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Growth of Degree for Iterates of
Rational Maps in Several Variables

ARACELI M. BONIFANT & JOHN ERIK FORNZSS

ABSTRACT. We investigate maps on P2 and C2 for which the
algebraic degrees of the iterates, d,,, are not constant nor grow
like d™. These maps are called B-maps. Answering a guestion
posed by Ghys, we will show here that there are only countably
many sequences {d,} of natural numbers for which there exists
a rational map f on P2 with deg f™ = d,,, for all m € N.
We show here also that there are indeed infinitely many possible
sequences {d,} with d1 > 2.

1. INTRODUCTION

Friedland and Milnor ([6]) divided the polynomial automorphisms of C2 into
two families: the elementary maps, consisting of maps for which the degree of the
iterates remain constant; the other family, the Hénon maps, formed by maps for
which the degree of the m-th iterate is d™, where d is the degree of the map.
Bonifant ([1]) found to the contrary several rational maps on P? for which the
degrees of the iterates grow differently from the elementary maps and the Hénon
maps. The problem remained whether the set of possible sequences {d,,} of
degrees of iterates was uncountable. Ghys pointed out to one of the authors that
he thought this set should be countable.

The objective of this paper is to show that indeed the set of sequences {d.,}
of natural numbers for which there exists a rational self map f of P2 such that
deg f™ = dn, is countable. We also show that there are infinitely many possibil-
ities for the sequence of degrees of iterates of rational self maps of P2. Based in a
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result of Fornass and Wu ([5]), we show that the number of sequences of degrees
of iterates of degree 2 polynomial automorphisms of C2 is finite.

To simplify notation we call “A-maps, those rational self maps of P™ or those
polynomial automorphisms of C*, that behave under iteration either like elemen-
tary maps or Hénon maps of C2. The complement of the “A-maps are the B-maps.
We give here the complete list of A and B-maps of the polynomial automorphisms
of C3 of degree 2. The B-maps are classified as follows,

B-linear, if the growth of the degree of its iterates is non constant and affine.

B-Fibonacci, if the growth of the degree of its iterates follows a d-Fibonacci
sequence, {dCy,}, i.e., a multiple of the Fibonacci sequence.

B-flashing, if the degrees of its iterates grow every second time.

Basic-B-maps, if after high enough iterates its degree remains constant.

We finish this paper showing that in P? the sets of linear and Fibonacci B-
maps are also not empty. We study the dynamical features of two examples of
such maps. At least in the Fibonacci case, one of the maps whose dynamics is
studied here, is not birational. In both, the B-linear and B-Fibonacci cases, we
give examples of maps with a finite and an infinite number of degree lowering
curves.

2. BAsic FACTS

In this section we will give some definitions and prove some propositions that
will form the basis of our work. We start with the set up for rational maps on P™.
Since C"* c P™, every point (xi,...x,) of C"™ will be represented by [x1 :
- I xpn . 1] as an element of P™. Conversely, a point [y : - -+ : Cp41] € P®
with T, .1 # 0 corresponds to the point (C1/Cpn1,...,Cn/Cn+1) € C*. Points
of the complementary set, i.e., those points for which €, .1 = 0, are the points at
infinity. This illustrates the fact that P" contains n + 1 copies C}, of C". Each
oneofthe([}1 isgivenby C;+#0,j=1,...,n+1
Let us consider now rational functions from Cj to C. From above, tak-
ing xx = Cx/CTns1 forall k, 1 < k < n and clearing denominators, we can
rewrite a rational function p = p(x1,...,xn)/q(x1,...,Xn) ON (Cg‘ in the form
P(C1,...,Cn+1)/Q(C1,...,Cn+1), Where P and Q are homogeneous polynomi-
als of the same degree. Hence, its value at a point (<, ..., Cn+1) does not change
if we multiply the homogeneous coordinates by a common multiple, and p can
be viewed then as a function on P"+1,
Let R : (C}1 - q? for some j, j = 1, ..., n + 1 be a rational map, de-
fined by (x1,...,xn) = (U1(x1,... , Xn)y... , Un(X1,...,Xn)). We first rewrite
each coordinate function wu;(x1,...,xn), forall j, j = 1, ..., n in the form
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Uj(C1,...,Cns1)/Vj(C1,...,Cn+1), Where Uj, V; are homogeneous polynomi-

als with deg U; = deg V; for all j, j = 1, ..., n. Next we put all the com-
ponents of R over a common denominator, i.e., in the form (A1/C,... ,A,/C),
with deg A1 = - - - = deg A,, = deg C. Finally, introducing homogeneous coor-

dinates T;/C, .1 = Aj/Cforall j, j =1,..., n, we rewrite R as follows,

(gll"' ’C‘VLJrl) - [Al(gl"" !CT’L+1) L :A‘I/L+l(§1!"' ’C‘VLJrl)]l

where A; forall j, j =1, ..., n + 1 are homogeneous polynomials of the same
degree. Now R is a rational self-map of P".

Since we are interested in studying the growth under iteration of the algebraic
degree of an homogeneous self map of P, we need to cancel all common factors.

Definition 2.1. The algebraic degree d of any homogeneous map
R:P*"—-P" via [zg:---:znl~=1[Qo(20,...,2n): - :Qun(z0,...,2n)]
is defined to be the common degree of Q; for all j = 0, ..., n after cancellation

of all common factors.

Since the self maps of P™ with algebraic degree 1 do not have interesting
dynamical properties, we will assume from now on that d > 2.

Definition 2.2. The subset of rational self-maps of P" for which the se-
quences {d., }, of algebraic degrees of iterates remain constant or grow like d™,
will be called A-maps. The complement of the A-maps, i.e., the set of rational
self-maps of P with the property that the algebraic degree of their iterates d,,,
does not grow like d™ or remains equal to the constant d under iteration, will be
called B-maps.

In P2, elementary and generic meromorphic maps are examples of A-maps.
In €2, shears and Hénon maps are examples of these kind of maps.

Definition 2.3. Let Fixg be the set of fixed points of R,

Fixg = {[z0:---:zn]l € P" | Qj(20,...,2n) = AZ;
forall j,0<j<n,AeC\{0}}.

Definition 2.4. Let 7x be the set of indeterminacy of R,

Tr={lzo: - 1zn]l € P" | Qo(20,...,2n) = -+ = Qun(20,...2n) = 0}.
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Definition 2.5. An irreducible algebraic variety V; ¢ 7z of dimension dimV;
> 1 is R-constant if R takes a constant value on V; \ 7g, say R(V; \ 1g) = p; for
some p; € P". We denote by Vi = U, V; the union of all such maximal irre-
ducible compact complex varieties V; on each of which R has a constant value.

We observe that the union of all such maximal irreducible compact R-constant
complex varieties V; is not necessarily finite, nor even countable.

Proposition 2.6. If Vg = @, then also 7 = @. In fact, each irreducible
branch V; of Vg must intersect 7z. It can happen that Vz = &, while 7z = & (see
[3], Proposition 1.2).

Definition 2.7. For a given point p € P", a point g is said to be a preimage
of p if R is defined at q, i.e., g & g, and R(q) = p. We will denote the set of
preimages of p as R~1(p).

Proposition 2.8. Let R : P* — P" be a rational map of degree d. Assume
that 7z = @ but is finite, and assume also that R is of maximal rank »n. Then for
any a = [ag : --- . an] € P", which is not the image of an R-constant variety,
R~ Ya) c P\ 1g, cardR1(a) = 4’ < d™. Here we count the number of points
with multiplicity.

Proof. Let us consider the map C"*2 — C"*! such that (zo,...,zn,t) =
(z,t) = R(z) — at4, where

R(z) —at® = [Po(z0,... ,zZn) i -+ Pp(Z0y ..., zn)] — [aot? : - - - ant?].

So, we have n + 1 polynomials in P™.

Let us take t = 1, by hypothesis we are assuming that there is no positive
dimensional variety 'V, 'V c P" \ 7, such that R("V) = a. Then the number of
zeroes of R(z) — at?, when t = 1, is finite in P". So, by Bezout’s theorem, the
number of zeroes of R (z) —at® will be d"+1, counting multiplicity. By hypothesis
T = @ and finite, so for p € 7x, [p : 0] is a zero of multiplicity at least d. Hence
the number of zeroes of R(z) — at4 when t = 1 is less than d4™. Since rotation
of t by a d-th root of unity produces an equivalent solution in P", we get that
a <dam. O

Definition 2.9. An irreducible variety V; of codimension 1, V; c P, is said
to be a degree lowering variety if, for some (smallest) n = n; > 1, R"*(V;) C 7.

In this paper we will discuss the growth of the degrees of the iterates of self-
maps R of P™ with degree lowering varieties. When there is a degree lowering
variety V| = {h; = 0}, all the components of the iterates of R™*! vanish on it.
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Hence one needs to factor out a power of & ; in order to describe the map properly.
Hence the degree of the iterate will drop below d™i+1,

3. THE GHYS QUESTION

We show first in this section that there are at most countably many sequences
{dm} of natural numbers, for which there exists a rational self map R of P whose
degree under iteration satisfies that deg R™ = d,,, for all m € N. Conversely, we
show after that there are infinitely many possibilities for the sequence of degrees
of iterates.

Let R(zo,...,z,) be a homogeneous polynomial of degree d. Then R is
a finite sum of terms ¢y ;,....i, 20021 ... .z, where i ranges from 0 to d and,
for a given ip, i1 ranges from 0 to d — ip. And in general for given ip, i1, ...,
ix-1, ix ranges from0tod — (ip + i1 + - - - + ix-1), 0 < k < n. Then iy is
finally determined and the number of coefficients C of R is given by (4:7) =
d+1)---(d+mn)/n.

Let

Hi={R=[Py:---:Py,]|P;isahomogeneous polynomial in cnl,
degPi=d,0<i<n}\{0:---:0]}.

We can identify #H, with the list of coefficients C. Then # is given by a set
of (n + 1)(4:m) coefficients C. Moreover we only consider C = 0, and if we
multiply all the coefficients with the same complex non zero number, we get the
same map on Hy. In other words, Hy = P((VF*1)n+1) where V' is the set
of homogeneous polynomials in C*** of degree d, dim v} +! = (4:7) and hence
dimHy =r(d) = (n+1)(4") - 1.

Let X = {R € H, | rankR < n}.

Proposition 3.1. X c H is a closed analytic subvariety.

Proof. Let R be a map of degree d with coefhcients in X. Let f(zo,...,zx) be
the Jacobian determinant of its lifting in C**1, f(zo,..., z,) is a polynomial map
of degree (n + 1)(d — 1). Since by hypothesis rankR < n, f(zo,...,z,) Must
be equal to zero. Now, each of the coefficients of f(zo,...,zy,) isa homogeneous
polynomial in C, therefore its common zero set X is a closed analytic subvariety of
Hy. O

Now, let P, denote the projective space of all homogeneous, not identically
zero, polynomials of C**! of degree d, dim P, = s(d) = (43) - 1.,
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Let p, g be strictly positive integers. We define the canonical maps
®y g Pa X }[q — .7‘[q+p via (A,[Py:P1:P]) — [APy: AP : AP;].

Let Z, 4 denote the irreducible image of &, 4.

Forany k,d —1 > k > 1, let Z4k = (J,_; Z4 4 be those maps in 3, of
degree at most k; we set Z44 = 3. Then all the Z4* are closed analytic subsets
of Hy and z41 ¢ z42. .. c z44, \We say that the maps in Z& := z4k \ zak-1
have (reduced) degree k. Then the Z{ stratify the space #.

For every strictly positive integer m, we consider the holomorphic map

Yam:Ha\ X - Hgm via F— F™,

This induces a stratification of 4 \ X given by W™ := ¥;% (z2"). The
W,f'm are closed analytic subsets of H 4 \ (X Upcg ng'm) and consists of those
maps for which the degree of the m" iterate is exactly k.

Next we combine these stratifications of £\ X inductively. Let ;%! denote
the irreducible components of the {W{"'}. Let us assume next that we have a
countable sequence of irreducible varieties ;W™ stratifying 7, \ X. We assume
moreover that on each ;W4™, g, h € ;W™ implies that deg gk = deg h*, for
all k < m.

We stratify each ;Wam into pieces ;W™ n wo™*L, Listing all the irre-
ducible components of all these we obtain the sequence {;w4-m+1},

We have shown:

Theorem 3.2. There exists for each m a countable sequence of disjoint irre-
ducible varieties ;W™ such that H; \ X = |J ;wem.

If h, g € jWem™, then deg h* = deg g* for all k < m. Moreover, each
Wam+l L wem for some j(£). Furthermore, either ;W @m+1 is a dense given
setin j W™, or dim ;wam+l < dim ;,Wwam.

We will show now that there are only countable many sequences {d,} c N
for which there exists a rational map R of degree d on #; for which deg R™ =
dm.

Let S denote the collection of all s = {W,,} = {jmwd’m};’,‘gzl, where
i WML i wdm as in the theorem. If h is any map of degree d, then
h belongs to N, j,, W™ for some sequence s. We say that h € s for short. Also
note that if h, g € s, then deg h* = deg g* for all k. Hence we only need to
show that the set S is countable. For each s = {W,,} let A = {A,,} be the se-
quence of dimensions, A, = dimW,,. Then (im +1)(d+1) - - - (d + m)/m! >
A1 > A2 >+ > Ay > --- > 0. Observe that, for each s = {Wy,}, there is a
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smallest integer m = m(s) for which A,; = A1 = - -+, Let § = {W;}joms
to count the number of possible growth of degrees of iterates we only need to
consider {A1,...,Am(s)}. But these are contained in

U1{01,...,m+1)(d+1)---(d+m)/mi}™,

m=1

which is a countable set. |

We will prove next that there are infinitely many possibilities for the growth
of the degree of the iterates of a rational map F of degree d, d > 2, in P2

Proposition 3.3. Let us consider the map F : P2 — P2,

[z:w:t] £ [ztd*l S(wtt 4 z%) cos (1) — t4sin (1)
m m

S(wtdt 4+ z%)sin (%) + t4cos (%)] )
Then

deg F¥[z:w:t] = d* forallk <m, meN,
deg F¥[z:w:t] < d* forallk=m+1, meN.

So, there are infinitely many possibilities for the growth of the degree of a rational self
map of P2.

Proof. Let us observe that F[z : w : t] is a composition of a rotation hy, ;,
and ashear R, i.e., F = (hy o R)[z:w : t], where

hylz:w: t]= [z ;W COS <%) — tsin (%) Swsin (%) + tcos(%ﬂ,

and R[z:w : t] = [zt~ witd1 4+ z4 1 t4], d > 2. We will use the following
dynamical features of R.

1. 7R=[0:1:O] =TE.

2. (t = 0) is the only degree lowering curve of R.

3. (z = 0) is the set of fixed points of R, Fixg.
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Since F(t = 0) = [0:cos(tr/m) :sin(rr/m)] € (z =0), and (z = 0) is fixed by
R and invariant under h.,,¢, we only need to look at k%, ,(z = 0), forall k € N.
In (z =0),

[(Cos(ﬂ/m) —Siﬂ(Tr/m)) (w)]T [ (w)}T
hwelw:tl=|| = |H :
sin(rt/m) cos(tr/m) t t

Since in (z = 0), (§) is an eigenvector of H™, i.e., H™(§) = A(§), with A =
0, Fk(t = 0), will hit the point of indeterminacy [0 : 1 : 0] for the first time when
k = m, i.e., in the m-th iterate. In other words, we have F"(t =0) = [0:1:0]
therefore deg F¥[z : w : t] = d¥ forall k < m and deg F¥[z: w : t] < d* for all
k=m+1.

Since m varies in N, there are infinitely many possibilities for the sequences
of the degrees of iterates of rational self maps of P2 of any degree. O

4. B-MAPS OF P2

In this section we show the existence of B-linear and Fibonacci maps on P2,
Furthermore we study their dynamical behavior.

4.1 B-linear maps. As established in the introduction:

Definition 4.1. A B-map will be called linear, if the growth of the degree of
its iterates is non constant and affine.

Theorem 4.2. The family of B-linear maps of P2 with an infinite number of
degree lowering curves, is non-empty. In fact,

(1) R:P2-P? via R[z:w:t]~[zt:z%+zt+wt:t?+ zt]

is such a B-linear map.
In addition, there exists a dense open set U c P2, where the iteration of R is well
defined, and U satisfies that:
1. U is a parabolic basin, i.e., R"[z :w : t] - [0:1:1],am — c. The
convergence is uniform on compact subsets of U, and [0:1: 1] € oU.
2. U=Cy xCy\ (Z U {0}), inparticular, U is not Kobayashi hyperbolic.

Before proving the theorem, we will state the following dynamical features of R.
1. Fixp ={[0:w:1] |w e C} =C.
2. g ={[0:1:01} = {po}.
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We observe that R has infinitely many degree lowering curves. In fact, the
degree lowering curves of R are given by the set {(kz +t =0) | k e NuU {0}}.

The varieties {(kz+t = 0) | k € Nu {0}} converge in the Hausdorff metric
of sets as k — o to Fixg U {po}, since z = —t/k — 0as k — .

We define R=*(po) := Ugso(kz +t = 0).

Observe that R=> (pp) is not a closed set, since it does not contain all its limit
points, namely the set Fixg.

Let us define

) U:=P2\Fixgu ([ Jlkz +t=0}).
k=0

From what we have seen above, we can write P2 as the disjoint union of three
sets: P2 = Fixg LU R~ (po) L U.

Each one of these sets is forward invariant for R, so we can study the dynamics
on each piece separately.

1. Dynamics on Fixg. The Jacobian matrix of the map (1) in (t = 1) is
given by

1

0.) (1+2)2 0 1 0

.7 ’w = = y

. 224+2z+1-w 1 l-w 1
(1+ 2)2 1+z/ 0w

so the point [0 : 1 : 1] is the only fixed point where the Jacobian is the identity
matrix. We show that in fact this is the only fixed point with an attracting basin.
We are concerned with understanding the local dynamics near the other fixed
points to gain insight into why they do not have a basin of attraction.

Trying to shed some light on this matter we will move an arbitrary fixed point
(0,a) € C2, to the origin under a change of coordinates. We expand R in (t = 1)
in a Taylor series, and obtain:

2

(3) R(z,w) = (z-2°+2%-Z*+ -, (l-a)z+w+az’—zw+ - - -)

If {(zx, wi)}x is an orbit converging to (0,0) then, since the first coordinate of
(3) depends only on z, we use the theory of parabolic dynamics in one dimension
(see [2]) to show that z; — 0 along the positive real axis. In fact, asymptotically,
zrx ~ 1/k. If we next consider the second coordinate, we note that wg.1 ~
wir+ (L—a)zx ~wi + (1 —a)l/k. Since >4 1/k is a divergent series, we can
not expect wy — 0. This is what we consider to be the reason that [0 : a : 1] does
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not have an attracting basin for a = 1. We show below that all points on a dense
open set converge under iteration to the point [0: 1: 1].

2. Dynamics on R=*(pg). Let us denote by L := {kz+t = 0}, k €
Nu {0}, L, := L\ {po} = C, k € NuU {0}. With this notation we can write
R™*(po) = {po} U (UrsoL ).

Proposition 4.3. Let R be as in (1). R is biholomorphicon L”;, k > 1 and
R(LT) =L 1y

Proof. Parametrizing L ; and computingR : L, — L” 4, in this parametri-
zation, we get R[1 : n : k] = [1:n+ (1 -1/k) : 1 — k], sO R acts as a
translation with respect to these parametrizations of L’ , and L” , _,), therefore it
is biholomorphic. O

Since we are interested in studying the dynamics of R near its points of inde-
terminacy, we need to define a suitable concept of blow up.

Definition 4.4. Let g € 7 and let B, be the ball of radius ¢ about q. Write
W.:={R(p) | p € B: \ Ir}. The blow up of g is then the set W, := (.5, We.

Remark 4.5. In other words, the blow up "W, of the indeterminacy point g
will be the fiber over g in the closure of the graph of R|pz\4, in P? x P2, With this
convention, g will not be in the preimage of the points in its blow up.

Proposition 4.6. The curve (z = t) is the blow up of the point of indeterminacy,
[0:1:0]of R, givenasin (1).

Proof. Let {zx}r be a sequence such that zy = 0, k = 1, and zx — 0 as
k — co. Let o« € C. For large k, let tx = z2/(ozy — 1), k = 1. We have that [z
1:6]—-10:1:0],k—> o0, 0R[zx:1:tk]l=[1:x+1:z/(xzx —1) +1].
ThenR[zx:1l:tx] - [1:x+1:1]ask — co,

Now let {x}x be the sequence identically zero, and let {vy}x be a sequence
suchthat vy #0, k= 1,and vy — 0as k — oo.

We have that [xx i1 :vi] =[0:1:vk] - [0:1:0],50R[0:1:vx]=1[0:
1:vk]. Then R[O:1:wvx] — [0:1:0]. Therefore the curve

(z=t)={[l:x+1:1]|lxeCtu{[0:1:0]}

is in the blow up of [0:1:0].
Now we want to show that there are no other points in the blow up of [0 :
1:0]. Let us suppose that there is a point g in the blow up of [0 : 1 : O] such
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that g = [qo : q1: q2] € (z =t). Then go # g2, and we can suppose that either
qo=00rqo =1

Let us suppose first that go = 0, then there exists py := [zx : 1: tg] — [0 :
1:0] such that gx := R(px) — q. There exists ko € N such that t,% + zitr = 0,
for all k > ko. On one hand, dividing by 2 + zxty, we get R(px) — [0 g1 : 1]
as k — co. On the other hand, since R(px) = [zxtk : z2 + zxty + bk © to + zxtx],
factoring out t2, we get [zx/ty : z2/t2 + zi/tk + L/tx 1 1+ zi/tx] — [0 g1 : 1]
as k — o, Therefore the sequences {zx/tx} and {z,%/t,f + zi /[ty + 1/t } converge,
s0 {1/(tg)} converges. This is impossible, since ty — 0as k — .

The case go = 1 is analogous. O

3. Dynamicson U. We study next the dynamics of R on U. For this purpose
we are going to consider the plane (z = 1). With this new notation,

U=(z=1\Jlt=-k} =\ Jlt=-kl.
k=0 k=0

The map R now can be written as follows: R[1:w :t]=[1:w+1+1/t:t+1],
e, (w,t) > (w+1+1/t,t+1). Ingeneral,

1 1 1
k _ = I M
(4) R(w,t)—<w+k+t+t+1+ T koD

).
Proposition 4.7. All the points of U converge under iteration to the line P! =
(z = 0) at infinity, in the following sense:
In P2, for all neighborhoods V of P! = (z = 0) and for all K compact, K c U,
there exists ko = ko(V, K) such that, for all k > ko, R¥(K) < V.

Proof. Without loss of generality, we can assume that
V=(z=0)U(C%,\B(O,71))

for some large » > 0. Here Cﬁ,,t is denoting the dependence of C on w and t.
Let us pick a compact set K ¢ U. By equation (4), every time we iterate we

are translating the set K by one unit in the t-coordinate. Since K is compact, there

exists ko € N such that, for all k > kg, R*(K) < V. O

We use the following standard estimate.

Lemma4.8. Fork=1,2,3,...

@|mk+bsl+1+1+.”+

1
5t 3 Es1+lnk,
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1+1/2+1/3+---+1/k _
Ink -

Remark 4.9. (b) is usually writtenas: 1 +1/2+1/3+---+1/k ~ Ink.

1.

© fin

Let U be as defined in (2), and let R be as defined in (1). The following
proposition completes the proof of Theorem (4.2).

Proposition 4.10.

(@) The open set U is a parabolic basin, i.e., R¥[z :w :t] — [0:1:1]ask — oo,
forevery [z : w : t] € U. The convergence is uniform on compact subsets of U,
and[0:1:1] € oU.

(b) U =Cy xCe\ (Z~ U {0}), in particular U is not Kobayashi hyperbolic.

Proof.

(b) By (2)itisclearthat U = Cx C\ (Z~u{0}). U is not Kobayashi hyperbolic
since it contains C-lines C x {p}, p € C\ Z~ U {0}, (see [4]).

(a) Let us consider the compact set K c U. Pickapoint [1:w :t] = (w,t) €
K. By (4),

k-1 .
R"[l:w:t]:[ 1 wikt2 5L/t :1].

t+k-’ t+k

It is enough to show that 1/(t + k) — 0 and (w + k + SX51/(t + j))/
(t + k) — 1 uniformly on K. The fact that 1/(t + k) — 0 uniformly on K
is clear, since t is bounded.

Let us prove next that

w+k+ 3551/t + )

t+k -1-0
uniformly on K.
- wek+ S5 w -t | b5 1+ 5|
t+k Tt + Kl It + Kkl
OnK:

lw—tll _ llwll +lItll _ c1(K)

6 < < -0 ask — .
©) It + kIl k—1tll k—1tll ®
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By (5) and (6), we only need to show that
=55 1rc+ 5|

it + kil
Let us take ko = SUP,, )k 2IIEl

0 ask — o onk.

‘ J=k

k-1

ko—1
g S il 2

1
t+]

Now,

t+]H
1 1 1 2

8 < - ==

®) Er IR RET

PR] |Or a” j = 2 t .

k-1 _
15255 2]+ 5%
and hence, from Lemma 4.8
9) H > LH <2(1+1Ink) + c2(K)
St
By (8) and (9)

| = arct+ )|

4
It + kil

E(1+Ink+C3(K))—»O ask — oo,

Therefore R¥[z : w : t]

[0:1:1]as k — oo, uniformly on K

O

We give here another example of a B-linear birational map of P2, however in
this case R has only one degree lowering curve

Theorem 4.11. The family of B-linear maps of P2 with only one degree lowering
variety is non-empty. In fact,
(10) R : P? - P?

via Rlz:w:t]~[zt:wz:t?]
is a B-linear map. In addition

763
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If |z] <1,
RM"[z:w:1]-[z:0:1] €Fixg asm — oo,
i.e., for all zo with |zo| < 1, PL = [2o : w : 1] satisfies that R™(PL)) —

[z0:0:1].
If 1z] > 1,

RM™[z:w:1]1-[0:1:0]€7x asm — oo.

Before going into the proof of this theorem, we state the following dynamical
features of R

1. Fixp ={[z:0:1]1|zeCtu{[l:w:1]|w € C},
2. 7k ={[0:1:0]}u{[1:0:07},

3. R(z =0) € Fixg,

4. (t = 0) is the only degree lowering curve of this map.

Remark 4.12. The point [1:0: 0] € 7z has no preimages.
The m-th iterate of the map (10), lifted to C3, is given by the formula

(11) R™(z,w,t) = t*M) (zt™ zMy t"m*1),

where at(m) is given by the equation «(m) = 2™ — (m + 1), m € N.
Before we study the dynamics of (10) on P? \ 7z, we will study its dynamics
near the point of indeterminacy [0 : 1: 0].

Proposition 4.13. The curve (z = 0) is the blow up of the point of indetermi-
nacy, [0:1:0] of (10).

Proof. Similar to the proof of Proposition (4.6). O

Let us study now the dynamics of R in (¢ = 1). In this C2-plane our map
can be written as R[z : w : 1] = [z : zw : 1], since (11) the m-th iterate of R in
(t = 1) will be given by

(12) R"[z:w:1ll=[z:z2"w:1].

The following remark completes the proof of Theorem (4.11).

Remark 4.14. Observe that, by (12),
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If 1z <1
(13) R™M[z:w:1] - [z:0:1] € Fixg,
i.e., for all zo with |zo| < 1, PL = [zo : w : 1] satisfies that R™(PL ) —
[z0:0:1].
If z] >1

R™[z:w:1]1-1[0:1:0] € Ty,
as we wanted to prove.

By looking at the eigenvalues of this map, we conclude that the fixed points
(z,0) are semi-attracting when |z| < 1, and semi-repelling when |z| > 1. In
the case of the point (1,0), which is precisely the point of intersection of the two
lines of fixed points, both eigenvalues are equal to 1. The same thing happens if
z =-1. By (12), in (t = 1) the iterates of (—1,w) will be jumping from w to
—w, depending on whether the iterate that we are considering is even or odd.

Let us consider now those points z with |z| = 1, and 1 = z = —1; then
z = exp(if). In this case, by (12),

R™(z,w) = R™(exp(if), rexp(i®)) = (exp(if),r exp(i(mo + ®))),

so for every 6 fixed, 0 < 6 < 27, we will have in the plane [P%Xp(ie) = [exp(if) :

rexp(i®) : 1], » € R, and 0 < & < 2, essentially a rotation of the points
preserving the modulus of w = v exp(i®).

4.2 B-Fibonacci maps. As stated before:

Definition 4.15. A B-map will be called Fibonacci, if the growth of the de-
grees of its iterates follows the Fibonacci sequence {Cy,}, or if it follows a d-
Fibonacci sequence, {dCy.}, i.e., a multiple of the Fibonacci sequence.

Theorem 4.16. The map
(14) R:P? -~ P? via Rlz:w:t]~[zt:wt+2?:t? +wt]

is a non birational B-Fibonacci map. In addition, there exists an open set U ¢ P2
where the iteration of R is well defined, and

R"™[z:w:t]—-[0:0:1] asm — .

We give now some dynamical features of this map,
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1. Fixg = {[0:0:1]3},
2. I = {[0:1:0]} := {po},
3.R(t=0)=[0:1:0].

Remark 4.17. A computer experiment suggests that this map has infinitely many
degree lowering curves.

As before, we denote by R=*(po) = {po} U (Ur=0R ¥ (p0)), Where pq is
the point of indeterminacy, V = V, = (t = 0) is the degree lowering curve, and
R~ %(po) = V_i, k = 1, is denoting the k-th preimage of the degree lowering
curve V = (t = 0).

We will study now the dynamics of R near the point of indeterminacy.

Proposition 4.18. The curve (z = 0) is the blow up of the point of indetermi-
nacy [0:1:0]of (14).

Proof. Similar to the proof of Proposition (4.6). O

Proposition 4.19. The line (z = 0) is fixed. The points on the line (z = 0)
converge to the fixed point [0: 0: 1].

Proof. The fact that the line (z = 0) is fixed will follow from the fact that the
formula for the m-th iterate of R in (z = 0) is given by R"(z = 0) = [0: w :
t +mw]. This formula can be proved by induction.

Nowifw =0, R"™(z=0)=[0:0:1].

Ifw +0,t+ (m+1)w = 0, so dividing by it we have

w

R’"(Z:O’:[‘“m

:1]~[0:0:1],

as we wanted to prove. (I

We will study next the dynamics near the point [0 : 0 : 1]. In (¢t = 1), the
Jacobian matrix at (0, 0) is given by

1 z
w+l  (w+1)2 10

w+1 (1+w)2 (0,0)

We show below that an open set of P2 is attracted to this point.
The set, denoted by 71V g, of periodic points of period k of the map given
by (14) is nonempty, at least for k = 2 and possibly k = 3. In fact, P1Var =
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{[2:2:-1]} u {[-2:2:-1]}, and using the computer we could approximate
the periodic points of period three. We suspect that in general 71V, g += @ for all
k=3

Remark 4.20. Before continuing, let us observe that the map (14) is not
birational, in fact it is easy to show that generically it is 2 to 1.

As we showed in Proposition 4.19, the points on the line (z = 0) converge
under iteration to the point [0 : 0 : 1]. We study next the dynamics of R on
U=(z=1)\ (R *®(po) Uk=2 P1Vr UFixg). On U, we can write R as follows:
R[1:w:t]=[1l:w+1/t:t+w]ie.,

(15) (w, ) R <w+%, t+w>.

Proposition 4.21. The m-th iterate of the map (15) is given by,

with wg = w, tg = t, and where wy,, = wo + 1/to +1/t1 +1/tr + - - - + 1/tm—1,
and t,, = to+wo + w1+ -+ - + Win_1.

Proof. It follows by induction on m. O
The following proposition proves Theorem (4.16).

Proposition 4.22. The m-th iterate of the map (15) behaves as follows:
R™1:w:t]—-[0:0:1] asm — oo,

uniformly on compact subsets of the openset V := {(w, t) € C2 | Re (w)Re (t) > 0}.
The proof of this Proposition will be given after the proof of Lemma (4.25).

Remark 4.23.

1. We will show that the convergence is uniformly tangential to the w-axis and
uniform on compact subsets W c V of the form W := {(w,t) € C? | w €
B,,t € B,}, where, forb,c e R*\ {0}, B, =A, n{zeC|0<b <
Re(z) <cc<w}cCand A; := {z:|Im(2)| < aRe(z), Re(z) > 0},
a > 0.

2. Observethat A_ ;= {z: |[Im(z)| < alRe(z)], Re(z) <0}, a > 0 and for
b1,c1 €R\{0},B_:=A_n{zeC| -0 <by<Re(z) <c1 <0} cC
This case is similar to the case described in (1), because of the symmetry
R(—w,—-t) = —R(w, t).
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Let K ¢ V be a compact. We can write K as follows:
(17 K:=K,UK_,

where K, :=KnV,,K_:=KnV_,V, = {(w,t) € C| Re(w) >0, Re(t) > 0},
and V_ := {(w,t) € C| Re(w) < 0, Re(t) < 0}. Since V, and V_ are open,
there exist U, and U_, open sets, such that K, c U, and K_ c U-_.

Let us define

(18) U:=U,uU_,

and A R A

(19) U+ : B+ X B+,

where

(20) B.:=A.,Nn{zeC|0<b<Re(2)].

~

Similarly, B_ := A_ n{zeC|Re(z) <c1 <0} and U.:=B_xB_.
We will define U := U+ U U
Observe that U ¢ U, U, c Us, B, ¢ B., B_ c B_, U_ c U_, since b and ¢;
are arbitrarily chosen.

Lemma 4.24. The sets U, and U_ are forward invariant, i.., R(U,) c U,
and R(U-) c U_.

Proof. We only will prove the lemma for U., since the proof for U_ is similar.
Let us take (w,t) € U,. By (19), w € B, and t € B,, and by (20), w, t € A,.
Now from (1) in Remark (4.23), t = rexp(if@) € Ay, i.e.,

1 1 _exp(= i0)
t rexp(le) r

€A,

It is easy to see that w, t € A, impliesw +t € A,. Therefore (w,t) € Ay =
Rw,t) = (w+1/t,t+w) € A,.
Also, since Re (w +1/t) > Re(w) > b > 0andRe (w +t) >Re(t) > b >0
sow + 1/t, t + w € By, it follows that, for all (w,t) € Uy, R(w,t) € U,.
Therefore, U, is forward invariant. O

The following is immediate.
Lemma 4.25. On B,, the following inequalities are satisfied:

1.0<b<Re(z) <|z| <kRe(z), forsome k € R\ {0},
2. 1Im(z2)] < aRe(z).
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Im(2)

ﬁl Tt C/Re(z)

FIG 1. Regions A,, A_, B,, B_, B,, B_

Proof of Proposition 4.22.

Let us take K c V, K compact, V given as in Proposition(4.22). We will show
uniform convergence on U, given by (18). Let us take a point pg = (wo, tp) € V.
Without loss of generality, Re (wo) > 0 and Re (tg) > 0. Let us take a set B as
described in Remark (4.23)-1, such that (wo, to) € By X By Cc Uy and pg € U,
implies po € U, so that, from Lemma (4.24), R™(po) := pm € Us, SO pm =
(W, tm) € Us, and the inequalities in Lemma (4.25) are satisfied.

By Proposition (4.21) and from the fact that Re (¢;) > 0 implies Re (1/¢;) >
0, we have:

1

(22) Re(wm)=Re(wo+£+---+—)zb, forall m € N.
to bn-1

Again by Proposition (4.21) and (21)

(22) Re (tm) =Re(tg + wo + - - - + wm—1) = mb, forall m e N.
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Using the fact that Re (z) < |z|, by Proposition (4.21) and (22) we have:

1 1
Re (W) < |[wm| < lwol + — + -+ - + _
Itol [tm-1]

From Lemma (4.25), (22), and the fact that (wp, to) € U,,

Re (W) < do + 1 1 :e+1|nm,

Re(to) " Re(tm 1) b
where dg = |wg| and e = dg + 1/b. So there exists m, € N such that Re (w,;,) <
Inm + 1/bInm for all m = mq. Therefore,

(23) Re (W) < <1+%)Inm=glnm for all m = m,

withg =1+1/b.

Now let us use Proposition (4.21) and (23) to get Re (t;y) < e1 + glnl +
glin2+ ... +gln(m - 1), where e; = Re(tp) + Re (wg), 0 Re (t),) < e1 +
g(Ji" Inx dx) < e; + gmInm. There exists m, € N such that

(24) Re(tm) < L+gminm =eymlInm forall m = mo,
withe, =1+ g.
From Proposition (4.21) and (24)
1 1 1
(29)Re (wm) = b+Re (?o) - (eglnl) oot ((m— LyesIn(m — 1))
B Intm-1)
B In( In2 ) '

From (22)-(25) we get the following estimates:

(26) |n('”(’r;72‘1)) < Re(wy) <glnm,

27 mb

IA

Re (t;,) < eom Inm.

Now Lemma (4.25) together with equations (26) and (27) imply |t,,,| = Re (t;,) =
mb and |w,, | < kRe (wy,) < kglnm, for some k € R™ \ {0}.

So since po = (wo, tg) € U, there exist constants b > 0 and h := gk > 0
(depending on the compact set U) such that, for all m > max{m1, my}, we have
[t = mb and |lwyy,| < hinm.
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Hence R™[1: wq : to]l = [1/tm : Wi /tm : 1]. Therefore R™[1: wyq : to] —
[0:0:1]as m — oo, Since

1 _ 1 g ag [wml_hinm

— < < -0 asm — .
ltm| — mb [tm| bm

Let us observe that the convergence is tangential, i.e., (1/tm, Wm/tm) —
(0,0) in €% = (z = 1) and the slope wy, /t2, = wy > In(IN(m - 1)/In2) — o,
so the slope goes to infinity, i.e., the points converge to [0 : 0 : 1] tangentially to
the fixed point. O

We give now an example of a birational B-Fibonacci map of P2.

Theorem 4.26. The family of B-Fibonacci maps of P2 with only one degree
lowering variety is non-empty. In fact,

(28) R:P?—~P? via [z:w:t]~[wt: wz:t?]

is a Fibonacci map.
In addition, if U c (t = 1) is an open set where the iteration of R is well defined,
then we will have the following behavior of R under iteration, here A = (1 + /5)/2.
If lwAz] <1, R™[z:w:1]-[0:0:1]asm — oo,
If lwz|>1,R"[z:w:1]-[0:1:0]asm — o,
If |wz| =1, then R is chaotic.

We give now some important dynamical features of this map.
1. Fixg ={[0:0:11} u{[1:1:1]}.

2.7k ={[1:0:0]}u{[0:1:07}.

3. R(w =0) =[0:0:1] € Fixg.

4, R(t=0)=[0:1:0] € 7.

Remark 4.27.
1. The point [1: 0: 0] € 7 has no preimages.
2. w? is multi-valued, however we are only interested in [w|?.

Proposition 4.28. The formula in C3 for the m-th iterate, m > 2 of the map
given by equation (28) is given as follows:

(29) Rm(z,w’ t) = t‘x(m) (wcm—lzcm—ZtCm—l , owZCm—l , tCm+1),
where
(30) ax(m) =2x(m —1) + Cy—2,

with x(1) =0, ®(2) = 1, and {Cy,} the Fibonacci sequence.
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Proof. Use induction. |

Before we study the dynamics of this map on P2 \ 7, we will study its dy-
namics near the points of indeterminacy.

Proposition 4.29. The blow up of the point of indeterminacy [0 : 1 : O] of
the map R, given by (28), is the curve (t = 0), and the blow up of the point of
indeterminacy [1 : O : O] of the same map R is the curve (z = 0).

Proof. Similar to the proof of Proposition (4.6). O

We will study next the dynamics of R near the fixed points [0 : 0 : 1] and
[1:1:1]. By looking at the eigenvalues of this map in the plane (t = 1), we
realize that [0 : 0: 1] is an attractive fixed pointand [1:1: 1] is a saddle.

Remark 4.30. Let us observe that the set 21V, g of periodic points of pe-
riod m of R is nonempty. In fact, in (¢t = 1), (29) can be written in C? as:
R™(z,w) = (zCm2wCm1, zCm-199Cm)  So if m is odd, finding the periodic
points of period m of R is equivalent to looking for the (Cy, + C—2)-th roots of
unity. If m is even, we will be looking for the (Cy, + Cin—2 — 2)-th roots of unity.

We study next the dynamics of R on
Bl) U=@=1 = P2\ ({(t=0)}uU{[1:0:01}u{[0:1:0]}
UPIVing U lw =0} Ui{(z=0)}).

The following proposition proves the last statement of Theorem (4.26).

Proposition 4.31. Forevery (z,w) € U, U given as in (31)
If lwAz| < 1, then

(32) R™[z:w:1]-[0:0:1].
If lwiz| > 1, then
(33) R"[z:w:1]-1[0:1:0].

If lwAz| = 1, then R is chaotic.

Proof. In (29) we established the general formula for the m-th iterate of R.
Now, since we are studying the iteration of R in U, we can write (29) in (t = 1)
as follows:

(34) R™z:w 1] = [2Cm1wCm : zCnqpCmei ;1]
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Let us prove the assertion in (32). Observe that (34) can be written as:
(35) R™z w1 1] = [(zwCm/Cm-1)Cmt (29 Cmea/Cn)Cm - 1],
Since limy—. o (Cin / Cim—1) = A,

(36) nLig]w Am = nLian zwEm/Cm1 =z

where A = (1 + /5)/2.

Now, by hypothesis |zw?| < 1, then by (36) there exists mq € N such that,
for all m > mo, |gm!| < c < 1,50 liMy o |@m|Cmt < limy, .o cCm-1,

Since ¢ < 1 and lim;;— e Cm—1 = o, We have

; Cm- ; Cm1 _
(37) Osrylnmlqml 1<71L|£nmc 1 =0.

Therefore by (37) and (35), R™*[z:w :t] - [0:0:1]asm — oo.
We prove next the assertion in (33). We write (34) as:

. . 1 . . 1
(38) Rm+l[z LW 1] = [(szm-i/Cm—z)Cm-z ’ 1 ’ (Zow+1/Cm)Cm:| ’

Let us observe that

(39) liM gm-1:= lim zwCnm1/Cn2 = zp2
mM— o m— oo

where A = (1 + /5)/2, as before.
Since by hypothesis [wz| > 1, by (39) there exists m; € N such that, for
all m > my, 11/qm-1] < c1 < 1,50 liMpo|1/@m-1/m2 < ™2 < 1. Since

c1 < 1and limy,— e G = o0, We have

Cm-2

< lim ¢fm2 = 0.
m— oo

(40) 0 < lim

m— oo

dm-1

Therefore, by (40) and (38), R"™*'[z :w :t] - [0:1:0] asm — oo.

It remains only to prove the last assertion in Proposition (4.31). Let us con-
sider now the case [zw?| = 1. In (t = 1), we will define = := {(z,w) € C?:
lzw?| =1}, ie., == {(11exp(i0),12exp(i®)) | r17r5 =1, 0< 0, ® < 21},

If 2 =X,

(41) S = {(xexp(i@), xexp(i®)) | x € R*, 0 < 0, & < 21}

Lemma 4.32. The set X is R invariant.
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Proof. Let (z,w) € 3.

In (t = 1), (28) can be written as R(z,w) = (w,zw), 0 |w(zw)?| =
|Zw(7\+1)/7\|2\_

Since (A+1)/A = A, we have |w (zw)?| = |zw?| = 1 as we wanted to prove.
So X is R invariant. O

We can think of R|s : Rt x (§1 x §1) — R* x (51 x §1) as

(42) Rls = (falrs X gowlsixsy),

where

(43) fAiRY - RY via x — x174,

and

(44) oo . (ST x 81 — (ST x §1) via (0,®) — (@,0 + @).

Remark 4.33. By (34) and (41)

(45) fi(x) = xCm=ACma
and by (43)
(46) fhx) = xV7,

So by (45) and (46)
1-nm

Dynamics on R*. The fixed points of £, are the points such that x1-* = x,
i.e., the points that satisfy x~* = 1, therefore x = 1. Since f;(1) = 1-A < 1, the
fixed point x = 1 is attracting. Note that this could also be seen from (46) since
liMy— oo 1) = liMyy o x D™ = 1,

So, all the points in = will converge under iteration of R (given as in (42))
to the R2-torus sitting at x = 1. Now by looking at (44) we get the eigenvalues
x1 = (1+5)/2and x, = (1 — /5)/2. Since it is a well known fact that a map
on the torus with these eigenvalues is chaotic, our map R|s given as in (42) will
be chaotic, as we wanted to prove. O

Remark 4.34. Let us observe that the set {[z : w : 1] : |zw?| > 1}, and the
curve (t = 0) converge under iteration to the point [0: 1: 0].
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5. B-MAPS OF C3

In this section we show that there are only a finite number of sequences of
degrees of iterates for the polynomial automorphisms of €2 of degree 2. We base
our work in the following theorem of Fornass and Wu.

Theorem 5.1. (see [5]) If H : C® — 3 is a degree at most 2 polynomial self-
map with nowhere vanishing Jacobian determinant, then H is afznely conjugate to
one of the following maps:

1. An affine automorphism;
2. An elementary polynomial automorphism

E={E(x,y,z) = (P(y,z2)+ax,Q(z)+by ,cz+p)},

where P is a polynomial of y, z of degree at most 2, Q is a polynomial of z of
degree at most 2 and abc + 0. Note that E(x, y,z) maps every hyperplane
z = k to a hyperplane z = k’ and maps every line y = k1, z = ky to a line
Y =ki,z=ky,

3. One of the following:

Hy = {Hi(x,y,z) = (P(x,z)+ay,Q(z2)+x,cz+p)},
Hy = {Hx(x,y,z) = (P(y,z)+ax,Q(y)+bz,y)},
Hz = {H3(x,y,z) = (P(x,2)+ay,Q(x)+z,x)},
Hy = {Hs(x,y,z) = (P(x,y)+az,Q(y)+x,))},
Hs = {Hs(x,y,z) = (P(x,y)+az,Q(x)+by , x)},

where P and Q are polynomials with max{deg(P),deg(Q)} = 2 and abc *
0.

The m-th iterate of H, H™ (z, w, t) will be given by
H™(x,y,2) = (Him(x,¥,2) , Hom(x,¥,2) , Hym(x,y,2)),
where H; , j € {1,2,3} denotes the j-th coordinate function of H™ in C3.
Definition 5.2. deg H™ = max;-123{deg Hjm(x,¥y,2)}.
Proposition 5.3. H; is a family of “A-maps. In fact, let
Hy(x,y,z) = (dy?+ez’+ fyz+gy+hz+j+ax , vy’ +sy+t+bz, y).

Then

1. deg HY" (x,y,z) = 2™ for all m € N, if and only if » = O,
2. deg H"(x,v,z) = 2forall m € N, if and only if » = 0.
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Proof. The proof of each item follows by induction on m. O

Proposition 5.4. Let Hy € 1,

2

Hy(x,y,z) = (dx2+e22+fxz+gx+hz+j+ay ,¥Z°+sz+t+x ,cz+p).

Then

1. deg H{"(x,y,z) =2forallm e N, ifand only ifd = 0, f = 0, and e and
¥ do not vanish at the same time,

2. deg H{"(x,v,z) =2™forall m € N, ifand only if d = 0,

3. Hi(x,y,z) is B-linear ifand only if d = 0 and f # 0.

Proof. It follows by induction on m. O

We recall that the Fibonacci sequence {Cy,} satisfy the relationship
Cm+2=Cm+1+Cm, meNuU {0},

with Co =1 = (3.

Definition 5.5. A B-map will be called flashing if the degrees of its iterates, d,
grow every second time, i.e.,

dom = 2™ m=1

dom1 = 2™, m=1
Proposition 5.6. Let Hs € H3,
Hi(dx?+ez?+fxz+gx+hz+j+ay , rx?+sx+t+z, x).

Then

1. deg H"(x,y,z) =2™ forall m e N, ifand only if 4 = O,

2. deg HY" (x,y,z) = Cpy1 forallm e N, ifandonlyifd =0, f 0, v =0,

3. deg H*(x,v,z) = 2Cp, forall m € N, ifand only if d = 0, f + 0, and
r +0,

4. deg H3z(x,y,z) is a flashing map if and only if 4 = 0, f = 0, and e and r
do not vanish at the same time.

Proof. Induction on m. O
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Proposition 5.7. Let Hy € Hy,
Hu(x,y,2) = (Ax?+ey’+ fxy+gx+hy+j+az , vy’ +sy+t+x, ).

Then

1. deg Hy'(x,y,z) = 2™ for all m € N, if and only if 4 and » do not vanish
at the same time,
2. deg H}*(x,y,2z) = Cms1 forall m e N, ifand only if 4 = 0, » = 0, and

f#0,
3. The map Hy(x, y, z) is flashing if and only if 4 = 0, f = 0, » = 0, and
e+ 0.
Proof. It follows by induction on m. O

Proposition 5.8. Let Hs € 7,
Hs(x,V,z) = (Ax°+ey?+fxy+gx+hy+j+az , rx’+sx+t+by , x).

Then

1. deg H"(x,y,z) =2 forall m € N, ifand only if d = 0, f = 0, and one of
the following two conditions holds:
@ e=0,r=0,ands =0,
(b) »«0,e=0,and h = 0.

2. deg HZ"(x,y,z) = 2™ for all m € N, if and only if one of the following two
conditions holds:
(@ d =0,
(b) d =0, 7 = 0and e and f does not vanish at the same time.

3. Hs(x,y,z) isB-linearifand onlyif d =0, =0, s =0, and f = 0.

4. deg H" (x,y,z) = Cmyr forallm e N, ifandonlyifd =0, =0, s = 0,
and f + 0.

5. Hs(x,y,z) is flashing if and only if 4 = 0, f = 0 and one of the following
two conditions holds:
@ r=+0,e=0,and h =0,
(b) e+=0,r=0,and s = 0.

Proof. It follows by induction on m. O

Definition 5.9. A B-map will be called basic if after high enough iterates its
degree remains constant.
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Proposition 5.10. LetFE € E,
E(x,v,z) = (Ay*+ez’+fyz+gy+hz+j+ax ,vz?+sz+t+by ,cz+p).

Then,

1. deg E™(x,y,z) = 2 for all m € N, if and only if one of the following two
conditions holds:
(@) d and r are not différent from zero at the same time,
(b) d =0, and f and » are not diffrent from zero at the same time.
2. deg E™(x,y,z) =3forallm e N, ifandonlyifd =0, f = 0, and » = 0.
3. deg E™(x,y,z) =4forallm e N, ifand only if 4 + 0 and » + 0.

Proof. It follows by induction on m. O

As we have seen in this section, the only possibilities for the B-maps of C2 of
degree two are to be linear, Fibonacci, flashing, or basic.
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