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ABSTRACT. We investigate maps on P2 and C3 for which the
algebraic degrees of the iterates, dm, are not constant nor grow
like dm. These maps are called B-maps. Answering a question
posed by Ghys, we will show here that there are only countably
many sequences {dm} of natural numbers for which there exists
a rational map f on P2 with deg fm = dm, for all m ∈ N.
We show here also that there are indeed infinitely many possible
sequences {dm} with d1 > 2.

.1 INTRODUCTION

Friedland and Milnor ([6]) divided the polynomial automorphisms of C2 into
two families: the elementary maps, consisting of maps for which the degree of the
iterates remain constant; the other family, the Hénon maps, formed by maps for
which the degree of the m-th iterate is dm, where d is the degree of the map.
Bonifant ([1]) found to the contrary several rational maps on P2 for which the
degrees of the iterates grow differently from the elementary maps and the Hénon
maps. The problem remained whether the set of possible sequences {dm} of
degrees of iterates was uncountable. Ghys pointed out to one of the authors that
he thought this set should be countable.

The objective of this paper is to show that indeed the set of sequences {dm}
of natural numbers for which there exists a rational self map f of P2 such that
deg fm = dm is countable. We also show that there are infinitely many possibil-
ities for the sequence of degrees of iterates of rational self maps of P2. Based in a
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result of Fornæss and Wu ([5]), we show that the number of sequences of degrees
of iterates of degree 2 polynomial automorphisms of C3 is finite.

To simplify notation we call A-maps, those rational self maps of Pn or those
polynomial automorphisms of Cn, that behave under iteration either like elemen-
tary maps or Hénon maps of C2. The complement of theA-maps are theB-maps.
We give here the complete list ofA andB-maps of the polynomial automorphisms
of C3 of degree 2. The B-maps are classified as follows,

B-linear, if the growth of the degree of its iterates is non constant and affine.
B-Fibonacci, if the growth of the degree of its iterates follows a d-Fibonacci

sequence, {dCm}, i.e., a multiple of the Fibonacci sequence.
B-flashing, if the degrees of its iterates grow every second time.
Basic-B-maps, if after high enough iterates its degree remains constant.

We finish this paper showing that in P2 the sets of linear and Fibonacci B-
maps are also not empty. We study the dynamical features of two examples of
such maps. At least in the Fibonacci case, one of the maps whose dynamics is
studied here, is not birational. In both, the B-linear and B-Fibonacci cases, we
give examples of maps with a finite and an infinite number of degree lowering
curves.

.2 BASIC FACTS

In this section we will give some definitions and prove some propositions that
will form the basis of our work. We start with the set up for rational maps on Pn.

Since Cn ⊂ Pn, every point (x1, . . . xn) of Cn will be represented by [x1 :
· · · : xn : 1] as an element of Pn. Conversely, a point [ζ1 : · · · : ζn+1] ∈ Pn

with ζn+1 ≠ 0 corresponds to the point (ζ1/ζn+1, . . . , ζn/ζn+1) ∈ Cn. Points
of the complementary set, i.e., those points for which ζn+1 = 0, are the points at
infinity. This illustrates the fact that Pn contains n + 1 copies Cn

j , of Cn. Each
one of the Cn

j is given by ζj ≠ 0, j = 1, . . . , n+ 1.
Let us consider now rational functions from Cn

j to C. From above, tak-
ing xk = ζk/ζn+1 for all k, 1 ≤ k ≤ n and clearing denominators, we can
rewrite a rational function ρ = p(x1, . . . , xn)/q(x1, . . . , xn) on Cn

j in the form
P(ζ1, . . . , ζn+1)/Q(ζ1, . . . , ζn+1), where P and Q are homogeneous polynomi-
als of the same degree. Hence, its value at a point (ζ1, . . . , ζn+1) does not change
if we multiply the homogeneous coordinates by a common multiple, and ρ can
be viewed then as a function on Pn+1.

Let R : Cn
j → Cn

j for some j, j = 1, . . . , n + 1 be a rational map, de-
fined by (x1, . . . , xn)� (u1(x1, . . . , xn), . . . , un(x1, . . . , xn)). We first rewrite
each coordinate function uj(x1, . . . , xn), for all j, j = 1, . . . , n in the form



Growth of Degree for Iterates of Rational Maps in Several Variables 753

Uj(ζ1, . . . , ζn+1)/Vj(ζ1, . . . , ζn+1), where Uj , Vj are homogeneous polynomi-
als with deg Uj = deg Vj for all j, j = 1, . . . , n. Next we put all the com-
ponents of R over a common denominator, i.e., in the form (A1/C, . . . , An/C),
with deg A1 = · · · = deg An = deg C. Finally, introducing homogeneous coor-
dinates ζ′j/ζ

′
n+1 = Aj/C for all j, j = 1, . . . , n, we rewrite R as follows,

(ζ1, . . . , ζn+1)� [A1(ζ1, . . . , ζn+1) : · · · : An+1(ζ1, . . . , ζn+1)],

where Aj for all j, j = 1, . . . , n + 1 are homogeneous polynomials of the same
degree. Now R is a rational self-map of Pn.

Since we are interested in studying the growth under iteration of the algebraic
degree of an homogeneous self map of Pn, we need to cancel all common factors.

Definition 2.1. The algebraic degree d of any homogeneous map

R : Pn → Pn via [z0 : · · · : zn]� [Q0(z0, . . . , zn) : · · · : Qn(z0, . . . , zn)]

is defined to be the common degree of Qj for all j = 0, . . . , n after cancellation
of all common factors.

Since the self maps of Pn with algebraic degree 1 do not have interesting
dynamical properties, we will assume from now on that d ≥ 2.

Definition 2.2. The subset of rational self-maps of Pn for which the se-
quences {dm}, of algebraic degrees of iterates remain constant or grow like dm,
will be called A-maps. The complement of the A-maps, i.e., the set of rational
self-maps of Pn with the property that the algebraic degree of their iterates dm,
does not grow like dm or remains equal to the constant d under iteration, will be
called B-maps.

In P2, elementary and generic meromorphic maps are examples of A-maps.
In C2, shears and Hénon maps are examples of these kind of maps.

Definition 2.3. Let FixR be the set of fixed points of R,

FixR = {[z0 : · · · : zn] ∈ Pn | Qj(z0, . . . , zn) = λzj

for all j, 0 ≤ j ≤ n, λ ∈ C \ {0}}.

Definition 2.4. Let IR be the set of indeterminacy of R,

IR = {[z0 : · · · : zn] ∈ Pn | Q0(z0, . . . , zn) = · · · = Qn(z0, . . . zn) = 0}.
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Definition 2.5. An irreducible algebraic varietyVj �⊂ IR of dimension dimVj

≥ 1 is R-constant if R takes a constant value on Vj \ IR, say R(Vj \ IR) = pj for
some pj ∈ Pn. We denote by VR =

⋃
jVj the union of all such maximal irre-

ducible compact complex varieties Vj on each of which R has a constant value.

We observe that the union of all such maximal irreducible compact R-constant
complex varieties Vj is not necessarily finite, nor even countable.

Proposition 2.6. If VR ≠ ∅, then also IR ≠ ∅. In fact, each irreducible
branch Vj of VR must intersect IR. It can happen that VR = ∅, while IR ≠ ∅ (see
[3], Proposition 1.2).

Definition 2.7. For a given point p ∈ Pn, a point q is said to be a preimage
of p if R is defined at q, i.e., q �∈ IR, and R(q) = p. We will denote the set of
preimages of p as R−1(p).

Proposition 2.8. Let R : Pn → Pn be a rational map of degree d. Assume
that IR ≠ ∅ but is finite, and assume also that R is of maximal rank n. Then for
any a = [a0 : · · · : an] ∈ Pn, which is not the image of an R-constant variety,
R−1(a) ⊂ Pn \ IR, cardR−1(a) = d′ < dn. Here we count the number of points
with multiplicity.

Proof. Let us consider the map Cn+2 → Cn+1 such that (z0, . . . , zn, t) =
(z, t)� R(z)− atd, where

R(z)− atd = [P0(z0, . . . , zn) : · · · : Pn(z0, . . . , zn)]− [a0td : · · · : antd].

So, we have n+ 1 polynomials in Pn.
Let us take t = 1, by hypothesis we are assuming that there is no positive

dimensional variety V , V ⊂ Pn \ IR, such that R(V ) = a. Then the number of
zeroes of R(z) − atd, when t = 1, is finite in Pn. So, by Bezout’s theorem, the
number of zeroes of R(z)−atd will be dn+1, counting multiplicity. By hypothesis
IR ≠∅ and finite, so for p ∈ IR, [p : 0] is a zero of multiplicity at least d. Hence
the number of zeroes of R(z) − atd when t = 1 is less than dn. Since rotation
of t by a d-th root of unity produces an equivalent solution in Pn, we get that
d′ < dn. ❐

Definition 2.9. An irreducible varietyVj of codimension 1,Vj ⊂ Pn, is said
to be a degree lowering variety if, for some (smallest) n = nj ≥ 1, Rn(Vj) ⊂ IR.

In this paper we will discuss the growth of the degrees of the iterates of self-
maps R of Pn with degree lowering varieties. When there is a degree lowering
variety V| = {hj = 0}, all the components of the iterates of Rmj+1 vanish on it.
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Hence one needs to factor out a power of hj in order to describe the map properly.
Hence the degree of the iterate will drop below dmj+1.

.3 THE GHYS QUESTION

We show first in this section that there are at most countably many sequences
{dm} of natural numbers, for which there exists a rational self map R of Pn whose
degree under iteration satisfies that deg Rm = dm, for all m ∈ N. Conversely, we
show after that there are infinitely many possibilities for the sequence of degrees
of iterates.

Let R(z0, . . . , zn) be a homogeneous polynomial of degree d. Then R is
a finite sum of terms ci0,i1,... ,inz

i0
0 zi1

1 . . . , zin
n , where i0 ranges from 0 to d and,

for a given i0, i1 ranges from 0 to d − i0. And in general for given i0, i1, . . . ,
ik−1, ik ranges from 0 to d − (i0 + i1 + · · · + ik−1), 0 ≤ k ≤ n. Then in is
finally determined and the number of coefficients C of R is given by ( d+n

n ) =
(d+ 1) · · · (d+n)/n!.

Let

Hd = {R = [P0 : · · · : Pn] | Pi is a homogeneous polynomial in Cn+1,

deg Pi = d, 0 ≤ i ≤ n} \ {[0 : · · · : 0]}.

We can identify Hd with the list of coefficients C. Then Hd is given by a set
of (n + 1)( d+n

n ) coefficients C. Moreover we only consider C ≠ 0, and if we
multiply all the coefficients with the same complex non zero number, we get the
same map on Hd. In other words, Hd = P((Vn+1

d )n+1) where Vn+1
d is the set

of homogeneous polynomials in Cn+1 of degree d, dimVn+1
d = ( d+n

n ) and hence
dimHd = r(d) = (n+ 1)( d+n

n )− 1.
Let X = {R ∈Hd | rankR < n}.

Proposition 3.1. X ⊂Hd is a closed analytic subvariety.

Proof. Let R be a map of degree d with coefficients in X. Let f(z0, . . . , zn) be
the Jacobian determinant of its lifting in Cn+1, f(z0, . . . , zn) is a polynomial map
of degree (n + 1)(d − 1). Since by hypothesis rankR < n, f(z0, . . . , zn) must
be equal to zero. Now, each of the coefficients of f(z0, . . . , zn) is a homogeneous
polynomial in C, therefore its common zero set X is a closed analytic subvariety of
Hd. ❐

Now, let Pd denote the projective space of all homogeneous, not identically
zero, polynomials of Cn+1 of degree d, dimPd = s(d) = ( d+n

n )− 1.



756 A. M. BONIFANT & J. E. FORNÆSS

Let p, q be strictly positive integers. We define the canonical maps

Φp,q : Pd ×Hq →Hq+p via (A, [P0 : P1 : P2])� [AP0 : AP1 : AP2].

Let Zp,q denote the irreducible image of Φp,q.
For any k, d − 1 ≥ k ≥ 1, let Zd,k = ⋃(≤k Zd−(,( be those maps in Hd of

degree at most k; we set Zd,d = Hd. Then all the Zd,k are closed analytic subsets
of Hd and Zd,1 ⊂ Zd,2 · · · ⊂ Zd,d. We say that the maps in Zd

k := Zd,k \ Zd,k−1

have (reduced) degree k. Then the Zd
k stratify the space Hd.

For every strictly positive integer m, we consider the holomorphic map

Ψd,m : Hd \X →Hdm via F � Fm.

This induces a stratification of Hd \ X given by Wd,m
k := Ψ−1

d,m(Zdm

k ). The

Wd,m
k are closed analytic subsets of Hd \ (X ∪(<k Wd,m

( ) and consists of those
maps for which the degree of the mth iterate is exactly k.

Next we combine these stratifications ofHd\X inductively. Let jWd,1 denote
the irreducible components of the {Wd,1

( }. Let us assume next that we have a
countable sequence of irreducible varieties jWd,m stratifying Hd \X. We assume
moreover that on each jWd,m, g, h ∈ jWd,m implies that deg gk = deg hk, for
all k ≤m.

We stratify each jWd,m into pieces jWd,m ∩ Wd,m+1
k . Listing all the irre-

ducible components of all these we obtain the sequence {jWd,m+1}.
We have shown:

Theorem 3.2. There exists for each m a countable sequence of disjoint irre-
ducible varieties jWd,m, such that Hd \X = ⋃ jWd,m.

If h, g ∈ jWd,m, then deg hk = deg gk for all k ≤ m. Moreover, each
(Wd,m+1 ⊂ j(()Wd,m for some j((). Furthermore, either (Wd,m+1 is a dense given
set in j(()Wd,m, or dim (Wd,m+1 < dim j(()Wd,m.

We will show now that there are only countable many sequences {dm} ⊂ N
for which there exists a rational map R of degree d on Hd for which deg Rm =
dm.

Let S denote the collection of all s = {Wm} = {jmWd,m}∞m=1, where
jm+1Wd,m+1 ⊂ jmWd,m as in the theorem. If h is any map of degree d, then
h belongs to

⋂
m jmWd,m for some sequence s. We say that h ∈ s for short. Also

note that if h, g ∈ s, then deg hk = deg gk for all k. Hence we only need to
show that the set S is countable. For each s = {Wm} let λ = {λm} be the se-
quence of dimensions, λm = dimWm. Then (m+ 1)(d+ 1) · · · (d+m)/m! ≥
λ1 ≥ λ2 ≥ · · · ≥ λm ≥ · · · ≥ 0. Observe that, for each s = {Wm}, there is a
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smallest integer m = m(s) for which λm = λm+1 = · · · . Let s̃ = {Wj}j≤m(s)

to count the number of possible growth of degrees of iterates we only need to
consider {λ1, . . . , λm(s)}. But these are contained in

⋃
m≥1

{0,1, . . . , (m+ 1)(d+ 1) · · · (d+m)/m!}m,

which is a countable set. ❐

We will prove next that there are infinitely many possibilities for the growth
of the degree of the iterates of a rational map F of degree d, d ≥ 2, in P2.

Proposition 3.3. Let us consider the map F : P2 → P2,

[z : w : t] F
�
[
ztd−1 : (wtd−1 + zd) cos

(
π
m

)
− td sin

(
π
m

)

: (wtd−1 + zd) sin
(
π
m

)
+ td cos

(
π
m

)]
.

Then

deg Fk[z : w : t] = dk for all k ≤m, m ∈ N,

deg Fk[z : w : t] < dk for all k ≥m+ 1, m ∈ N.

So, there are infinitely many possibilities for the growth of the degree of a rational self
map of P2.

Proof. Let us observe that F[z : w : t] is a composition of a rotation hw,t,
and a shear R, i.e., F = (hw,t ◦ R)[z : w : t], where

hw,t[z : w : t] =
[
z : w cos

(
π
m

)
− t sin

(
π
m

)
: w sin

(
π
m

)
+ t cos

(
π
m

)]
,

and R[z : w : t] = [ztd−1 : wtd−1 + zd : td], d ≥ 2. We will use the following
dynamical features of R.

1. IR = [0 : 1 : 0] = IF .
2. (t = 0) is the only degree lowering curve of R.
3. (z = 0) is the set of fixed points of R, FixR.
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Since F(t = 0) = [0 : cos(π/m) : sin(π/m)] ∈ (z = 0), and (z = 0) is fixed by
R and invariant under hw,t , we only need to look at hk

w,t(z = 0), for all k ∈ N.
In (z = 0),

hw,t[w : t] =



cos(π/m) − sin(π/m)

sin(π/m) cos(π/m)




w

t




T

=

H


w

t




T

.

Since in (z = 0), ( 1
0 ) is an eigenvector of Hm, i.e., Hm( 1

0 ) = λ( 1
0 ), with λ ≠

0, Fk(t = 0), will hit the point of indeterminacy [0 : 1 : 0] for the first time when
k =m, i.e., in the m-th iterate. In other words, we have Fm(t = 0) = [0 : 1 : 0]
therefore deg Fk[z : w : t] = dk for all k ≤m and deg Fk[z : w : t] < dk for all
k ≥m+ 1.

Since m varies in N, there are infinitely many possibilities for the sequences
of the degrees of iterates of rational self maps of P2 of any degree. ❐

.4 B-MAPS OF P2

In this section we show the existence of B-linear and Fibonacci maps on P2.
Furthermore we study their dynamical behavior.

4.1 B-linear maps. As established in the introduction:

Definition 4.1. A B-map will be called linear, if the growth of the degree of
its iterates is non constant and affine.

Theorem 4.2. The family of B-linear maps of P2 with an infinite number of
degree lowering curves, is non-empty. In fact,

R : P2 → P2 via R[z : w : t]� [zt : z2 + zt +wt : t2 + zt](1)

is such a B-linear map.
In addition, there exists a dense open set U ⊂ P2, where the iteration of R is well

defined, and U satisfies that:

1. U is a parabolic basin, i.e., Rm[z : w : t] → [0 : 1 : 1], as m → ∞. The
convergence is uniform on compact subsets of U , and [0 : 1 : 1] ∈ ∂U .

2. U � Cw × Ct \ (Z− ∪ {0}), in particular, U is not Kobayashi hyperbolic.

Before proving the theorem, we will state the following dynamical features of R.

1. FixR = {[0 : w : 1] | w ∈ C} � C.
2. IR = {[0 : 1 : 0]} = {p0}.
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We observe that R has infinitely many degree lowering curves. In fact, the
degree lowering curves of R are given by the set {(kz + t = 0) | k ∈ N∪ {0}}.

The varieties {(kz+ t = 0) | k ∈ N∪{0}} converge in the Hausdorff metric
of sets as k→∞ to FixR ∪ {p0}, since z = −t/k→ 0 as k→∞.

We define R−∞(p0) := ⋃k≥0(kz + t = 0).
Observe that R−∞(p0) is not a closed set, since it does not contain all its limit

points, namely the set FixR.
Let us define

U := P2 \ FixR ∪
( ⋃

k≥0

{kz + t = 0}
)
.(2)

From what we have seen above, we can write P2 as the disjoint union of three
sets: P2 = FixR � R−∞(p0)�U .

Each one of these sets is forward invariant for R, so we can study the dynamics
on each piece separately.

1. Dynamics on FixR. The Jacobian matrix of the map (1) in (t = 1) is
given by

JR(0,w) =




1
(1+ z)2 0

z2 + 2z + 1−w
(1+ z)2

1
1+ z




(0,w)

=

 1 0

1−w 1


 ,

so the point [0 : 1 : 1] is the only fixed point where the Jacobian is the identity
matrix. We show that in fact this is the only fixed point with an attracting basin.
We are concerned with understanding the local dynamics near the other fixed
points to gain insight into why they do not have a basin of attraction.

Trying to shed some light on this matter we will move an arbitrary fixed point
(0, a) ∈ C2, to the origin under a change of coordinates. We expand R in (t = 1)
in a Taylor series, and obtain:

R(z,w) = (z−z2+z3−z4+· · · , (1−a)z+w+az2−zw+· · · )(3)

If {(zk,wk)}k is an orbit converging to (0,0) then, since the first coordinate of
(3) depends only on z, we use the theory of parabolic dynamics in one dimension
(see [2]) to show that zk → 0 along the positive real axis. In fact, asymptotically,
zk ∼ 1/k. If we next consider the second coordinate, we note that wk+1 ∼
wk + (1− a)zk ∼ wk + (1− a)1/k. Since

∑∞
k=1 1/k is a divergent series, we can

not expect wk → 0. This is what we consider to be the reason that [0 : a : 1] does
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not have an attracting basin for a ≠ 1. We show below that all points on a dense
open set converge under iteration to the point [0 : 1 : 1].

2. Dynamics on R−∞(p0). Let us denote by L−k := {kz + t = 0}, k ∈
N ∪ {0}, L′−k := L−k \ {p0} � C, k ∈ N ∪ {0}. With this notation we can write
R−∞(p0) = {p0} �

(⋃
k≥0 L′−k

)
.

Proposition 4.3. Let R be as in (1). R is biholomorphic on L′−k, k ≥ 1 and
R(L′−k) = L′−(k−1).

Proof. Parametrizing L′−k and computing R : L′−k → L′−(k−1) in this parametri-
zation, we get R[1 : η : −k] = [1 : η + (1 − 1/k) : 1 − k], so R acts as a
translation with respect to these parametrizations of L′−k and L′−(k−1), therefore it
is biholomorphic. ❐

Since we are interested in studying the dynamics of R near its points of inde-
terminacy, we need to define a suitable concept of blow up.

Definition 4.4. Let q ∈ IR and let Bc be the ball of radius c about q. Write
Wc := {R(p) | p ∈ Bc \ IR}. The blow up of q is then the set Wq := ⋂c>oWc .

Remark 4.5. In other words, the blow up Wq of the indeterminacy point q
will be the fiber over q in the closure of the graph of R|P2\IR in P2×P2. With this
convention, q will not be in the preimage of the points in its blow up.

Proposition 4.6. The curve (z = t) is the blow up of the point of indeterminacy,
[0 : 1 : 0] of R, given as in (1).

Proof. Let {zk}k be a sequence such that zk ≠ 0, k ≥ 1, and zk → 0 as
k→∞. Let α ∈ C. For large k, let tk = z2

k/(αzk − 1), k ≥ 1. We have that [zk :
1 : tk] → [0 : 1 : 0], k → ∞, so R[zk : 1 : tk] = [1 : α + 1 : zk/(αzk − 1)+ 1].
Then R[zk : 1 : tk]→ [1 : α+ 1 : 1] as k→∞.

Now let {xk}k be the sequence identically zero, and let {vk}k be a sequence
such that vk ≠ 0, k ≥ 1, and vk → 0 as k→∞.

We have that [xk : 1 : vk] = [0 : 1 : vk]→ [0 : 1 : 0], so R[0 : 1 : vk] = [0 :
1 : vk]. Then R[0 : 1 : vk]→ [0 : 1 : 0]. Therefore the curve

(z = t) = {[1 : α+ 1 : 1] | α ∈ C} ∪ {[0 : 1 : 0]}

is in the blow up of [0 : 1 : 0].
Now we want to show that there are no other points in the blow up of [0 :

1 : 0]. Let us suppose that there is a point q in the blow up of [0 : 1 : 0] such
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that q = [q0 : q1 : q2] �∈ (z = t). Then q0 ≠ q2, and we can suppose that either
q0 = 0 or q0 = 1.

Let us suppose first that q0 = 0, then there exists pk := [zk : 1 : tk] → [0 :
1 : 0] such that qk := R(pk) → q. There exists k0 ∈ N such that t2

k + zktk ≠ 0,
for all k ≥ k0. On one hand, dividing by t2

k + zktk, we get R(pk) → [0 : q1 : 1]
as k →∞. On the other hand, since R(pk) = [zktk : z2

k + zktk + tk : t2
k + zktk],

factoring out t2
k, we get [zk/tk : z2

k/t
2
k + zk/tk + 1/tk : 1+ zk/tk] → [0 : q1 : 1]

as k→∞. Therefore the sequences {zk/tk} and {z2
k/t

2
k+zk/tk+1/tk} converge,

so {1/(tk)} converges. This is impossible, since tk → 0 as k→∞.
The case q0 = 1 is analogous. ❐

3. Dynamics on U . We study next the dynamics of R on U . For this purpose
we are going to consider the plane (z = 1). With this new notation,

U = (z = 1) \
⋃
k≥0

{t = −k} � C2
w,t \

⋃
k≥0

{t = −k}.

The map R now can be written as follows: R[1 : w : t] = [1 : w+1+1/t : t+1],
i.e., (w, t) R

� (w + 1+ 1/t, t + 1). In general,

Rk(w, t) =
(
w + k+ 1

t
+ 1

t + 1
+ · · · + 1

t + (k− 1)
, t + k

)
.(4)

Proposition 4.7. All the points of U converge under iteration to the line P1 �
(z = 0) at infinity, in the following sense:

In P2, for all neighborhoods V of P1 � (z = 0) and for all K compact, K ⊂ U ,
there exists k0 = k0(V ,K) such that, for all k ≥ k0, Rk(K) ⊆ V .

Proof. Without loss of generality, we can assume that

V = (z = 0)∪ (C2
w,t \ B(0, r ))

for some large r ≥ 0. Here C2
w,t is denoting the dependence of C on w and t.

Let us pick a compact set K ⊂ U . By equation (4), every time we iterate we
are translating the set K by one unit in the t-coordinate. Since K is compact, there
exists k0 ∈ N such that, for all k ≥ k0, Rk(K) ⊆ V . ❐

We use the following standard estimate.

Lemma 4.8. For k = 1, 2, 3, . . .

(a) ln(k+ 1) ≤ 1+ 1
2
+ 1

3
+ · · · + 1

k
≤ 1+ lnk,



762 A. M. BONIFANT & J. E. FORNÆSS

(b) lim
k→∞

1+ 1/2+ 1/3+ · · · + 1/k
lnk

= 1.

Remark 4.9. (b) is usually written as: 1+ 1/2+ 1/3+ · · · + 1/k ∼ lnk.

Let U be as defined in (2), and let R be as defined in (1). The following
proposition completes the proof of Theorem (4.2).

Proposition 4.10.
(a) The open set U is a parabolic basin, i.e., Rk[z : w : t]→ [0 : 1 : 1] as k→∞,

for every [z : w : t] ∈ U . The convergence is uniform on compact subsets of U ,
and [0 : 1 : 1] ∈ ∂U .

(b) U � Cw × Ct \ (Z− ∪ {0}), in particular U is not Kobayashi hyperbolic.

Proof.

(b) By (2) it is clear that U � C×C\(Z−∪{0}). U is not Kobayashi hyperbolic
since it contains C-lines C× {p}, p ∈ C \ Z− ∪ {0}, (see [4]).

(a) Let us consider the compact set K ⊂ U . Pick a point [1 : w : t] ≡ (w, t) ∈
K. By (4),

Rk[1 : w : t] =

 1
t + k

:
w + k+∑k−1

j=0 1/(t + j)
t + k

: 1


 .

It is enough to show that 1/(t + k) → 0 and
(
w + k +∑k−1

j=0 1/(t + j)
)
/

(t + k) → 1 uniformly on K. The fact that 1/(t + k) → 0 uniformly on K
is clear, since t is bounded.
Let us prove next that

w + k+∑k−1
j=0 1/(t + j)

t + k
− 1 → 0

uniformly on K.

∥∥∥∥∥∥
w + k+∑k−1

j=0 1/(t + j)
t + k

− 1

∥∥∥∥∥∥ ≤
‖w − t‖
‖t + k‖ +

∥∥∥∑k−1
j=0 1(t + j)

∥∥∥
‖t + k‖(5)

On K:

‖w − t‖
‖t + k‖ ≤

‖w‖ + ‖t‖
k− ‖t‖ ≤ c1(K)

k− ‖t‖ → 0 as k→∞.(6)
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By (5) and (6), we only need to show that
∥∥∥∑k−1

j=0 1/(t + j)
∥∥∥

‖t + k‖ → 0 as k→∞ on K.

Let us take k0 = sup(w,t)∈K 2‖t‖.

∥∥∥∥
k−1∑
j=0

1
t + j

∥∥∥∥ ≤
k0−1∑
j=0

∥∥∥∥∥ 1
t + j

∥∥∥∥∥+
k−1∑
j=k0

∥∥∥∥∥ 1
t + j

∥∥∥∥∥ .(7)

Now,

1
‖t + j‖ ≤

1
j − ‖t‖ ≤

1
1
2j
= 2

j
, for all j ≥ 2‖t‖.(8)

So, by (7) and (8)

∥∥∥∥
k−1∑
j=0

1
t + j

∥∥∥∥ ≤
k0−1∑
j=0

∥∥∥∥∥ 1
t + j

∥∥∥∥∥+
k−1∑
j=k0

2
j
,

and hence, from Lemma 4.8,

∥∥∥∥
k−1∑
j=0

1
t + j

∥∥∥∥ ≤ 2(1+ lnk)+ c2(K).(9)

By (8) and (9)
∥∥∥∑k−1

j=0 1/(t + j)
∥∥∥

‖t + k‖ ≤ 4
k
(1+ lnk+ c3(K))→ 0 as k→∞.

Therefore Rk[z : w : t]→ [0 : 1 : 1] as k→∞, uniformly on K. ❐

We give here another example of a B-linear birational map of P2, however in
this case R has only one degree lowering curve.

Theorem 4.11. The family ofB-linear maps of P2 with only one degree lowering
variety is non-empty. In fact,

R : P2 → P2 via R[z : w : t]� [zt : wz : t2](10)

is a B-linear map. In addition,
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If |z| < 1,

Rm[z : w : 1]→ [z : 0 : 1] ∈ FixR as m →∞,

i.e., for all z0 with |z0| < 1, P1
z0
= [z0 : w : 1] satisfies that Rm(P1

z0
) →

[z0 : 0 : 1].

If |z| > 1,

Rm[z : w : 1]→ [0 : 1 : 0] ∈ IR as m →∞.

Before going into the proof of this theorem, we state the following dynamical
features of R

1. FixR = {[z : 0 : 1] | z ∈ C} ∪ {[1 : w : 1] | w ∈ C},
2. IR = {[0 : 1 : 0]} ∪ {[1 : 0 : 0]},
3. R(z = 0) ∈ FixR,
4. (t = 0) is the only degree lowering curve of this map.

Remark 4.12. The point [1 : 0 : 0] ∈ IR has no preimages.

The m-th iterate of the map (10), lifted to C3, is given by the formula

Rm(z,w, t) = tα(m)(ztm, zmw, tm+1),(11)

where α(m) is given by the equation α(m) = 2m − (m+ 1), m ∈ N.
Before we study the dynamics of (10) on P2 \ IR, we will study its dynamics

near the point of indeterminacy [0 : 1 : 0].

Proposition 4.13. The curve (z = 0) is the blow up of the point of indetermi-
nacy, [0 : 1 : 0] of (10).

Proof. Similar to the proof of Proposition (4.6). ❐

Let us study now the dynamics of R in (t = 1). In this C2-plane our map
can be written as R[z : w : 1] = [z : zw : 1], since (11) the m-th iterate of R in
(t = 1) will be given by

Rm[z : w : 1] = [z : zmw : 1].(12)

The following remark completes the proof of Theorem (4.11).

Remark 4.14. Observe that, by (12),
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If |z| < 1

Rm[z : w : 1]→ [z : 0 : 1] ∈ FixR,(13)

i.e., for all z0 with |z0| < 1, P1
z0
= [z0 : w : 1] satisfies that Rm(P1

z0
) →

[z0 : 0 : 1].

If |z| > 1
Rm[z : w : 1]→ [0 : 1 : 0] ∈ IR,

as we wanted to prove.

By looking at the eigenvalues of this map, we conclude that the fixed points
(z,0) are semi-attracting when |z| < 1, and semi-repelling when |z| > 1. In
the case of the point (1,0), which is precisely the point of intersection of the two
lines of fixed points, both eigenvalues are equal to 1. The same thing happens if
z = −1. By (12), in (t = 1) the iterates of (−1,w) will be jumping from w to
−w, depending on whether the iterate that we are considering is even or odd.

Let us consider now those points z with |z| = 1, and 1 ≠ z ≠ −1; then
z = exp(iθ). In this case, by (12),

Rm(z,w) = Rm(exp(iθ), r exp(iΦ)) = (exp(iθ), r exp(i(mθ + Φ))),
so for every θ fixed, 0 < θ < 2π , we will have in the plane P1

exp(iθ) = [exp(iθ) :
r exp(iΦ) : 1], r ∈ R, and 0 ≤ Φ < 2π , essentially a rotation of the points
preserving the modulus of w = r exp(iΦ).

4.2 B-Fibonacci maps. As stated before:

Definition 4.15. A B-map will be called Fibonacci, if the growth of the de-
grees of its iterates follows the Fibonacci sequence {Cm}, or if it follows a d-
Fibonacci sequence, {dCm}, i.e., a multiple of the Fibonacci sequence.

Theorem 4.16. The map

R : P2 → P2 via R[z : w : t]� [zt : wt + z2 : t2 +wt](14)

is a non birational B-Fibonacci map. In addition, there exists an open set U ⊂ P2

where the iteration of R is well defined, and

Rm[z : w : t]→ [0 : 0 : 1] as m →∞.

We give now some dynamical features of this map,
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1. FixR = {[0 : 0 : 1]},
2. IR = {[0 : 1 : 0]} := {p0},
3. R(t = 0) = [0 : 1 : 0].

Remark 4.17. A computer experiment suggests that this map has infinitely many
degree lowering curves.

As before, we denote by R−∞(p0) := {p0} ∪
(⋃

k≥0 R−k(p0)
)
, where p0 is

the point of indeterminacy, V = V0 = (t = 0) is the degree lowering curve, and
R−k(p0) = V−k, k ≥ 1, is denoting the k-th preimage of the degree lowering
curve V = (t = 0).

We will study now the dynamics of R near the point of indeterminacy.

Proposition 4.18. The curve (z = 0) is the blow up of the point of indetermi-
nacy [0 : 1 : 0] of (14).

Proof. Similar to the proof of Proposition (4.6). ❐

Proposition 4.19. The line (z = 0) is fixed. The points on the line (z = 0)
converge to the fixed point [0 : 0 : 1].

Proof. The fact that the line (z = 0) is fixed will follow from the fact that the
formula for the m-th iterate of R in (z = 0) is given by Rm(z = 0) = [0 : w :
t +mw]. This formula can be proved by induction.

Now if w = 0, Rm(z = 0) = [0 : 0 : 1].
If w ≠ 0, t + (m+ 1)w ≠ 0, so dividing by it we have

Rm(z = 0) =
[

0 :
w

t + (m+ 1)w
: 1
]
→ [0 : 0 : 1],

as we wanted to prove. ❐

We will study next the dynamics near the point [0 : 0 : 1]. In (t = 1), the
Jacobian matrix at (0,0) is given by

JR(0,0) =




1
w + 1

− z
(w + 1)2

2z
w + 1

1− z2

(1+w)2




(0,0)

=

1 0

0 1


 .

We show below that an open set of P2 is attracted to this point.
The set, denoted by P%∇k,R, of periodic points of period k of the map given

by (14) is nonempty, at least for k = 2 and possibly k = 3. In fact, P%∇2,R =
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{[2 : 2 : −1]} ∪ {[−2 : 2 : −1]}, and using the computer we could approximate
the periodic points of period three. We suspect that in general P%∇k,R ≠∅ for all
k ≥ 3.

Remark 4.20. Before continuing, let us observe that the map (14) is not
birational, in fact it is easy to show that generically it is 2 to 1.

As we showed in Proposition 4.19, the points on the line (z = 0) converge
under iteration to the point [0 : 0 : 1]. We study next the dynamics of R on
U = (z = 1) \ (R−∞(p0)∪k≥2 P%∇k,R ∪ FixR

)
. On U , we can write R as follows:

R[1 : w : t] = [1 : w + 1/t : t +w], i.e.,

(w, t) R
�
(
w+1

t
, t+w

)
.(15)

Proposition 4.21. The m-th iterate of the map (15) is given by,

Rm(w, t) = Rm(w0, t0) = (wm, tm),(16)

with w0 = w, t0 = t, and where wm = w0 + 1/t0 + 1/t1 + 1/t2 + · · · + 1/tm−1,
and tm = t0 +w0 +w1 + · · · +wm−1.

Proof. It follows by induction on m. ❐

The following proposition proves Theorem (4.16).

Proposition 4.22. The m-th iterate of the map (15) behaves as follows:

Rm[1 : w : t]→ [0 : 0 : 1] as m →∞,

uniformly on compact subsets of the open set V := {(w, t) ∈ C2 | Re (w)Re (t) > 0}.
The proof of this Proposition will be given after the proof of Lemma (4.25).

Remark 4.23.
1. We will show that the convergence is uniformly tangential to the w-axis and

uniform on compact subsets W ⊂ V of the form W := {(w, t) ∈ C2 | w ∈
B+, t ∈ B+}, where, for b, c ∈ R+ \ {0}, B+ := A+ ∩ {z ∈ C | 0 < b ≤
Re (z) ≤ c < ∞} ⊂ C, and A+ := {z : |Im (z)| ≤ aRe (z), Re (z) > 0},
a > 0.

2. Observe that A− := {z : |Im (z)| ≤ a|Re (z)|, Re (z) < 0}, a > 0 and for
b1, c1 ∈ R− \ {0}, B− := A− ∩{z ∈ C | −∞ < b1 ≤ Re (z) ≤ c1 < 0} ⊂ C.
This case is similar to the case described in (1), because of the symmetry
R(−w,−t) = −R(w, t).
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Let K ⊂ V be a compact. We can write K as follows:

K := K+ ∪K−,(17)

where K+ := K∩V+, K− := K∩V−, V+ := {(w, t) ∈ C | Re (w) > 0, Re (t) > 0},
and V− := {(w, t) ∈ C | Re (w) < 0, Re (t) < 0}. Since V+ and V− are open,
there exist U+ and U−, open sets, such that K+ ⊂ U+ and K− ⊂ U−.

Let us define

U := U+ ∪U−,(18)

and
Û+ := B̂+ × B̂+,(19)

where

B̂+ := A+ ∩ {z ∈ C | 0 < b ≤ Re (z)}.(20)

Similarly, B̂− := A− ∩ {z ∈ C | Re (z) ≤ c1 < 0} and Û− := B̂− × B̂−.
We will define Û := Û+ ∪ Û−.
Observe that U ⊂ Û , U+ ⊂ Û+, B+ ⊂ B̂+, B− ⊂ B̂−, U− ⊂ Û−, since b and c1

are arbitrarily chosen.

Lemma 4.24. The sets Û+ and Û− are forward invariant, i.e., R(Û+) ⊂ Û+
and R(Û−) ⊂ Û−.

Proof. We only will prove the lemma for Û+, since the proof for Û− is similar.
Let us take (w, t) ∈ Û+. By (19), w ∈ B̂+ and t ∈ B̂+, and by (20), w, t ∈ A+.
Now from (1) in Remark (4.23), t = r exp(iθ) ∈ A+, i.e.,

1
t
= 1

r exp(iθ)
= exp(−iθ)

r
∈ A+.

It is easy to see that w, t ∈ A+ implies w + t ∈ A+. Therefore (w, t) ∈ A+ ⇒
R(w, t) = (w + 1/t , t +w) ∈ A+.

Also, since Re (w+1/t) ≥ Re (w) ≥ b > 0 and Re (w+t) ≥ Re (t) ≥ b > 0
so w + 1/t, t +w ∈ B̂+, it follows that, for all (w, t) ∈ Û+, R(w, t) ∈ Û+.

Therefore, Û+ is forward invariant. ❐

The following is immediate.

Lemma 4.25. On B̂+, the following inequalities are satisfied:
1. 0 < b ≤ Re (z) ≤ |z| ≤ k Re (z), for some k ∈ R+ \ {0},
2. |Im (z)| ≤ a Re (z).
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Re (z)

Im (z)

A+A−

B+B−

B̂+B̂−

cb1 bc1

FIG 1. Regions A+, A−, B+, B−, B̂+, B̂−

Proof of Proposition 4.22.
Let us take K ⊂ V , K compact, V given as in Proposition(4.22). We will show

uniform convergence on U , given by (18). Let us take a point p0 = (w0, t0) ∈ V .
Without loss of generality, Re (w0) > 0 and Re (t0) > 0. Let us take a set B+ as
described in Remark (4.23)-1, such that (w0, t0) ∈ B+ × B+ ⊂ U+ and p0 ∈ U+
implies p0 ∈ Û+ so that, from Lemma (4.24), Rm(p0) := pm ∈ Û+, so pm =
(wm, tm) ∈ Û+, and the inequalities in Lemma (4.25) are satisfied.

By Proposition (4.21) and from the fact that Re (tj) > 0 implies Re (1/tj) >
0, we have:

Re (wm) = Re
(
w0 + 1

t0
+ · · · + 1

tm−1

)
≥ b, for all m ∈ N.(21)

Again by Proposition (4.21) and (21)

Re (tm) = Re (t0 +w0 + · · · +wm−1) ≥mb, for all m ∈ N.(22)
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Using the fact that Re (z) ≤ |z|, by Proposition (4.21) and (22) we have:

Re (wm) ≤ |wm| ≤ |w0| + 1
|t0|

+ · · · + 1
|tm−1|

.

From Lemma (4.25), (22), and the fact that (w0, t0) ∈ Û+,

Re (wm) ≤ d0 + 1
Re (t0)

+ · · · + 1
Re (tm−1)

= e+ 1
b

lnm,

where d0 = |w0| and e = d0+ 1/b. So there exists m1 ∈ N such that Re (wm) ≤
lnm+ 1/b lnm for all m ≥m1. Therefore,

Re (wm) ≤
(

1+ 1
b

)
lnm = g lnm for all m ≥m1,(23)

with g = 1+ 1/b.
Now let us use Proposition (4.21) and (23) to get Re (tm) ≤ e1 + g ln 1 +

g ln 2 + · · · + g ln(m − 1), where e1 = Re (t0) + Re (w0), so Re (tm) ≤ e1 +
g(
∫m
1 lnx dx) ≤ e1 + gm lnm. There exists m2 ∈ N such that

Re (tm) ≤ (1+ g)m lnm = e2m lnm for all m ≥m2,(24)

with e2 = 1+ g.
From Proposition (4.21) and (24)

Re (wm) ≥ b +Re
(

1
t0

)
+
(

1
e2 ln 1

)
+ · · · +

(
1

(m− 1)e2 ln(m− 1)

)
(25)

= ln
(

ln(m− 1)
ln 2

)
.

From (22)-(25) we get the following estimates:

ln
(

ln(m− 1)
ln 2

)
≤ Re (wm) ≤ g lnm,(26)

mb ≤ Re (tm) ≤ e2m lnm.(27)

Now Lemma (4.25) together with equations (26) and (27) imply |tm| ≥ Re (tm) ≥
mb and |wm| ≤ kRe (wm) ≤ kg lnm, for some k ∈ R+ \ {0}.

So since p0 = (w0, t0) ∈ U , there exist constants b > 0 and h := gk > 0
(depending on the compact set U) such that, for all m ≥ max{m1,m2}, we have
|tm| ≥mb and |wm| ≤ h lnm.
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Hence Rm[1 : w0 : t0] = [1/tm : wm/tm : 1]. Therefore Rm[1 : w0 : t0]→
[0 : 0 : 1] as m →∞, since

1
|tm|

≤ 1
mb

→ 0 and
|wm|
|tm|

≤ h lnm
bm

→ 0 as m →∞.

Let us observe that the convergence is tangential, i.e., (1/tm,wm/tm) →
(0,0) in C2 = (z = 1) and the slope wm/t2

m = wm > ln(ln(m − 1)/ ln 2) → ∞,
so the slope goes to infinity, i.e., the points converge to [0 : 0 : 1] tangentially to
the fixed point. ❐

We give now an example of a birational B-Fibonacci map of P2.

Theorem 4.26. The family of B-Fibonacci maps of P2 with only one degree
lowering variety is non-empty. In fact,

R : P2 → P2 via [z : w : t]� [wt : wz : t2](28)

is a Fibonacci map.
In addition, if U ⊂ (t = 1) is an open set where the iteration of R is well defined,

then we will have the following behavior of R under iteration, here λ = (1+√5)/2.
If |wλz| < 1, Rm[z : w : 1]→ [0 : 0 : 1] as m →∞,
If |wλz| > 1, Rm[z : w : 1]→ [0 : 1 : 0] as m →∞,
If |wλz| = 1, then R is chaotic.

We give now some important dynamical features of this map.
1. FixR = {[0 : 0 : 1]} ∪ {[1 : 1 : 1]}.
2. IR = {[1 : 0 : 0]} ∪ {[0 : 1 : 0]}.
3. R(w = 0) = [0 : 0 : 1] ∈ FixR.
4. R(t = 0) = [0 : 1 : 0] ∈ IR.

Remark 4.27.
1. The point [1 : 0 : 0] ∈ IR has no preimages.
2. wλ is multi-valued, however we are only interested in |w|λ.

Proposition 4.28. The formula in C3 for the m-th iterate, m ≥ 2 of the map
given by equation (28) is given as follows:

Rm(z,w, t) = tα(m)(wCm−1zCm−2tCm−1 , wCmzCm−1 , tCm+1),(29)

where

α(m) = 2α(m− 1)+ Cm−2,(30)

with α(1) = 0, α(2) = 1, and {Cm} the Fibonacci sequence.
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Proof. Use induction. ❐

Before we study the dynamics of this map on P2 \ IR, we will study its dy-
namics near the points of indeterminacy.

Proposition 4.29. The blow up of the point of indeterminacy [0 : 1 : 0] of
the map R, given by (28), is the curve (t = 0), and the blow up of the point of
indeterminacy [1 : 0 : 0] of the same map R is the curve (z = 0).

Proof. Similar to the proof of Proposition (4.6). ❐

We will study next the dynamics of R near the fixed points [0 : 0 : 1] and
[1 : 1 : 1]. By looking at the eigenvalues of this map in the plane (t = 1), we
realize that [0 : 0 : 1] is an attractive fixed point and [1 : 1 : 1] is a saddle.

Remark 4.30. Let us observe that the set P%∇m,R of periodic points of pe-
riod m of R is nonempty. In fact, in (t = 1), (29) can be written in C2 as:
Rm(z,w) = (zCm−2wCm−1 , zCm−1wCm). So if m is odd, finding the periodic
points of period m of R is equivalent to looking for the (Cm + Cm−2)-th roots of
unity. If m is even, we will be looking for the (Cm +Cm−2 − 2)-th roots of unity.

We study next the dynamics of R on

U = (t = 1) = P2 \
(
{(t = 0)} ∪ {[1 : 0 : 0]} ∪ {[0 : 1 : 0]}(31)

∪ P%∇m,R ∪ {(w = 0)} ∪ {(z = 0)}
)
.

The following proposition proves the last statement of Theorem (4.26).

Proposition 4.31. For every (z,w) ∈ U , U given as in (31)
If |wλz| < 1, then

Rm[z : w : 1]→ [0 : 0 : 1].(32)

If |wλz| > 1, then

Rm[z : w : 1]→ [0 : 1 : 0].(33)

If |wλz| = 1, then R is chaotic.

Proof. In (29) we established the general formula for the m-th iterate of R.
Now, since we are studying the iteration of R in U , we can write (29) in (t = 1)
as follows:

Rm+1[z : w : 1] = [zCm−1wCm : zCmwCm+1 : 1].(34)
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Let us prove the assertion in (32). Observe that (34) can be written as:

Rm+1[z : w : 1] = [(zwCm/Cm−1
)Cm−1 :

(
zwCm+1/Cm

)Cm : 1
]
.(35)

Since limm→∞(Cm/Cm−1) = λ,

lim
m→∞qm := lim

m→∞zwCm/Cm−1 = zwλ,(36)

where λ = (1+√5)/2.
Now, by hypothesis |zwλ| < 1, then by (36) there exists m0 ∈ N such that,

for all m ≥m0, |qm| ≤ c < 1, so limm→∞ |qm|Cm−1 ≤ limm→∞ cCm−1 .
Since c < 1 and limm→∞ Cm−1 = ∞, we have

0 ≤ lim
m→∞ |qm|Cm−1 < lim

m→∞ cCm−1 = 0.(37)

Therefore by (37) and (35), Rm+1[z : w : t]→ [0 : 0 : 1] as m →∞.
We prove next the assertion in (33). We write (34) as:

Rm+1[z : w : 1] =
[

1
(zwCm−1/Cm−2)Cm−2

: 1 :
1

(zwCm+1/Cm)Cm

]
.(38)

Let us observe that

lim
m→∞qm−1 := lim

m→∞zwCm−1/Cm−2 = zwλ,(39)

where λ = (1+√5)/2, as before.
Since by hypothesis |wλz| > 1, by (39) there exists m1 ∈ N such that, for

all m ≥ m1, |1/qm−1| ≤ c1 < 1, so limm→∞ |1/qm−1|Cm−2 ≤ cCm−2
1 < 1. Since

c1 < 1 and limm→∞ Cm = ∞, we have

0 ≤ lim
m→∞

∣∣∣∣∣ 1
qm−1

∣∣∣∣∣
Cm−2

≤ lim
m→∞ cCm−2

1 = 0.(40)

Therefore, by (40) and (38), Rm+1[z : w : t]→ [0 : 1 : 0] as m →∞.
It remains only to prove the last assertion in Proposition (4.31). Let us con-

sider now the case |zwλ| = 1. In (t = 1), we will define Σ := {(z,w) ∈ C2 :
|zwλ| = 1}, i.e., Σ := {(r1 exp(iθ), r2 exp(iΦ)) | r1rλ

2 = 1, 0 ≤ θ, Φ ≤ 2π}.
If r2 = x,

Σ = {(x−λ exp(iθ), x exp(iΦ)) | x ∈ R+, 0 ≤ θ, Φ ≤ 2π}.(41)

Lemma 4.32. The set Σ is R invariant.
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Proof. Let (z,w) ∈ Σ.
In (t = 1), (28) can be written as R(z,w) = (w, zw), so |w(zw)λ| =

|zw(λ+1)/λ|λ.
Since (λ+1)/λ = λ, we have |w(zw)λ| = |zwλ| = 1 as we wanted to prove.

So Σ is R invariant. ❐

We can think of R|Σ : R+ × (S1 × S1)→ R+ × (S1 × S1) as

R
∣∣Σ = (fλ|R+ × gθ,Φ|(S1×S1)),(42)

where

fλ : R+ → R+ via x � x1−λ,(43)

and

gθ,Φ : (S1 × S1)→ (S1 × S1) via (θ,Φ)� (ϕ,θ +ϕ).(44)

Remark 4.33. By (34) and (41)

fm
λ (x) = xCm−λCm−1 ,(45)

and by (43)

fm
λ (x) = x(1−λ)m.(46)

So by (45) and (46)

(1− λ)m = Cm − λCm−1.

Dynamics on R+. The fixed points of fλ are the points such that x1−λ = x,
i.e., the points that satisfy x−λ = 1, therefore x = 1. Since f ′λ(1) = 1−λ < 1, the
fixed point x = 1 is attracting. Note that this could also be seen from (46) since
limm→∞ fm

λ (x) = limm→∞ x(1−λ)m = 1.
So, all the points in Σ will converge under iteration of R (given as in (42))

to the R2-torus sitting at x = 1. Now by looking at (44) we get the eigenvalues
x1 = (1 +√5)/2 and x2 = (1 −√5)/2. Since it is a well known fact that a map
on the torus with these eigenvalues is chaotic, our map R|Σ given as in (42) will
be chaotic, as we wanted to prove. ❐

Remark 4.34. Let us observe that the set {[z : w : 1] : |zwλ| > 1}, and the
curve (t = 0) converge under iteration to the point [0 : 1 : 0].
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.5 B-MAPS OF C3

In this section we show that there are only a finite number of sequences of
degrees of iterates for the polynomial automorphisms of C3 of degree 2. We base
our work in the following theorem of Fornæss and Wu.

Theorem 5.1. (see [5]) If H : C3 → C3 is a degree at most 2 polynomial self-
map with nowhere vanishing Jacobian determinant, then H is affinely conjugate to
one of the following maps:

1. An affine automorphism;
2. An elementary polynomial automorphism

E = {E(x,y, z) = (P(y, z)+ax , Q(z)+by , cz+p)},

where P is a polynomial of y , z of degree at most 2, Q is a polynomial of z of
degree at most 2 and abc ≠ 0. Note that E(x,y, z) maps every hyperplane
z = k to a hyperplane z = k′ and maps every line y = k1, z = k2 to a line
y = k′1, z = k′2;

3. One of the following:

H1 = {H1(x,y, z) = (P(x, z)+ay , Q(z)+x , cz+p)},
H2 = {H2(x,y, z) = (P(y, z)+ax , Q(y)+bz , y)},
H3 = {H3(x,y, z) = (P(x, z)+ay , Q(x)+z , x)},
H4 = {H4(x,y, z) = (P(x,y)+az , Q(y)+x , y)},
H5 = {H5(x,y, z) = (P(x,y)+az , Q(x)+by , x)},

where P and Q are polynomials with max{deg(P),deg(Q)} = 2 and abc ≠
0.

The m-th iterate of H, Hm(z,w, t) will be given by

Hm(x,y, z) = (H1,m(x,y, z) , H2,m(x,y, z) , H3,m(x,y, z)),

where Hj,m, j ∈ {1,2,3} denotes the j-th coordinate function of Hm in C3.

Definition 5.2. deg Hm = maxj=1,2,3{deg Hj,m(x,y, z)}.
Proposition 5.3. H2 is a family of A-maps. In fact, let

H2(x,y, z) = (dy2+ez2+fyz+gy+hz+j+ax , ry2+sy+t+bz , y).

Then
1. deg Hm

2 (x,y, z) = 2m for all m ∈ N, if and only if r ≠ 0,
2. deg Hm

2 (x,y, z) = 2 for all m ∈ N, if and only if r = 0.
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Proof. The proof of each item follows by induction on m. ❐

Proposition 5.4. Let H1 ∈H1,

H1(x,y, z) = (dx2+ez2+fxz+gx+hz+j+ay , rz2+sz+t+x , cz+p).

Then

1. deg Hm
1 (x,y, z) = 2 for all m ∈ N, if and only if d = 0, f = 0, and e and

r do not vanish at the same time,
2. deg Hm

1 (x,y, z) = 2m for all m ∈ N, if and only if d ≠ 0,
3. H1(x,y, z) is B-linear if and only if d = 0 and f ≠ 0.

Proof. It follows by induction on m. ❐

We recall that the Fibonacci sequence {Cm} satisfy the relationship

Cm+2 = Cm+1 + Cm, m ∈ N∪ {0},

with C0 = 1 = C1.

Definition 5.5. A B-map will be called flashing if the degrees of its iterates, dm

grow every second time, i.e.,

d2m = 2m+1, m ≥ 1

d2m+1 = 2m+1, m ≥ 1

Proposition 5.6. Let H3 ∈H3,

H3(dx2+ez2+fxz+gx+hz+j+ay , rx2+sx+t+z , x).

Then

1. deg Hm
3 (x,y, z) = 2m for all m ∈ N, if and only if d ≠ 0,

2. deg Hm
3 (x,y, z) = Cm+1 for all m ∈ N, if and only if d = 0, f ≠ 0, r = 0,

3. deg Hm
3 (x,y, z) = 2Cm for all m ∈ N, if and only if d = 0, f ≠ 0, and

r ≠ 0,
4. deg H3(x,y, z) is a flashing map if and only if d = 0, f = 0, and e and r

do not vanish at the same time.

Proof. Induction on m. ❐
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Proposition 5.7. Let H4 ∈H4,

H4(x,y, z) = (dx2+ey2+fxy+gx+hy+j+az , ry2+sy+t+x , y).

Then

1. deg Hm
4 (x,y, z) = 2m for all m ∈ N, if and only if d and r do not vanish

at the same time,
2. deg Hm

4 (x,y, z) = Cm+1 for all m ∈ N, if and only if d = 0, r = 0, and
f ≠ 0,

3. The map H4(x,y, z) is flashing if and only if d = 0, f = 0, r = 0, and
e ≠ 0.

Proof. It follows by induction on m. ❐

Proposition 5.8. Let H5 ∈H5,

H5(x,y, z) = (dx2+ey2+fxy+gx+hy+j+az , rx2+sx+t+by , x).

Then

1. deg Hm
5 (x,y, z) = 2 for all m ∈ N, if and only if d = 0, f = 0, and one of

the following two conditions holds:
(a) e ≠ 0, r = 0, and s = 0,
(b) r ≠ 0, e = 0, and h = 0.

2. deg Hm
5 (x,y, z) = 2m for all m ∈ N, if and only if one of the following two

conditions holds:
(a) d ≠ 0,
(b) d = 0, r ≠ 0 and e and f does not vanish at the same time.

3. H5(x,y, z) is B-linear if and only if d = 0, r = 0, s = 0, and f ≠ 0.
4. deg Hm

5 (x,y, z) = Cm+1 for all m ∈ N, if and only if d = 0, r = 0, s ≠ 0,
and f ≠ 0.

5. H5(x,y, z) is flashing if and only if d = 0, f = 0 and one of the following
two conditions holds:
(a) r ≠ 0, e = 0, and h ≠ 0,
(b) e ≠ 0, r = 0, and s ≠ 0.

Proof. It follows by induction on m. ❐

Definition 5.9. A B-map will be called basic if after high enough iterates its
degree remains constant.
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Proposition 5.10. Let E ∈ E,

E(x,y, z) = (dy2+ez2+fyz+gy+hz+j+ax , rz2+sz+t+by , cz+p).

Then,
1. deg Em(x,y, z) = 2 for all m ∈ N, if and only if one of the following two

conditions holds:
(a) d and r are not different from zero at the same time,
(b) d = 0, and f and r are not different from zero at the same time.

2. deg Em(x,y, z) = 3 for all m ∈ N, if and only if d = 0, f ≠ 0, and r ≠ 0.
3. deg Em(x,y, z) = 4 for all m ∈ N, if and only if d ≠ 0 and r ≠ 0.

Proof. It follows by induction on m. ❐

As we have seen in this section, the only possibilities for the B-maps of C3 of
degree two are to be linear, Fibonacci, flashing, or basic.
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