered moving mean filter in order to see the growth trends. The figure below shows the evolution of the projected

area (first column) and the filtered time derivative of the two perpendicular views for the six drops.

Fig. 12 Projected area and their time derivatives obtained from the two

camera views in the six experiments carried out during the drop tower

campaign.
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