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Growth of bioconvection patterns in a 
suspension of gyrotactic micro-organisms in a 

layer of finite depth 

By N. A. HILL,' T. J. PEDLEY' AND J. 0. KESSLERZ 

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 
Silver Street, Cambridge CB3 9EW, UK 

'Department of Physics, University of Arizona, Tucson, AZ 85721, USA 

(Received 20 September 1988 and in revised form 5 May 1989) 

The effect of gyrotaxis on the linear stability of a suspension of swimming, negatively 
buoyant micro-organisms is examined for a layer of finite depth. I n  the steady basic 
state there is no bulk fluid motion, and the upwards swimming of the cells is balanced 
by diffusion resulting from randomness in their shape, orientation and swimming 
behaviour. This leads to  a bulk density stratification with denser fluid on top. The 
theory is based on the continuum model of Pedley, Hill & Kessler (1988), and 
employs both asymptotic and numerical analysis. The suspension is characterized by 
five dimensionless parameters : a Rayleigh number, a Schmidt number, a layer-depth 
parameter, a gyrotaxis number G ,  and a geometrical parameter measuring the 
ellipticity of the micro-organisms. For small values of G ,  the most unstable mode has 
a vanishing wavenumber, but for sufficiently large values of G ,  the predicted initial 
wavelength is finite, in agreement with experiments. The suspension becomes less 
stable as the layer depth is increased. Indeed, if the layer is sufficiently deep an 
initially homogeneous suspension is unstable, and the equilibrium state does not 
form. The theory of Pedley, Hill & Kessler (1988) for infinite depth is shown to be 
appropriate in that case. An unusual feature of the model is the existence of 
overstable or oscillatory modes which are driven by the gyrotactic response of the 
micro-organisms to the shear at the rigid boundaries of the layer. These modes occur 
a t  parameter values which could be realized in experiments. 

1. Introduction 

This paper is concerned with collective dynamical phenomena which occur when 
large numbers of small, self-propelled bodies are suspended in a fluid medium which 
is slightly less dense than they are. For example, in suspensions of certain species of 
swimming micro-organisms such as the alga Chlamydomonas n iralis. regions of 
increased concentration, coupled to bulk fluid motions are observed to arise 
spontaneously. This leads to  convective instability (under the action of gravity) and 
hence to  the establishment of convective patterns. The phenomenon is known as 
' bioconvection ' ; it has some similarity with Rayleigh-BBnard convection, but 
originates solely from the swimming of the micro-organisms. 

Pedley, Hill & Kessler (1988, hereinafter referred to as PHK) extended the theory 
of Childress, Levandowsky & Spiegel (1975, hereinafter referred to as CLS) (who 
analysed the bioconvective instability of a suspension of up-swimming cells) to 
develop a continuum model for a suspension of swimming, gyrotactic micro- 
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organisms. The centre of mass of such creatures is displaced from their centre of 
buoyancy so that in the absence of bulk fluid motions they tend to swim vertically 
upwards, a phenomenon known as ‘negative geotaxis ’ (or ‘gravitaxis ’). However, 
when the bulk fluid motion has a horizontal component of vorticity, there is a 
tendency for the resultant viscous torque on a micro-organism to make it swim at a 
non-zero angle to the vertical. This behaviour was called ‘gyrotaxis’ by Kessler 
(1984). The orientation of such ‘micro-swimmers’ by torques due to gravity and fluid 
velocity gradients is not perfect. Neither are all the organisms identical, even in 
populations derived from a single parent cell. In this paper, as in its predecessors, we 
assume that such random deviations from perfect morphology, predictable swimming 

motions and purely deterministic behaviour can be described by a diffusive term 
incorporated into the equation representing conservation of cells. In bioconvection 
this diffusive component of the cells’ motion is the analogue of thermal diffusion in 
Rayleigh-Behard convection. We hope that it will eventually be possible to augment 
the assumption of the diffusion by more specific averages over cell properties, but a 
detailed knowledge of such cell properties is not yet available. 

PHK gave an introduction to bioconvection and gyrotaxis and in a consideration 
of the linear stability of an initially uniform suspension in an unbounded layer, they 
found instability at  finite wavenumbers, consistent with the formation of 
bioconvection patterns. However, their analysis is inappropriate for a shallow layer 
because the boundary conditions cannot be satisfied by a uniform suspension. The 
purpose of the present paper is to examine the linear stability of the steady, 
equilibrium state in a layer of jinite depth using PHK’s continuum model. The 
concentration of cells in the basic state increases exponentially with height so that 
the upward flux of cells due to negative geotaxis is balanced by a downward flux due 
to diffusion. A similar basic state and model were considered by CLS, but they did 
not include the effects of gyrotaxis and their model predicted a zero wavenumber at 
the onset of instability. Harashima, Watanabe & Fujishiro (1988) solved the 
nonlinear equations of the CLS model numerically in two dimensions for a layer of 
finite depth and width, and studied the evolution of bioconvection patterns from a 
uniform state. They found that the lengthscale of the initial instability is determined 
by the balance between up-swimming and diffusion in the basic state, but the scale 
of the later nonlinear convection patterns is determined by the overall layer depth. 

The paper is organized as follows. The equations and boundary conditions of the 
continuum model are outlined in $2, and the steady equilibrium solution is given. In 
$ 3, the equations are non-dimensionalized, the dimensionless numbers describing the 
system are derived, and the equations are linearized about the equilibrium state. In 
$4, asymptotic expansions are used to find the neutral curve and growth rates, in 
certain limiting cases, and to predict critical wavelengths for the instability. The 
results of numerical calculation are presented in $5, and the application of this work 
to observations of bioconvection in suspensions of the motile alga, C. nivalis, is 
discussed in the final section. 

2. The continuum model 

As in PHK we assume a monodisperse cell population which can be modelled by 
a continuous distribution. Each cell has volume v and density p + Ap, where p is the 
(constant) density of the water in which the cells swim, and Ap 4 p. The number of 
cells in a small volume &V, centred at  a point x*, is n*(x*,t*)&V, where x* is 
measured relative to rectangular Cartesian axes Ox*y*z* with the z*-axis vertically 
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up, and t* is the time. The suspension is dilute so that n*v 4 1, and is taken to be 
incompressible. The continuum hypothesis is made. Thus, if u*(x* ,  t * )  is the average 
velocity of all the material in SV, then incompressibility requires that 

v* .u*  = 0. (2.1) 

The momentum equation, under the Boussinesq approximation and neglecting all 
effects of the cells except their negative buoyancy, is 

D*u* 
= - V *pX + n*vg A p  + yV *2 u* , PDt* 

where p$(x*,t*) is the excess pressure above the hydrostatic pressure, g is the 
acceleration due to gravity, and y is the fixed dynamic viscosity of the suspension, 
which is taken to be approximately equal to that of water, since the suspension is 
dilute. D*/Dt* = a/at*+u*.V* is the material time derivative. 

Conservation of cells is expressed as 

-- - -V. j* ,  
at* 

an* 

where the flux of cells is 
j *  = n*u+n*&p-DV*n*. 

The third term on the right-hand side of (2.4) represents the random component of 
cell locomotion. We assume that the diffusion coefficient D is scalar and independent 
of the other parameters in the problem. The second term in (2.4) arises from the 
swimming of the cells : V,  p is the average swimming velocity relative to the fluid ; 
V,  is assumed constant here and p(x* ,  t*)  is a unit vector representing the average 
orientation of cells in SV. The interaction between cells and fluid is inertia-free, and 
p(x*, t * )  can be calculated from the requirement that the viscous torque L exerted 
by the fluid on a cell in SV equals the torque due to gravity, namely 

L = - h p x p v g ,  (2.5) 

where - hp is the displacement of the centre of mass from the centroid of a typical 
cell (see Pedley & Kessler 1987). 

The vector p(x*,t*) can be specified by Euler angles 6,q5 referred to axes C123 
through the geometric centre C of the cell and parallel to Ox*y*z*: 

(2 .6)  

The torque L on an ellipsoidal cell can be calculated from the vorticity u * ( x * , t )  

and the rate-of-strain tensor eG(x*, t )  in the flow at the location of the cell, using the 
theory of Jeffrey (1922) and others. Assuming the cell to be a prolate spheroid, with 
axis of symmetry parallel t o p ,  Pedley & Kessler (1987) show that (2.5) leads to the 
following equations for 6 and q5: 

p = (sin 6 cos 4, sin 8 sin q5, cos 6). 

B-' sin 6 = w$ cos # - wf sin 4 + a,[sin 26(e;", cos2 q5 + 2ef2 sin 4 cos q5 

+ez2sin2#-e33),+2 co~28(e:,cosQ,+e~~ sin#)], (2.7) 

0 = - w: cos 0 cos # - w$ cos 6 sin q5 + wz sin 6 + a,[sin 0( - e:, sin 24 + 2er2 cos 24 

+ e$2 sin 2q5) + 2 cos 6( - e:3 sin q5 + et3 cos #)I, (2.8) 

where a, = (u2-b2) / (u2+b2)  (2.9) 
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represents the cell's eccentricity, a and b being the semi-major and semi-minor axes. 
The constant B is the 'gyrotactic orientation parameter ', 

ai being a dimensionless constant relating the viscous torque to the relative angular 
velocity of the cell. B has dimensions of time so that, if Q is a typical velocity 
gradient in the flow, BSZ represents the ratio between viscous and gravitational 
torques on the cell. The angle &J between p and the vertical, for a spherical cell 
(ao = 0) in a flow with only horizontal vorticity (Q), is given by sin 0 = BQ (Kessler 
1984; Pedley & Kessler 1987). Thus if B = 0, there is no gyrotaxis and the cells 
always swim vertically upwards; this is the limiting case considered by CLS. In the 
linear stability analysis presented here, fluid velocities are supposed to be sufficiently 
small that the torque L causesp to depart only a small amount from the vertical and 
there is no possibility of the cells tumbling (Kessler 1985). 

The horizontal boundaries of the fluid layer are at  z* = - H ,  0 and we assume that 
any sidewalls are sufficiently far away that the layer has effectively infinite width. 
Both free and rigid horizontal boundaries can be allowed for, but we shall 
concentrate on the case of two rigid boundaries. In experiments, there is usually a 
rigid lower boundary, and the upper boundary may be free or rigid. Indeed, even if 
the upper boundary is open to the air, algal cells often tend to collect at  the surface 
forming what appears to be a packed layer, and it is unlikely that the boundary is 
ever fully stress-free, except immediately after vigorous mixing. In fact, if a coverslip 
is floated on the surface of such a suspension, forming a partial rigid upper boundary, 
the bioconvection patterns appear to be unaffected. 

If 2 is a unit vector in the z*-direction, then the boundary conditions are 

u*.z^=O on z * = - H , O  (2.11) 

and j * - i = O  on z* = - H , O ,  (2.12) 

and for rigid boundaries 

u * x L = O  on z = - H , O ,  (2.13) 

while for a free boundary a2(u*.z")/az2 = 0. (2.14) 

The equations have a steady equilibrium solution 

u* = 0, p = 2, n = Nexp (z*K/D), (2.15) 

which satisfies all the boundary conditions. Here N is a normalization constant 
related to R, the number of cells/unit volume for the whole layer, by 

N = @HV,,/D[l -exp ( - H K / D ) ] .  (2.16) 

Equation (2.15) is the basic state whose linear stability will be analysed; it is the 
same as that analysed by CLS, and we note that the depth scale for the cell, and 
hence density, accumulation that forms near the upper boundary z* = 0 is 

1 = D / K .  (2.17) 

The question of whether this basic state is ever achieved in experiments and how 
it is related to bioconvection is deferred to $6, at which point the analysis is 
sufficiently advanced for a proper quantitative discussion. Until then, we have in 
mind that after a suspension is initially well-mixed, any residual bulk fluid motions 
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are quickly damped out, so that the cells swim vertically up and the steady 
equilibrium given by (2.15) is formed. We are analysing this basic state to discover 
under what circumstances bioconvection will begin. 

3. The linear stability problem 

Before linearizing the governing equations about the equilibrium state (2.15), we 
make them dimensionless by scaling all lengths on H ,  the depth of the layer, time on 
the diffusive timescale H 2 / D ,  and the bulk fluid velocity on D / H .  The appropriate 
scaling for the pressure is v D p / H 2 ,  and the cell concentration is scaled on N .  
Dimensionless variables are represented by unstarred symbols. The horizontal 
boundaries are a t  z = - 1 , O .  In terms of the new variables, the basic state (2.15) is 

where 

u = 0, p = 2, n = exp (dz), 

d = HVJD 

is the ratio of the cell swimming speed to the speed of bulk fluid motions. d can also 
be interpreted as the ratio of the layer depth H to the scale height I (see (2.17)) of the 
undisturbed concentration distribution, or the ratio of the diffusion time H 2 / D  to the 
up-swimming time H / K .  

We now consider a small perturbation of amplitude E (0 < E G 1) to the equilibrium 
state (3.1) so that 

u = EU’(X, t ) ,  p = z^+ EP’(X, t )  

and n = exp (dz )  + d ( x ,  t ) .  (3.3) 

The components of u’ are (u’, v’, w’). 
The dimensionless variables are substituted into the governing equations (2.1), 

(2.2) and (2.3), and linearized about the basic state to give a t  O(e)  the following 
problem for the perturbed quantities of (3.3) : 

v-u’  = 0, (3.4) 

(3.5) 

an’ 
-+w‘dexp ( d z )  = -V.[dexp ( d ~ ) p ’ + d n ’ f - ~ n ’ ] ,  
at 

(3.6) and 

where S, = v / D  

is the Schmidt number. 

expressed in terms of u’: 
Similarly, the torque balance equations (2.7) and (2.8) are linearized, and p’ is 

where the subscript h denotes the horizontal component and 

G = BD/Hz (3.8) 

is the dimensionless form of the gyrotactic orientation parameter B. 

n’. These quantities can then be decomposed into normal modes such that 
By elimination of pe  and u;, (3.4)-(3.7) can be reduced to two equations for w‘ and 

w‘ = W ( 4 . h  y) exp (at), n’ = @(z)f(z, y) exp (at), (3.9) 
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Vif = -k2f (3.10) 

for a constant (scaled) wavenumber k = k*H, corresponding to a dimensionless 
wavelength h = %/k. The governing equations become 

( t + k 2 - $ ) ( k 2 - - & ) W = - [  NvgApH3 vDp ] k2@ (3.11) 

d2 

dz2 
and @ = d e x p ( d z ) [ G ( l + a , ) - - G ( 1 - a , ) k 2 - 1 ]  W (3.12) 

subject to boundary conditions (for rigid boundaries) 

d@ dW 

dz dz 
W =  --a@ =-= 0 at z = - 1 , O .  

At a free surface the last condition is replaced by 

-- - 0. 
d2W 

dz2 

(3.13) 

(3.14) 

The system of equations (3.11)-(3.14) is sixth order and has non-constant 
coefficients owing to the exponential variation of the equilibrium concentration. 
Equations (3.11) and (3.12) are akin to the equations for the vertical velocity and 
temperature in BBnard convection (Chandrasekhar 196l), and u’, v‘ and p ,  can be 
derived in the same manner as for BBnard convection, once w‘ and n’ have been 
determined. Similar equations were derived by CLS. Our equations incorporate the 
effect of ‘up-swimming ’ in the basic state, represented by the term d@/dz on the left- 
hand side of (3.12), which was included in CLS’s work; the new effect of gyrotaxis is 
found in the terms containing a factor of G on the right-hand side of (3.12). 

Equations (3.11) and (3.12) can be combined to  give a single equation for W (or 

equally for @): 

d2 d 

dz2 dz 
- - d - - ( k 2 + c )  

(3.15) 1 d2 

[ dz2 
= k2Rexp (dz) G( 1 +a,) -- G( 1 -ao) k2 - 1 W ,  

where R is a Rayleigh number defined as 

R = Nvg ApH3d/vDp. (3.16) 

This particular choice of R is appropriate because it is the ratio of the buoyancy 
forces, which drive the bioconvection, to the viscous forces, which inhibit it, and is 
directly analogous to the usual Rayleigh number in thermal convection studies. It 
can also be thought of as the ratio of the diffusive time, H 2 / D ,  in which cell 
accumulations are dispersed, to the time for such accumulations to sink a depth H 
in the viscous fluid. 

It is also possible to scale length and velocity on 1 and V,( = D/Z) instead of H and 
D I H ,  giving an alternative definition of the Rayleigh number, 

2 = Nvg Ap13/vDp, 

6 = BD/12. and the gyrotaxis number, 
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This scaling has the advantage that R and 6 are independent of the layer depth H 
and are therefore constants for any particular suspension of micro-organisms of 
known concentration. The results are then straightforward to compare with 
experiments at  different values of H .  However, our choice of scales is more natural 
because we are interested in the macroscopic bioconvection patterns which are 
observed to extend over the whole depth of the layer so H ,  not 1, is the expected 
lengthscale. Moreover, it turns out that our results are most clearly and simply 
expressed in terms of R and G given by (3.16) and (3.8). 

3.1. Stationary or oscillatory modes of instability 

The small perturbation (3.3) to the equilibrium state grows exponentially in time if 
y = Re (u) > 0 and decays if y < 0. A neutral curve is defined as the locus of points 
in the (k,R)-plane on which y = 0, but in general o = Im (a) =#= 0, i.e. oscillatory (or 
overstable) solutions may exist. If w = 0 on a neutral curve, the corresponding 
instability is non-oscillatory, or stationary (sometimes called 'the principle of 
exchange of stabilities', Chandrasekhar 1961). This is the case for many systems 
where there is only one physical mechanism for instability, but it is often difficult to 
prove (see Drazin & Reid 1981). On the other hand, when there are two or more 
competing processes, overstability frequently occurs. This is the case for B6nard 
convection in a rotating frame or in the presence of a magnetic field (Chandrasekhar 
1961). 

In the Appendix, it is proved that the instability in our problem is stationary for 
the case of two stress-free boundaries, but the proof fails if at least one boundary is 
rigid, unless the gyrotaxis number G vanishes, in which case the instability is always 
stationary as shown by CLS. At first sight, there is no physical reason to anticipate 
oscillatory solutions when there is a rigid boundary, but numerical solution of 
(3.11)-(3.13) has revealed overstability. This surprising result is explained in $ 5  and 
is shown to depend on the shear due to the no-slip condition at a rigid boundary. 

In our subsequent analysis, we determine for what values of R, G ,  S,, ao, d and k 
the basic state is neutrally stable (y = 0). As discussed in $2, it is unlikely in an 
experiment that the upper surface of a suspension is ever fully stress-free, even if it 
is open to the air; therefore we concentrate on the case of two rigid horizontal 
boundaries from now on. The results are interpreted by plotting the neutral curves 
R(k) .  In general, for given values in G ,  S,, d,  and ao, there are an infinite number of 
branches Rn(k) ( n  = 1 , 2 , 3 , .  . .) of the neutral curve, corresponding to different 
solutions of the linear stability problem, of which the one of most interest is that on 
which R takes the smallest value, corresponding to the most unstable solution. Each 
solution may consist of one or more layers of convection cells stacked vertically 
above one another. A solution consisting of n layers is said to be mode n. Usually, but 
not always, the most unstable solution corresponds to the branchR'(E) of the neutral 
curve and is a mode 1 solution. 

4. Asymptotic analysis 

A number of limiting cases are analysed asymptotically in this section. The results 
are summarized in table 1 and figure 1. Full details of the analysis are available on 
request from the JFM Editorial Office, in an expanded version of this section. The 
exponential term in (3.12) makes it appropriate to consider two limits for asymptotic 
analysis. In the shallow-layer approximation d << 1, i.e. the layer depth H is much 
less than the lengthscale I of the equilibrium density distribution, and the exponential 
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d Q 1  

G = o(1) 
pl) = 72O{ l + ~ ~ ( ~ + ~ )  l3 1712 d2+  ... ] (4.20) 

R(") = wf/d2k2 (n = 2,3,. . ,) (4.28) 

Case I 

Case I1 

R'" = 720(1+ # +d2[&+ G( 1 +a,) + 12(&-$G(5 - 2ao))] + . . .) (4.21) Case I 
G - 1  { 

R(") - d-a (n = 2,3, . . .) (analogous to Case 11) Case I11 

R(') = 720{1 +@+d2G[1 +ao-2$2(5-2a,) /7]+O(d2)}  (4.19) Case I 

R'") = w4,/d2L2G(1 +a,) +. . . (n = 2,3, .  . .) (4.36) Case I V  
G - d-' 

G - d-' 
R(1)+720/[1--d2G(1+a,)] as g + O  (d2G(l+a,) < 1) 

R(") = w4,/d2&zG(1+a,)+... (n = 1,2, .. .) (4.36) Case IV 

R(l) is stationary when daG( 1 +a,) < 1 ; 

R(l) is oscillatory at small values of k" otherwise. 

R(") =~4 , /d~k"~G( l+a , )+ . . .  (n = 1,2, ...) (4.36) Case IV 
~ ( 1 )  is oscillatory at small values of k". 

G 2 O(d-') 

d % - 1  

+ O(d-2)] (4.45) 
4 k( sinh k cosh k - k) 

d2G( 1 +a,) < 1 R(l) = 2d4 {l+- 
1 -d2Q(l +a,) d sinh2k-k2 

TABLE 1. Summary of the results of the asymptotic analysis of neutral curves R(")(k) for the 
limiting cases considered in $4. When d < 1, the equations for the neutral curves are given for small 
wavenumbers k = dk - d, as a function of the order of the magnitude of G; for the deep layer, 
d >> 1, the equations for the neutral curves are given for values of k = O(1). 

G 

FIQURE 1. Regions of (log,R,log,G)-space covered by solutions near the neut_ral curves in the 
four cases of 94.1, for the shallow layer d Q 1, and for small wavenumbers k = k/d = O(1). 
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term is approximately linear, with consequent simplification. For a deep layer, d is 
large and, in the basic state, the cells are concentrated in a boundary layer a t  the 
upper surface, so that the method of matched asymptotic expansions can be used. 

The purpose of the subsequent asymptotic analysis is to give insight into the fluid 
mechanics of bioconvection and to provide checks on the numerical solutions of $5.  
Wherever possible the growth rate, IT, is taken to be complex and non-zero, but in 
many cases the analysis becomes so complicated that it is necessary to resort to 
numerical solutions of transcendental equations, which offer little analytical insight. 
In such cases attention is confined to the neutral curves on which Re (a) = 0. 
Moreover, for all the parameter values considered analytically below, the numerical 
solution shows that Im ( B )  vanishes, i.e. there are only stationary solutions. 
Attempts at asymptotic solutions for other parameter values lead to such 
complications that the numerical solutions of $5 are preferred; such parameter 
values do sometimes exhibit oscillatory instability. Of course, in applying this linear 
stability theory to experiments in $6, we shall need to determine the critical Rayleigh 
number, R,, and wavenumber, k,, at which each neutral curve has its minimum. 
Then, we expect the theory to describe the flow only for values of R close to R,, and 
we shall compare the wavenumber of observed pattern spacing with that of the 
predicted wavenumber, k,. 

4.1. Shallow-layer approximation, 0 < d Q 1 

Rather than solving (3.15) in the shallow-layer approximation, it is more convenient 
to consider (3.11) and (3.12), which we rewrite as 

and 

1 d2 

dz 
@ = d(l+dz+&i2z2+ . . .  1-G(1+ao),+d2k”2G(1-aO) W, 

(4.2) 

where L = k / d .  (4.3) 

The leading-order versions of (4.1) and (4.2) can be solved in principle by 
elementary methods. However, once the boundary conditions are applied, the 
solution for the neutral curve R(k;  G, uo) leads to a transcendental equation, which 
has to be solved numerically. Instead, we choose to simplify (4.1) and (4.2) further 
to gain a better understanding of the analysis and to obtain results which can be 
compared with the numerical solution of the full linear stability problem in $ 5  below. 
Therefore we first consider small wavenumbers where k - d and so 

IG- 1. (4.4) 

This is equivalent to scaling k* on 1-1 rather than H-l ,  and corresponds to a 

horizontal planform of wavelength A* - I ,  much greater than the layer depth H .  
We now concentrate on the analysis of neutral curves and examine the possible 

balances between the terms in (4.1) and (4.2) which indicate the relevant asymptotic 
expansions. For non-vanishing solutions, which satisfy the six leading-order 
boundary conditions 

dW d@ 

dz dz 
_ -  - W = - = O  a t  z=-1 ,0 ,  (4.5) 
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the highest-order derivatives in (4.1) and (4.2) must be retained a t  leading order. It 
is also readily shown that in each of the cases discussed below the leading-order 
balance in (4.1) must give 

otherwise there is only the trivial solution. Physically, (4.5) represents the balance 
between the viscous term d4W/dz4 and the buoyancy force on the right-hand side 
which drives the flow. Without loss of generality, we also specify that 

@ = O(1). (4.7) 

There are then four possible leading-order balances between the terms in (4.2) 

which are shown below, together with the appropriate leading-order versions of (4.2), 

which we recall is derived from the cell conservation equation (2.3), when c = 0. 

Case I :  

Case 11: 

= dW. G < O(d) ,  R - d - ' ,  - 
d2@ 

dz2 

Case 111: 

G -  1 ,  R - d - ' ,  w - G ( l + ~ l , ) -  . d2w1 dz2 

Case IV: 
d2 W d2@ 

dz2 dz2 
- -dG( 1 +ao) -. R < O(d-'), RG - d-', - - 

The regions of (R, G )  parameter space covered by these cases are illustrated in figure 
1. In Case I, the leading-order balance in (4.2) is purely diffusive; we shall show below 
that there is a second-order balance between diffusion and the swimming of the 
micro-organisms. In Case 11, the leading-order balance is between diffusion and 
advection of the micro-organisms by the bulk fluid flow, while the balance also 
includes gyrotaxis due to vertical shear in the flow in Case 111. Finally, in Case IV, 
diffusion balances the gyrotactic term alone. We shall restrict attention to Cases I, 
I1 and IV, although mathematically I1 is a special case of 111, because once again the 
latter leads to a complicated transcendental eigenvalue problem which itself requires 
numerical solution. 

4.1.1. Case I :  k - d and G < O(d-') ,R - 1 

Consistent with (4.7), we choose 

and expand @, R and W in powers of d ,  so that 

and we write 

m m 03 

@ =  2 W =  2 dnWn, R =  d"R,, 
n-0 n-1 n-0 

G = d-lG-, (G-l = O(1)). 
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To obtain information about the growth rate in this particular case, we allow u to 
be non-zero and, since it turns out that u - d2,  we expand it as 

(4.10) 

a priori, for convenience. On substituting (4.8), (4.9) and (4.10) into (4.1) and (4.2) 

and the boundary conditions (3.13), we fhd at leading order that 

and 

d4W1 - d2@ 

dz4 dz2 
---+k2R,@, = 0, 2 - - 0, 

dW1 - -- '@o- w - - - 0  a t  z = - i , ~ ,  
dz '- dz 

while at second order 

d4 W2 
dz4 + L2R, G1 = - PR1 Go, 

d2 W, 
G-l( 1 + ao) - d2@ 

dza dz dz2 ' 
1 d@o - -- 

with boundary conditions 

(4.11a, b)  

(4.11 c) 

(4.12 a)  

(4.12b) 

(4 .12~)  

The second- and higher-order systems of equations are inhomogeneous and must 
satisfy solvability conditions. These conditions are found in the usual manner (Ince 
1956) : each system of inhomogeneous equations is multiplied by the adjoint of the 
homogeneous system and integrated from z = - 1 to 0, and the resulting integral 
must vanish. This is equivalent to setting to zero the integral of the cell conservation 
equation (4.2) over the layer depth. 

The solvability condition at O ( d )  is satisfied identically, independently of u2 and 

R,, while at O(d2) 

( & 2 + u 2 ) ~ l @ o d z + ~ l  K d z  = 0, (4.13) 

and at O(d3)  

= G - l [ l + ~ o - ( l - ~ o ) P ]  (4.14) 

The leading-order solution is 

@o = 1, W, = - & ~ , & 2 ( ~ 4 + 2 ~ 3 + ~ 2 ) ,  (4.15) 

where @, has been normalized without loss of generality. Imposing the solvability 
condition (4.13) gives 

(4.16) 
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The second-order solution is 
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\ Q1 = ~ - G - ~ ( l - a ~ )  W,, 

G-l( 1 +a,) - 
PR') 560 z2 1 (4.17) 

J4R') 23+ (,&? ---- L2R, 

24 
G-l( 1 +a,) - 

12 360 

k2Ro k2Rlz4 k4R;( z8 2' 9 )  

120 24 720 56 14 12 

PR, 

-___ 2 G - l ( l + ~ o ) -  -+-+- , 

and the solvability condition (4.14) yields 

'T3 = E2R, l2R0 [s+ , G-,( 1 + aO)] + -G-l '4R0 [ 1 -ao +- Ei - (l:aO)]. (4.18) 
720 720 720 

Thus, with this choice of scaling, there is just one solution, the vertical structure 
of which consists of one bioconvection cell and which we therefore class as mode 1. 

On the neutral curve u = 0 and then 

R = 720{1 +d[++G-,(l + ~ , ) - 2 & 2 G ~ l ( 5 - 2 a o ) / 7 ] } + O ( d 2 ) .  (4.19) 

Proceeding to the next order, it can be shown that, when G = 0, the neutral curve is 

R = 7 2 0  l+@+ l3 -+- 17" d 2  +O(d3). { (105 462) } (4.20) 

Thus, in the absence of gyrotaxis, k = 0 is a local minimum of the neutral curve and 
the wavelength of the most unstable mode is infinite (as found by CLS). On the other 
hand, in the presence of gyrotaxis (4.19) shows that k = 0 is a local maximum, since 
a. < 1, from which it follows that the most unstable mode must occur a t  some value 
of k > O(d), as suggested by observations (e.g. Kessler 1985). Examples of the neutral 
curves are given in figure 2(a) (see $5) when d = 0.1, G = 0,0.5 and a, = 0.2. 

The critical value of G a t  which k = 0 changes from being a minimum to a local 
maximum of the neutral curve can be found by noting that, if G = 0(1), then 
linearity shows that 

R = 720{1 +@+d2[g+G(1 + ~ O ) + E 2 ( & - & 2 ( 5 - 2 a o ) ) ] } + O ( d 3 )  (4.21) 

and the critical value of G is 

G, = + O(d). 
132(5- 2a0) 

(4.22) 

Estimates of CT for fixed values of R can be obtained from (4.16) and (4.18), which 
provide a useful check on numerical calculations, and in particular we note that 
gyrotaxis introduces a dependence on i4. 

The preceding analysis is readily shown to be valid in the limit as k+O,  but 
not for values of k D O(d). However, it can be extended to the general case when 
d, k 4 1 by expanding in powers of both d and k2,  which gives 

17 2G 

462 7 
----(5-2ao) 

on the neutral curve (cf. (4.21)). A special case of this result occurs when 

(4.23) 

d & < k < < l  (4.24) 
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and the expansion proceeds in powers of k2.  This is the scheme used by CLS, but their 
analysis was not strictly valid because k was allowed to tend to zero without regard 
to the restriction (4.24). Instead, (4.23) shows that 

R+720 as d , k 2 - + 0 .  

The neutral curves given by (4.19), (4.20), (4.21) and (4.23) all show that k = 0 is 
a minimum of the neutral curve when G < G,, and that R decreases monotonically 
as k increases when G > G,, provided that d and k < 1.  Thus, up to the accuracy of 
the expansion schemes, we conclude that the most unstable wavenumber is k,  = 0 
when G < G,, and k,  2 O(1) when G > G,. 

The inequalities which define Case I do not specify the scaling uniquely, even when 
restrictions (4.6) and (4.7) are imposed. However, a little analysis shows that the only 
possible scalings for non-trivial solutions are 

@ - 1 ,  R - 1 ,  W - d ,  G<O(d- ' )  (4.25) 

and so there are no other fundamentally different solutions. 

4.1.2. Case I I :  k - d and G < O(d) ,R - dP2.  
We suppose that u = 0, 

@ - 1, G N d ,  R - dV2,  W - d-l ,  (4.26) 

and expand the variables in powers of d in a similar fashion to the analysis for Case 
I .  The leading-order solution is found to be 

W = d-l{A cos (wz) +B sin (02) + exp ($2 4 3 )  [C cos ($z) 

+ D  sin ($z)] + exp ( - $ 2  1/3) [E cos ( h z )  +F sin (+2)]} + 0(1) ,  (4.27) 

where w6 = d2RL2. (4.28) 

A ,  B, C, D, E and F are constants determined by applying the boundary conditions, 
and for a non-trivial solution it can be shown that w takes values 

w2 = 2x, w3 x 3x, w4 = 4a, w5 x 57c, .,. . 

At this point, we have multiple solutions to the linear stability problem. 
Corresponding to the roots w2, wQ, . . . , there are branches of the neutral curve RC2)(k), 
RC3'(k), . . . given bb (4.28). We must also examine the structure of the vertical 
velocity field W ( z )  to determine the mode or type of solution. A solution is said to be 
moden if W ( z )  changes sign (n-  1 )  times for - 1  < z < 0. In other words mode 
N ( n  = 1,2, . . .) consists of n layers of convection cells stacked vertically one above 
the other throughout - 1 < z < 0 (see $3). 

The neutral curve of the smallest root w2 is given by (4.28) as 

R@) = 2 ~ ' / d ~ P  + O(d-') x 6.15 x 104/d2i2 + O(d-') ,  

and the constants A ,  . . . , F can be calculated for this branch to show that 

W K d-l sin nz[sinh ( x  4 3 )  cos ( x z )  - cosh (;a 4 3 )  sinh (x[z+3 2/3)], 

which is antisymmetric about z = -$ and is therefore mode 2. 

with (4.6) and (4.7), are of the form 
In Case 11, the only alternatives to the choice of scales (4.26), which are consistent 

@ - 1 ,  R - d - 2 ,  W - d - ' ,  G - d "  ( m = 2 , 3  ,... ). 
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Since G does not appear in the leading-order problem, the alternative choices of 
scaling in which G is of smaller magnitude will not change the nature of the leading- 
order solution, but just make refinements a t  higher orders. 

In order to interpret the results of Cases I and 11, we suppose without loss of 
generality that (4.7) holds and ask what solutions are possible for a given value of G .  
It is clear that for G < O ( d ) ,  Cases I and I1 both provide solutions. Case I gives the 
R(') branch corresponding to mode 1, and Case I1 provides the higher branches and 
modes. This is summarized in figure 1 and a t  the top of table 1. Also, when G - 1, 
Cases I and I11 both provide solutions. Although, as mentioned previously, Case I11 
has not been completely analysed analytically, it  is reasonable to expect that again 
Case I gives the R(') branch and Case I11 gives the higher branches R@) - d-2. 

4.1.3. Case I V :  k - d and R < O(d-l) ,RG - d-' 
As in Case I, we analyse the shallow-layer approximation to the governing 

equations in the limit of small wavenumbers. Because of the complicated nature of 
the eigenvalue problem which arises here, we exclude the possibility of oscillatory 
solutions on the neutral curves, in the more detailed calculations, by setting CT = 0. 

Possible scalings are of the form 

@ - G ,  G - d - " ,  R - d m P 2 ,  W - dm-l (m = 1,2, . . .), (4.29) 

and the problem subdivides naturally into the three cases m = 1, m = 2 and m 2 3. 

When m = 1,  G - d-' and we have already demonstrated that Case I provides a 
mode-1 solution when G - d-'. Thus we might anticipate that the new scaling yields 
the higher-order modes by analogy with Case 11. Moreover, when m 2 2, we shall 
show that Case IV  gives all the solution branches, including the mode-1 solution. 
What is more unexpected is that when m = 2 and G exceeds a critical value, the 
solution for the lowest branch breaks down at small wavenumbers. We conjecture 
that in this case oscillatory solutions exist and we shall indicate an appropriate 
scaling for such solutions. 

We begin by setting m = 2 and define 

m m m 

@ = E d n @ , ,  W = xdnW, ,  R = Cd"R,,  G = dP2G-,, (4.30) 

which is consistent with (4.6) and (4.7). Expressions (4.30) are substituted into (4.1), 

(4.2) and (3.13), and at leading order 

0 1 0 

d4 W, d2 

dz4 dz2 
= 0, -[@o+G-2(1+ao) W,] = O 

subject to the boundary conditions 

d @ ~ = ~  - - - 0  dW1 - on z = - 1 , 0 .  
dz ' - d z  

This system of equations has the solution 

where 

$0 = G-z(1 +a,) (K-  W,), 
W, = A cos wz + B sin wz - ( A  + K )  cosh wz -B sinh wz +K, 

w4 = E2Ro G-'( 1 + ao) 
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and A ,  B and K are constants which satisfy 

coso-coshw sinhw-sinw)(A) = K(COBhw-l) 

sinh w + sin w cos w - cosh w B - sinh w ‘ 

(4.32) 

This equation can in principle be solved (for A / K ,  B / K )  for any value of w save that 
for which the matrix on the left-hand side is singular, in which case K = 0.  

The boundary conditions on Go to this order are degenerate and we proceed to the 
next order, O ( d ) ,  to find an additional constraint on Go arising from the solvability 
condition. Similarly, there is an additional constraint on G1 at O(d2),  and so on to 
higher orders. As in Case I, the solvability condition is found by integrating the cell 
conservation equation over the layer depth. It turns out that the solvability 
condition is satisfied identically at  O ( d ) ,  but at O(d2) it is easily shown that 

where 

W, dz = - F ( i ;  GP2, a,) K ,  
J -I 

(4.33) 

using the leading-order solution (4.31). Evaluating the integral in (4.33) and 
incorporating (4.32), the conditions on A ,  B and K can be written as 

sinhw ) (i) = 0, (4.34) 

which is an eigenvalue problem for w ,  and hence for R .  Equation (4.34) has a non- 
trivial solution if and only if 

w (  1 + F )  (1 - cos w cosh w )  = 2[sinh w(  1 - cos w )  + sin w( 1 - cosh w ) ] .  (4.35) 

cos w - cosh w sinh w - sin w 1 - cash w 

sinh w + sin w cos w - cosh w ( sin w - sinh w cos w + cosh w - 2 w - sinh w + F 

There is a set of even roots of (4.35), associated with even modes, given by 

wZm, x $(4m’+ 1) K (m’ = 1,2 , .  . .) 
independently of the value of F .  The odd roots do depend on F and, when 

G-,(l+a,) < 1, 

0 < w1 < w2 < w3 < ... . 
there is also a set of odd roots with associated odd modes such that 

The most unstable branch is 

R(1) = w:/k2G( 1 +a,) + O ( d )  (4.36) 

and mode 1 is the preferred mode. When i % 1, w1 x; $c and therefore R(l) oc k+ so 

that disturbances of shorter wavelengths are more unstable than those of longer 
wavelengths. The behaviour of R(l) as k -+ 0 can be calculated by expanding (4.35) in 
a Taylor series about w = 0 which shows that 

The roots wn(n > 1) do not tend to 0 as E tends to 0, so 

(4.37) 

R@) N ~ % - ~ + c i ~  as i + O  for n > 1. (4.38) 
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When (4.38) is compared with (4.19) and (4.21), we see that the effect on the neutral 
curve of increasing the value of G, from O(d-') to O(dv2), is to increase the value of 
R(')(O) from 720 until R(')(O) tends to 00 as G tends to l/dz(l +ao). 

Hurle, Jakeman & Pike (1967) considered the BBnard problem with boundaries of 
finite conductivity and were able to show that, in the limit of perfectly insulating 
boundaries, the Rayleigh number of the lowest, odd mode tends to 720 as the 
wavenumber tends to zero, and the Rayleigh number of the first even mode tends to 

00 as the wavenumber tends to zero. Thus the unusual contrast between the 
behaviour of R(') given by (4.37) and that of the higher branches given by (4.38) has 
a parallel in Benard convection. Indeed this comparison was noted by CLS but, when 
gyrotaxis is included in the analysis, & = 0 is a local maximum of the neutral curve 
R(') both in this case (which we shall demonstrate later numerically) and in Case I, 
whereas CLS, and Hurle et al. (1967), found that k = 0 was in all cases a local 
minimum. 

It can be shown that there is a critical value of F ,  F, x -0.75, such that the root 
w1 does not exist when F, < F < 0. When GJl  +a,), F always lies outside ( - 1, 0) ,  
but when G-2(l +a,) > 1 and k is sufficiently small, F, < F < 0 and the branch R(l) 
corresponding to mode 1 does not exist. 

We now consider the other possible scalings given by (4.29), and the analysis 
hinges on the solvability condition (4.33). It is readily seen that when m = 1, and the 
variables are expanded in powers of d accordingly, solvability requires simply that 

JOl Kdz = 0, 

while if m 2 3, the solvability condition becomes 

(1 +a,) i2K 

(1 + a,) + 201, k 2 .  

Suppose firstly, that m = 1 : the analysis proceeds as before, when m = 2, but with 
F now set to zero, and we conclude that w1 does not exist for any values of k,  i.e. the 
most unstable mode when m = 1 is mode 2. 

Now suppose that m 2 3 and set 

F = - P/( 1 + a'k2), a' = 2a,/( 1 + a,) 
in the earlier analysis. F is independent of G and takes values in the interval ( - l/a', 

0). a' takes values between 0 and 1, so that - l/a' < - 1, and therefore w1 exists only 
for values of &' 2 0.75/(1-0.75~') > 0. So when m 2 3, mode 1 is found only for 
sufficiently large values of &. 

Once again, when G = O(d-l) (and m = l),  Case I provides the most unstable 
branch, R(') (see figure 1 and table 1). However, when G 2 O(d-2), Case I is no longer 
valid and there is no other scaling that would lead to a statimry branch giving mode 
1 as the most unstable mode, and we must therefore seek oscillatory solutions. This 
conclusion is supported by the fact that numerical investigations, when d < 1 and 
& = 0 ( 1 ) ,  have found overstability when d2G(1 +ao) > 1 (see $ 5 ) ;  it should be noted 
that this quantity is independent of H ,  end therefore depends only on the properties 
of the organism and of the suspending fluid. If, in addition to the relations (4.30), we 
assume that (T = 0(1), it is possible to outline an asymptotic solution which should 
lead to oscillatory modes. However, the resulting eigenvalue problem is so 
complicated as to require full numerical solution. 
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Cell radius 
Cell volume 
Cell density ratio 
Cell diffusivity 
Gyrotaxis number 
Cell eccentricity 
Swimming speed 
Mean concentration 
Kinematic viscosity 
Schmidt number 
Sublayer depth 

a 
V 

AP/P 
D 

cm 
5 x 10-lo cms 
5 x 
5 x cm2 s-l 

0.5/d2 
0.2 

lo6 cm-S 

20 
0.05 cm 

cm s-l 

cm2 s-l 

TABLE 2. Estimates of typical parameters for a suspension of the alga Chlamydomonas nivalis. The 
gyrotaxis number G = BD/H2 is the dimensionless form of the gyrotactic orientation parameter B 
defined in (2.10), where H is the layer depth. d is the scaled depth HI1 where the sublayer depth 
1 = D/V,. 

Finally we note that, for suspensions of C. nivalis, 

d2G( 1 +ao) x 0.6 

(see table 2), so that overstability is unlikely to be found in such a suspension but, 
as discussed later, it is possible that overstability could be found in suspensions of 
different species of micro-organisms. 

We conclude the shallow-layer analysis with the following observations. For small 
wavenumbers, k - d ,  and when G = O ( l ) ,  mode 1 is the most unstable mode and the 
neutral curve has a local minimum a t  k = 0. As G increases to O(d-'), k = 0 becomes 
a local maximum. It can also be shown that R(l) - k2 as k - t  co when G = O(d-l) ,  so 
that must have a global minimum when k 2 O(1).  This leads to a prediction of 
a critical wavelength for instability which is finite. Finally, for large values of 
G 2 O(dP2) ,  oscillatory modes are found. 

4.2. Deep-layer approximation, d % 1 

When d 3- 1 the exponential profile of the equilibrium solution gives a boundary 
layer a t  the upper surface containing a high concentration of cells. Variables are 
therefore expanded in inverse powers of d and the method of matched asymptotic 
expansions is used to resolve the boundary layer. From (3.12) and (3.13), we expect 
4P to be exponentially small in the outer region, away from the upper boundary layer, 
where z = O(1).  The numerical results of $5 suggest that for oscillatory solutions, 
which are found for certain parameter values, Im (a)  = O ( d 2 )  and should therefore be 
found in the leading-order terms of the asymptotic analysis in the boundary layer. 
However, attempts at  a suitable scaling to achieve such a balance have been 
unsuccessful, as we describe below. Thus the following analysis is restricted to cases 
where a = 0(1) ,  in which case it is shown that a is always real. For clarity, we first 
consider neutral curves, on which Re (a)  = 0, and suppose that Im (a)  = 0 also. 

When d P 1, the governing linear stability equations (3.11)-(3.13) in the outer 
region become 

4P = 0, (-$-k2)Iw(z) = 0 (4.39) 

subject to boundary conditions 

(4.40) 
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and matching conditions as z+O. The general solution of (4.39) and (4.40) is 
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W = - k.A ( z  + 1) cosh [k(z + 1 )] + [A +B(z + l)] sinh [k(z + l)], 
where constants A and B can be expanded in powers of d,  e.g. 

A = A,  + d-lA-, + d-'A-, + . . . . 
In the inner region, define 

d 
z 1 = d z =  0(1), D =- 

I  - dzI' 

in terms of which the equations become 

(Di  -d-'k2)'W = -dP6Rk2Qi, (4.41 a) 

(Df -D1-dp2k2)  @ = -dexp(z,)[G(1+ao)D~-G(1-ao)d-2k2-d-2] W (4.41b) 

and ( D I - l ) Q i =  W = D I W = O  at z,=O (4.41 c) 

with matching conditions as zI + - XI. As in the shallow-layer approximation, there 
are several balances possible between the terms in (4.41) but the presence of the 
exponential term in (4.41b) makes the analysis more difficult and we restrict 
attention to the case when 

G < O ( P ) ,  W N d-l as d + 00 

which covers the parameter range of interest in experiments, as will be discussed 
later (see also table 2). In  particular we define 

m m m 

W = xdd-"W-,, Qi = xd-"Qi-,, R = Ed-"R-,,, G = d-'G-,, (4.42) 

where @ N 1 as in (4.7). Again for buoyancy to drive the flow the magnitude of the 
right-hand side of ( 4 . 4 1 ~ )  must balance the largest term on the left-hand side. 

1 0 -4 

Substituting the expansions (4.42) into (4.41) gives at leading order 

Df W-1+ R ,  k2@o = 0, DI(D1- 1) @o = 0, 

and at  second order 

D: W-,+R, k2@-, = -R, k2Qi,, D I ( D x -  1) Qi-, = 0. 

The leading-order equations show that the balance in the cell conservation equation 
is between diffusion and the up-swimming of the micro-organisms. 

The first- and second-order solutions, when the boundary conditions a t  zI = 0 have 
been imposed, are 

W-, = zf(aAl zI + pAl) + k2R4( 1 + zI -exp ( z I ) ) ,  e0 = exp (zI) 

and W-, = ~ ~ ( ~ - , ~ ~ + P - ~ ) + k ~ R ~ ( 1 + z ~ - e x p ( z ~ ) ) ,  = 0, 

where a-1, a-2 and P-, are constants. When the inner and outer solutions are 
matched in the usual manner (see e.g. Kevorkian & Cole 1981), it  can be shown that 
there is a non-trivial solution if and only if 

(A ,  +B,) sinh k -  kA, cosh k = a-1 = a-2 = /3-1 = 0. 
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The Rayleigh number, R,, is determined from the solvability condition on the inner 
system of equations by integrating the cell conservation equation a t  third order from 
zI = - co to 0. This gives 

R4 = 2/[ 1 - 1 + a,)], (4.43) 

k2R, sinh k 

sinh2 k - k2 ’ 
A , = -  B, = - k2R,( k cosh k - sinh k )  

and 

Equation (4.43) is valid provided that 

pF2 = k3R,(sinh k cosh k -  k)/sinh2 k -  k2 ) .  

G-, = d2G < (1 + a,)-’, (4.44) 

and it is reasonable to suppose that if (4.44) does not hold then oscillatory solutions 
may exist, and an asymptotic analysis based on a scaling in which CT = O(d2) is 
required. To find the dependence of R on the wavenumber k ,  the inner solvability 
condition at fourth order implies that 

R, = %p-2/k2, 

+ O(d-l)). (4.45) 
k(sinh k cosh k - k )  

so that 
R =  1 - d2G( 2d4 1 + a,) { + sinh2 k - k2 

R, is a monotonically increasing function of k and it is readily shown that the above 
analysis is valid in the limit as k tends to zero. Thus the critical wavenumber 
predicted by this analysis is zero, provided that (4.44) holds and k < O(1). However, 
the numerical solutions of $5 show that for values of G larger than some critical value 
G,, the most unstable wavelength is O(d), giving convection cells of a horizontal 
wavelength commensurate with the sublayer depth 1. When d = 40.0 and a, = 0, 
then 0.7 < d2G, < 0.8 but the asymptotic analysis does not predict G,, unlike the 
shallow-layer case, suggesting that d has to be very large for good agreement. 

A calculation similar to that leading to (4.45), using the same inner and outer 
variables, gives the growth rate a(R, k )  when a = O( l),  and after some algebra it can 
be shown that 

R-R(k) 
CT = k2 ( ) + O(d-V, d-2) ,  

R(k) 
(4.46) 

where R(k) is the neutral curve given by (4.45). In this case a is real and so the 
solution is stationary. Equation (4.46) has been derived from a more complicated 
transcendental equation by expanding in a Taylor series in powers of 

which is assumed to be small, given Sc x 20 in the experiments. 
The possible balances between terms in the solvability conditions can be examined 

to show that the neutral curve is given by an expression of the form of (4.45) 
wherever G satisfies (4.44). The full leading-order solution (i.e. combining the inner 
and outer solutions) can be shown to be mode 1. 

Returning to the question of oscillatory solutions when Im(a )  = O(d2), it is 
straightforward to show that the scaling in (4.42) leads only to the trivial solution 
unless both Im (a) = 0 and CT < O(1). It appears that terms on the right-hand side of 
(4.41 b) are required at leading order to find a non-trivial solution, but such a scaling 
yields an ordinary differential equation with exponential coefficients which we have 
been unable to solve analytically. 
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5. Numerical results 

Solutions to the full, linear stability problem (3.11), (3.12) and (3.13), were 
calculated with a fourth-order accurate, finite-difference scheme provided by Dr D. 
R. Moore (Cash & Moore 1980). This scheme was used to compute (i) neutral curves 
in the (R, k)-plane on which Re (a) = 0, and (ii) the growth rate as a function of k for 

given values of R.  
5.1. Technique 

Initially, values of G, a,, d and k are supplied, and the values of R and the velocity 
and cell concentration fields, W ( z )  and @(z) ,  are estimated, either from analytic 
results, or from previous numerical results, or by imposing a roughly sinusoidal 
variation in @(z)  and W(z) .  The scheme is iterated until it converges to a solution, or 
should it have failed to converge another starting guess is tried. In  practice, the 
numerical solution is most sensitive to the initial guess for R,  and relatively 
independent of the initial W- and @-fields. Once a solution, necessarily in a particular 
mode of disturbance, is established it can be used as the initial guess for neighbouring 
parameter values, and hence the neutral curve for that particular mode can be 
determined. Different initial choices of R cause convergence to different modes. 
Except where the neutral curves for two or more modes become arbitrarily close or 
cross, they can always be followed provided that the increments in the given 
parameters are sufficiently small. When modes cross, it is possible to approach along 
the neutral curves from both sides of the intersection, and often by trial and error to 
choose the increments in parameters so that the solution jumps across the 
intersection. The scheme is rendered more efficient by scaling the variables as 
suggested by the asymptotic analysis of 94, according to whether this layer is 
shallow, d < 1, or deep d $= 1. In addition, for the deep layer, the coordinate mesh in 
the z-direction is stretched by a hyperbolic tangent function to accommodate more 
points within the exponential boundary layer at the upper surface, than in the outer 
region below it. 

5.2. Accuracy 

The dependence of the numerical solution on the number and position of the grid 
points was tested for many different parameter values. Four- to six-figure accuracy 
was always achieved when the minimum of 21 grid points was used, and the shallow- 
and deep-layer versions also coincided to this accuracy. Where appropriate, 
comparisons with the asymptotic values of R from $4 have been shown to agree to 
within the accuracy of the expansions and further details are given in the results 
below. 

5.3. Stationary solutions 

Neutral curves when G is zero or small are shown in figure 2 for various values of d ,  
the dimensionless depth of the layer (see (3.2)). In figure 2(a), d = 0.1 and 
comparisons are made between the numerical solutions for W ( k )  and the asymptotic 
result (4.21) for Case I. Equation (4.21) is valid for values of k < O(d) .  When 
G = 0 there is close agreement for values of k < 1.0 and in the limit as k+O the 
numerical solution and asymptotic result agree to 3 significant figures and give 
R(l) + 757 as k + 0. In the second case, C = 0.5 and a,, = 0.2, and again both solutions 
agree to 3 significant figures as k + O  to yield R(l’(0) = 761. The results begin to 
diverge significantly when k 2 0.5. In addition, the numerical result shows that R(l) 
has a minimum value of 152 at a critical wavenumber k, = 4.4. This value of 
G( =0.5), which is sufficient to produce a finite critical wavelength, is small compared 
with that for a typical suspension of C. nivalis, namely G = 0.5dW2 = 50.0 when d = 
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0.1. By examination of the vertical velocity field, it is possible to show that these 
solutions are mode 1 solutions. Also, in figure 2 (a )  it  can be seen that the suspension 
is more unstable (i.e. the minimum value of R is smaller) when G = 0.5 than when 
G = 0. Comparisons between the numerical solutions and those of (4.45) when 
d = 40.0, a, = 0 and d2G = 0 and 0.9 are shown in figure 2 ( b ) .  The asymptotic 
analysis is valid for wavenumbers k < 0(1), and for G = 0 it begins to diverge from 
the numerical solution when k = 10. For d2G = 0.9, the solutions diverge significantly 
when k > 1, and k ,  = 16.0. When d = 40.0 and a, = 0, the critical wavenumber 
becomes non-zero as d2G is increased, and the critical value of d2G lies between 0.7 
and 0.8. For larger values of k ,  the numerical solution shows that R - kZ whereas 
R - k in (4.45). When d = 10, (4.45) underestimates the computed value of R by 
about 25% when k = 1.0. Such relatively poor agreement in this case is not 
unexpected because the magnitude of the second term in (4.45) is 80 '340 of that of the 
first term, so the convergence of the asymptotic expansion is slow. 

Neutral curves for the intermediate value of d = 1.0, which is not covered by the 
asymptotic analysis, are shown in figure 2 (c ) .  Again, when C = 0, R(l) has a minimum 
at k = 0 and R(')(O) = 1185. These results imply that, in the absence of gyrotaxis, the 
critical wavenumber is always zero, which confirms the findings of CLS. Also shown 
in figure 2 (c ) ,  for completeness, is an example of a higher branch of the neutral curve, 
R(2),  when G = 0, and an example of the effects of small values of G ,  G = 0.1. In the 
latter case, the neutral curve has a minimum RY) = 858 a t  k, = 3.5. This value of G 
is a fifth of the typical value for C. nivalis when d = 1.0. 

Neutral curves for larger values of G are shown in figure 3, in which we plot 
RG(1 +ao) versus k ,  as suggested by (4.36). For d < 1, the critical values of the 
neutral curves occur a t  wavenumbers between 4.0 and 5.0 while as d increases from 
1.0 to 10.0 both R, and k,  increase. Along parts of the neutral curves when d = 1.0 

and d = 10.0, indicated by dashed lines in figure 3, the solution corresponding to the 
branch R ( l ) ( k )  is mode 2 not mode 1. As k is decreased below k,  along such a branch, 
the single convection cell which extends throughout the depth of the layer becomes 
augmented by a second small convection cell, which forms a t  the upper boundary at 
some particular value of k and grows in depth as k is decreased further. Likewise, as 
k is increased above k,  along such a branch a second small convection cell appears 
a t  the bottom of the layer and grows in height as k is still further increased. However, 
in all such cases examined, with one exception discussed under oscillatory solutions, 
the solution is of mode 1 within a finite interval containing k,  so that mode 1 is still 
the most unstable stationary mode. This behaviour is reminiscent of a result of PHK, 
who found that in an infinitely deep, uniform suspension for which a, > 5, modes 
with a vertical wavenumber greater than zero are the most unstable. However, here 
there is no 'a,-cut off ', i.e. mode 2 can be found in parts of R(l) even when a, = 0. 

For a further comparison with PHK, we show the effects of changing the boundary 
conditions to those of stress-free boundaries (for which all instabilities are stationary, 
as proved in the Appendix). In  figure 4, d = 0.1, G = 50 and a, = 1 .O, and the neutral 
curves for different modes cross one another, so that although the most unstable 
mode is mode 1 overall, there are values of k a t  which mode 2 is the most unstable 
mode. A second notable feature, which demonstrates the importance of the boundary 
conditions, is that even at this large value of G ,  k, = 0. This has been found to be true 
for all values of G and d investigated. For example when d = 10, G = 10 and a, = I ,  
R+125 as k+O.  

To complete this section on stationary solutions, we plot the growth-rate curve for 

the case when d = 1.0, G = 0.5 and a, = 0.2, in figure 5. A Rayleigh number a little 
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FIGURE 2. (a) d = 0.1. Comparisons between the numerical results (dashed lines) and neutral curves 
(solid lines) for the branch R(l)(k) predicted by (4.21). (a) Comparison between numerical solutions 
(dashed lines) and equation (4.45) (solid lines) when d = 40 and dZG = 0 and 0.9 for the branch 
R(l)(k) on the neutral curve. ( c )  Neutral curves for d = 1.0. 

108 

104 

RG( 1 + ao) 

10' 

d = 10.0 
G = 10.0 ,' 

d = 10.0 
G = 10.0 *'&' 

a. = 0.2. ) 
L 

d = (  

t *slo.o G = 1.0 

a,, = 0.2 

, 

i 
\ \\ "/ / 

108 I I 

10-1 1 10 108 
k 
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a,, = 0.2 and 8, = 20. Note that the maximum value of u occurs at a value of k > k,. 
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above the minimum of the neutral curve (which is also shown for convenience) was 
specified and 8, was set to 20. This graph is typical of the growth rate for all 
parameter values and such plots show that the maximum growth rate is found at 
wavenumbers k > k,, so that A,, which is the estimate of the value of the horizontal 
pattern spacing when a suspension is just unstable, is likely to overestimate the 
observed wavelengths. 

5.4. Oscillatory modes 

Overstable, or oscillatory, solutions are found in regions of parameter space not 
covered by the analysis of $4. The existence of oscillatory solutions explaihs the 
failure of the proof of exchange of stabilities in the Appendix. A survey of the 
relevant parameters for d = 0.1, 1.0 and 10.0 has led to the following results. 

(i) Oscillatory modes were not found when d2G( 1 + a,) < 1,  except when a, is very 
close to 1 (see (ii)). 

(ii) When d = 0.1, k 2 7.0 and a, 2 0.97, overstability is found for all positive 
values of G examined. 

(iii) In  general, the most unstable mode was stationary but, when d = 10.0, the 
values of the stationary and oscillatory branches depended on the values of both G 
and a,, and there were values of G and a,, for which the most unstable mode was 
oscillatory. 

Neutral curves for two cases when d = 1.0 and d = 10.0 are shown in figures 6 and 
7 and serve to illustrate the general behaviour. In  figure 6, d = 1.0 and a, = 1 and 
two oscillatory branches bifurcate from the stationary branch a t  points A and B, to 
the left and right of the critical point (k,,R,) respectively. Here the stationary 
solution is the most unstable. 

The stationary branch consists of a closed loop, the lower half of which can be 
shown to be smoothly connected to  the branch R(')(k) as G and a,, are varied until 
d2G( 1 + a,) < 1 and there are no oscillatory branches. Similarly, the upper stationary 
branch is smoothly connected to  Rt2)(k). The survey of oscillatory modes indicates 
that this is the typical behaviour. This particular example is unusual in that, a t  the 
critical point (k,,R,) = (3.889,273.6), the solution is mode 2 not mode 1. Examination 
of the W(z)-field shows this solution to consist of one main convection cell with a 

subsidiary cell in the top 5 %  of the layer, the maximum vertical velocity of which 
is less than 0.1 % of the maximum in the main cell. Nevertheless, this does represent 
the only case that has been found in which the most unstable mode is not mode 1. 

In  practice, however, such a mode is unlikely to be seen because it appears to be a 

limiting case as a,+ 1, for mode 1 is the most unstable mode when a, = 0.95. 
In figure 7, when d = 10.0 and a, = 0.5, the left-hand oscillatory branch has 

developed a minimum which is lower than that of the local minimum of the 
stationary branch, and so (k,,R,) lies on the oscillatory branch. The values of d2G, 
a, and w = Im (a) at the critical point are 1.0, 0.5 and 32.1, respectively. d2G and a, 
are greater than the estimated values for C. nivaEis (see table 2), for which d2G(1 +a,) 

< 1 always, and so overstability is not predicted for this species. Nevertheless, d2G 
= 1 and a, = 0.5 are within the likely bounds for some micro-organisms and so it 
may be possible to observe overstability in some future experiment. The period for 
overstability is 97.7 s. The value of w is typical of those found when d = 10.0, which 
suggests that u should be found in the leading-order terms of the asymptotic analysis 
for the deep layer, although as discussed in $4.2 attempts at a suitable scaling to 
achieve such a balance have been unsuccessful. 

We conclude this topic with an explanation of the mechanism for overstability. As 
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FIGURE 8. Diagrams to illustrate the mechanism for overstability: (a) Streamlines for a typical 
convection cell ; (a) the horizontal velocity profile along AB ; and (c) close-up of the shear layer near 
the top boundary, showing the drift of micro-organisms away from the downwelling region towards 
the upwelling region. (See text for details.) 

mentioned in 93, the existence of oscillatory modes is surprising in a system that 
appears to have only one instability mechanism. On closer inspection, however, there 
are in fact two instability mechanisms, namely the effect of negative geotaxis (pure 
‘up-swimming ’) which leads to a Rayleigh-Taylor instability of heavy fluid over 
light fluid, as described by CLS, and the purely ‘gyrotactic’ instability of PHK, 
which grows from a uniform basic state. However, these two mechanisms seem to 
cooperate with each other, rather than to compete, and we know that for the case of 
stress-free top and bottom boundaries this instability is always stationary. Thus 
there must be yet a third mechanism involving the nodip condition coupled with 
gyrotaxis. 

Consider the situation depicted in figure 8. There is a single layer of convection 
cells between the top and bottom boundaries in (a) ,  with a horizontal velocity profile 
which vanishes at the top and bottom boundaries as shown in (a). There is a shear 
layer at each boundary due to the no-slip condition at the rigid boundaries. The 
‘close-up’ in ( c )  of the shear layer near B shows that there is a net viscous torque on 
the micro-organisms near B so that they swim at an angle to the vertical from left 
to right, away from the downwelling region along CD, where there is a higher 
concentration of micro-organisms which drives the bulk convection. At the bottom 
near A, the flux of cells is always away from the downwelling region, as is the case 
when the bottom boundary is stress-free. The layer close to the upper boundary 
supplies cells to the downwelling region, so if the parameter values are such that the 
drift of micro-organisms in the top layer is sufficiently great that overall there is a 
net flux of cells away from CD, then the majority of the micro-organisms will move 
towards the upwelling region until they cause a reversal in the sense of the 
bioconvection cell and oscillations will ensue. 

In  support of this argument, we show in figure 9 the horizontal flux of swimming 
cells and the bulk horizontal velocity and shear profiles when (a) d = 0.1, d2G = 1.0, 
a, = 1.0 and k = 3.0 and (b) d = 10.0, d2G = 1.0, a, = 0.5 and k = 4.0, at the time of 
maximum convection, assuming that the horizontal planform consists of rolls. The 
profiles are measured through the centre of the convection cells, i.e. along lines like 
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(a )  a,, k, (dimensionless) 

0 0.81 
0.2 2.1 
0.4 3.3 
0.6 4.5 
0.8 5.9 
1 .o 7.3 

(b )  daG k, (dimensionless) 
0 0 
0.25 0 
0.50 2.1 
0.75 7.1 

hf (cm) 

7.8 
2.9 
1.9 
1.4 
1 .1  
0.86 

A: (cm) 
- 

- 

2.9 
0.88 

Rc 

0.97 x lo6 
1.20 x 106 
1.52 x lo6 
1.95 x lo6 
2.53 x lo6 
3.30 x lo8 

R, 
0.49 x lo6 
0.70 x lo6 
1.20 x 106 
2.19 x lo6 

TABLE 3. The dependence of the most unstable wavelength on G and a, for a layer 1.0 cm deep 
(d = 20): (a) d2G = 0.5, ( b )  a,, = 0.2 

AB in figure 8. In both cases there is overstability and there is a net flux of cells away 
from the downwelling region. In both cases, the flux is strongly influenced by the 
horizontal shear. 

It is interesting to note that Childress & Peyret (1976) found some evidence of 
nonlinear oscillations in a numerical study of two-dimensional bioconvection. In 
their model, the particles executed a random walk together with a drift vertically 
upwards, so that there was no gyrotaxis. 

To complete this section, results on how the critical wavenumber and wavelength 
vary with a, and G are presented in table 3. These apply to the case when d = 20, 
corresponding to a layer depth of 1 cm for the parameter values of a typical 
suspension of G. nivalis, as given in table 2. The results are used in $6 in the 
discussion of experimental results for such a layer. We see that A,* varies from 7.8 cm 
to 0.86 cm as a, varies from 0 to 1 when d2G = 0.5, our best estimate for G (see 
table 2). However, G is hard to measure and there is considerable uncertainty about 
the actual values, as well as the distribution of those values over the population. 
Table 3(b) shows that A,* is sensitive to the value of G .  If the error in the estimate 
of d2G = 0.5 is as much as 50%, then A,* varies between 0.88 cm and CQ. This has to 
be borne in mind when making comparisons with experiments. 

The results of $84 and 5 may be briefly summarized as follows. 

(i) When G is increased from zero, with d and a, fixed, the wavelength of the 
predicted pattern spacing decreases to a finite value which is proportional to the 
depth H of the layer, and the critical Rayleigh number R, is lowered. For large values 
of G, oscillatory solutions are found. 

(ii) When d is increased from small values, and G and a, are held fixed, R, is 
initially lowered but for values of d larger than one, R, scales like d4. The pattern 
wavelength decreases slightly as d increases, but remains roughly proportional to the 
layer depth H .  

(iii) When a, is increased, with d and G fixed (G 4 0) ,  R, is lowered and, at  values 
of a, close to one, oscillatory solutions exist. 

6. Discussion 

The mathematical developments presented here ought to be accompanied by a set 
of reasonably accurate, experimentally determined parameters which could be used 
to validate the theory. Unfortunately only estimates are currently available. An 
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attempt is underway to measure B and D using a focusing apparatus similar to that 
described in Kessler (1986). Furthermore, direct microscopic measurements (with 
D.-P. Hiider) of algal cell velocity distribution functions will yield better estimates of 
V, and possibly D.  In this discussion, we first describe some qualitative observations 
and compare them with the results of this paper and of PHK. It turns out that these 
particular observations are not sufficiently refined to say which of the two theories 
best describes the observations, since both agree moderately well, but the exercise 
does illustrate the necessary analysis. Later in this section, we shall also show that 
the equilibrium state is more unstable than the uniform suspension when the layer 
is sufficiently shallow, so that the instability mechanism of this paper should conform 
with experiments on shallow layers. 

A suspension of the alga C.  nivalis, 1.0 cm deep with a mean concentration of 
approximately 5 x lo5 cells ~ m - ~ ,  was thoroughly mixed by gently swirling the fluid 
in its container, and then the container was put down on a bench. After about 60 s, 

patterns were seen as the experiment was being viewed from above. These initial 
patterns were rectilinear and similar, but less regular, in appearance to those in 
figures 10, 11 and 12 of Kessler (1985). The initial spacing of concentrated bands of 

cells was 2-3 cm. It is this very first, visual indication of bioconvection that we shall 
compare with the results of the linear stability analyses, with the implicit assumption 
that the typical lengthscales had not yet been grossly modified by nonlinear effects. 
The patterns continued to develop until they reached a final state in which the 
spacing was regular, with a value between 0.5 and 1.0 cm. In this final, inevitably 
nonlinear, state the patterns appear to be steady, but time-lapse photography 
reveals that they are in fact constantly shifting, on timescales of the order of 10 min. 
It should also be mentioned that even though bioconvection patterns exhibiting 
distinct growth rates and wavelengths are unambiguously present, they vary 
diurnally owing to variations in cell behaviour during their growth cycle. Such 
behaviour can be induced or enhanced by tilting the suspension or providing non- 
uniform illumination. It is anticipated that once a few cases are properly measured 
and integrated into our theory, the understanding derived will help to elucidate 
mean behaviour changes during the cell cycle. 

In order to apply the theory, we need first to decide whether sufficient time had 
elapsed, before the patterns were first seen, (a) for the fluid motions remaining after 
the mixing to have decayed away, then (b )  for the equilibrium profile to have been 
established, and lastly ( c )  for initial perturbations to have developed. A similar 
discussion was given by PHK. They estimated the decay times for turbulent eddies 
as HIU,  where H is the depth and U a typical stirring velocity. Alternatively, we 
could suppose that the fluid and container are in solid-body rotation with angular 
velocity 0, and at t = 0 the container is brought to rest. The timescale for spin-down 
of the fluid by the Ekman boundary layers is O(E-k2-1), where E = v /QH2 is the 
Ekman number ; the timescale for decay of the residual motions is also O(E-b- ' )  
(Greenspan 1968). If SZ = 1 s-l, the resulting decay time is O(E-i) x 10 s, larger than 
H / U  when U > (Qv); = 0.1 cm s-l. 

Using the estimates in table 2 for the parameter values for a suspension of C. 
nivalis, the time for development of the exponential concentration profile is of the 
order of the time taken for a typical algal cell to swim from the bottom to  the top 
of the layer, which is about 100 s since H = 1 cm (PHK). 

Turning to the instability of the equilibrium state, we note first that the values of 
k, and R, depend on a. and G as shown in table 3. Our best estimates for a. and d2G 
are 0.2 and 0.5, respectively, and for a layer of depth H = 1 cm, we find that the 
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z (cells R km,, elax (em) Umsx t: (8) 

6.015 x lo5 1.203 x los 2.18 2.88 4.16 x lo-' 4.81 x lo5 
6.080 x lo5 1.216 x lo6 2.52 2.49 7.12 x 10-3 2.81 x 105 
6.400 x lo5 1.280 x los 3.36 1.87 6.39 x lo-' 3.13 x 103 
8.000 x 105 1.600 x 106 5.36 1.17 7.70 x 10 30.0 
1.200 x 10' 2.400 x los 8.02 0.78 5.05 x lo* 3.96 

TABLE 4. Timescale for the growth of perturbations from the equilibrium solution. Here a, = 0.2, 
8, = 20, H = 1 cm, d2G = 0.5, D = 5 x ema 8-l and R, = 1.20 x lo6 corresponding to a mean cell 
concentration Z, = 6.0 x lo6 cells emwS. 

(dimensionless) critical wavenumber k, = 2.1, corresponding to a pattern wavelength 
of 2.9 cm, in good agreement with the observations of early pattern spacing. The 
mean concentration of cells fZ is related to R by (2.16) and (3.16) ; using the parameter 
values in table 2 for a suspension of C.  nivolis and setting H = 1 cm gives R = R, 
when a =  fie = 6 . 0 ~  lo5 c e l l s ~ m - ~ .  Again this agrees well with the mean con- 
centration in the experiment. 

The timescale tz for the growth of perturbations can also be calculated and 
compared with the experiment. In  table 4 are given the maximum growth rate 
rmax and corresponding wavelength Agax as a function of fZ  (and R )  when a, = 0.2, 
d2G = 0.5 and H = 1 cm. tz  = H2/Damax is also given. When f i  = 6.015 x lo5 cells 
~ m - ~ ,  which is just greater than ac so that the suspension is slightly unstable, 
tz  = 4.81 x lo5 s which is far in excess of the observed timescale. With a larger f~ of 
8 x lo5 cells ~ m - ~ ,  t z  = 30 s but Agax = 1.17 cm, which is smaller than the observed 
pattern spacing. Moreover, when allowance is made for the time taken for the 
development of the equilibrium state, t: can only be a few seconds long. To achieve 
this requires a concentration significantly larger than that actually present ; for 
example tz = 3.96 s when fZ  = 1.2 x los cells om+, and then the predicted value of 

Azax is smaller still: Agax = 0.78 cm. Although we are comparing the theory only 
with qualitative results, neither of the last values of f i  and agrees well with this 
particular experiment. Of course, tz is sensitive to the chosen value of the diffusion 
coefficient D, and a generous error in its value gives D = 5 x cm-3 cm2 s-l 
(Kessler 1986). In  this case, t; = 3.0 s when Azax = 1.7 cm, but a increases like D2 
giving a corresponding mean cell concentration of 8 x 10' cell ~ m - ~ ,  which is 
manifestly too great. We conclude that any increase in the assumed value of D 
worsens the agreement with experiment. 

If instead we consider PHK's instability mechanism and use the parameter values 
in table 2, we find that when H = 1 cm the suspension is just unstable if = 1.2 x lo6 
cells cmP3 and, correspondingly, tz = 25 s and Agax = 1.7 cm. This value of h is 
reasonably close to the experimental one, and the timescale for the decay of fluid 
motions plus t; are consistent with the time taken for the pattern first to appear. 
Thus in this particular experiment it seems likely that once the fluid motions arising 
from the mixing had decayed sufficiently, the suspension was approximately 
uniform, with a sufficiently large mean cell-concentration that it was immediately 
unstable to small perturbations. However, if FZ was less than 1.2 x lo6 cells ~ m - ~ ,  the 
uniform state would have been stable and the mechanism of this paper better 
describes the instability. Confirmation of these arguments must await more 
quantitative experiments. 

Further insight into the interpretation of the theories of this paper and of PHK 
can be gained by comparing the neutral stability curves for the two states for layers 
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FIGURE 10. Critical Rayleigh numbers R, and Rk) versus scaled depth d for instabilities of the 
equilibrium and uniform states respectively. Here dZG = 0.5 and a, = 0. 

of different depths. For convenience, we consider only spherical micro-organisms, for 
which a. = 0, and take 

G = 0.5d-2, 

which is a typical value for C. nivalis. PHK estimate the critical Rayleigh number, 
R(,U), for the uniform suspension to be 

RP) = 167c2VJDG(1 -exp ( - d ) )  

(in the notation of this paper), where the exponential term arises from the 
relationship (2.16) between N and %. I n  figure 10, we plot RF) as a function of d 
together with numerical values of the R, for the equilibrium profile. From this graph 
we conclude, for a given layer depth H ,  that 

(i) the suspension is stable whenever R is less than the values on both curves ; 
(ii) the suspension is unstable when R is greater than the values on both curves; 
(iii) when R lies in the shaded region between the two curves; the suspension is 

(iv) the curves cross at d x 70. 

Suppose that we carry out an experiment in which the Rayleigh number lies in the 
shaded region. Then, as the residual fluid motions from the mixing decay, the 
suspension is initially almost uniform and, because R < RP), it is stable, so the 
cells begin to swim upwards to form the exponential concentration profile of 
the equilibrium state. However, the equilibrium state is unstable (R > R,) so that 
during the formation of the exponential concentration profile the suspension 
becomes unstable a t  a state in between the uniform and equilibrium states. So, if 

unstable if it is in the equilibrium state, but not if it  is uniform ; and 
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R, < R < RP), we shall observe that the cells will begin to form a dense upper layer 
in the suspension which spontaneously begins to convect, before the equilibrium 
state has fully developed. The two curves in figure 10 cross at d z 70, i.e. H x 3.5 cm 
for a suspension of C .  nivalis, so that if bioconvection patterns form at all in layers 
deeper than about 3.5 cm, they will do so only from a more or less uniform suspension 

and gyrotaxis is the sole instability mechanism. 
This conclusion is consistent with observation. For typical suspensions of C.  

nivalis, in layers less than a centimetre or two deep, bioconvection patterns appear 
and grow from the upper regions of the suspension, but in deeper layers plumes form 
spontaneously in the interior regions. This behaviour persists into the fully 
developed, nonlinear regime : in shallow layers bioconvection patterns extending 
throughout the entire depth of the layer can be seen, whereas in deep layers most of 
the patterns consist of regularly spaced plumes standing on the bottom boundary 
and extending only into the middle of the layer. In the absence of gyrotaxis, 
Harashima et aZ.'s (1988) numerical solution showed that the plumes originate near 
the top of the layer for the two depths H = 2 cm and 5 cm which they considered. 

A mathematical description of the nonlinear, bottom-standing plumes is one 
target for future research. Another topic for future consideration is the prediction of 
the initial planform of the bioconvection patterns using weakly nonlinear theory. It 
is also observed that initial patterns take the form of rolls bounded on one side by 
falling curtains of dense fluid, which in turn break up into plumes. This indicates that 
the initial two-dimensional disturbance has become unstable to a three-dimensional 
mode. An important feature which has to be included in the continuum model is that 
the suspension consists of a varied population of micro-organisms, and in particular 
the diffusion tensor D should be derived from a statistical description of the 
individual dynamics averaged over the population. A potential large-scale conse- 
quence of such a description is a. better understanding of the patchiness of algal 
populations in nature, for example with reference to red tides. Quantitative 
experimental studies are needed both to test the current theory and to provide better 
estimates of the values of the parameters that characterize suspensions of different 
micro-organisms. Lastly, a potentially rich area for investigation with applications 
in the study of dynamical systems is a study of the effects of competing external 
influences, such as changes in lighting, on bioconvection and the subtle reorganization 
of the patterns which takes place over minutes or hours. 

We should like to thank Dr D. R. Moore for supplying the finite-difference scheme 
for solving the two-point boundary-value problem. Financial support from the 
Science and Engineering Research Council and the National Science Foundation 
(Grant no. INT 85-13696) is gratefully acknowledged. 

Appendix. Conditions for the absence of oscillatory modes 

In  this Appendix, we prove that on a neutral curve where Re (a) = 0, then 
Im (a) = 0 also for solutions of (3.11) and (3.12) subject to the boundary conditions 
(3.13) and (3.14) for stress-free boundaries. 

= io, where w is real. Equation (3.11) is 
multiplied by w ( z ) ,  the overbar denoting the complex conjugate, and integrated 
from z = - 1 to 0. Integrating by parts and applying the boundary conditions yields 

Suppose that on the neutral curve 

18-2 



542 N .  A .  Hill, T .  J .  Pedley and J .  0. Kessler 

where primes indicate derivatives with respect to z. Similarly when (3.11) is 
multiplied by T ( z )  and integrated we find that 

- [WW"]!, + {I PI2 + (2k2 + iwSF1) I W"I2 L1 

Il 

+k2(k2+iwS,1)IW12-k2Rd-1~@}dz = 0. (A 2) 

The integrated term in (A 2) vanishes only at a free boundary where W(z) = 0. 
The complex conjugate of (3.12) for the conservation of cells is multiplied by 
exp (-dz) @(z) and integrated from z = - 1 to z = 0, which gives 

[dexp (-d~)1@'1~]0,- {exp(-dz)((k2-iw)1@12+1@'12) 

-dG(l+ao) W"'+d(G(l-ao)+l) V@>dz= 0. (A 3) 

Finally (A 1) is multiplied by d[G( 1 -ao) + 11, (A 2) is multiplied by d[G( 1 +a,)] and 
their sum is added to k2Rd-l times (A 3). On taking the imaginary part, we find that 

wXZ1 (dG(1 +~0)((W12+k2(W12)+d(G(1-~o)+1)((W(2+k2(~2) L 
+S,k2Rd-1exp(-dz)1@12)dz = dG(l+ao)Im([~W"']O,).  (A 4) 

There is no contribution to  (A 4) from the integrated term in (A 3) which is real, but 
the integrated term in (A 2) forms the right-hand side of this last result. The right- 
hand side vanishes in the case of two free boundaries, which implies that w = 0, 
proving exchange of stabilities in this case. In fact, this result is true even if 
Re(a)  + 0. 
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