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ABSTRACT 
We investigate the influence both of the cosmological constant and of the physical 
processes that take place during the evolution of the Universe on the primordial 
cloud collapse. We study the evolution of a cloud with a density perturbation, b, 
from the recombination era to the present. As an example, we study an initial 
perturbation bj = 10-6 for a cloud of mass 10\ 105 and 106 M0 • In particular, we study 
the influence of the physical processes on the evolution of the peculiar velocity 
factor, f=d In bid Ina, where 'a' is the scalefactor ofthe Universe. We compare our 
results with the analytic expression for f obtained by Lahav et al. Our results show 
that the physical mechanisms (photon drag, photon cooling, recombination, etc.) 
amplify perturbations, and the cosmological constant is particularly important in a 
Universe dominated by it with a small matter density. 

Key words: cosmology: theory - early Universe - large-scale structure of 
Universe. 

1 INTRODUCTION 

In a Friedmann-Robertson-Walker Universe, we can 
write 

QT=Q+A=l- Qk' 

where 

81tG 
Q=-p 

3IP ' 

and 

A 
A=-3m 

(1) 

H =a/a, a and a being the scalefactor and the time deriva
tive of the scalefactor, respectively, with a/ao= (1 + Z)-l. z is 
the redshift, p = po(ao/a)3 is the ambient matter density, and 
A (or A) is called the cosmological constant. We have 
k = - 1 for an open universe, k = 0 for a flat universe and 
k = + 1 for a closed universe. The zero subscript designates 
the present-day value. 

The infall velocity of a supercluster has been used to 
compute the density parameter no and the cosmological 
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constant A (Davis et al. 1980). It is related to the peculiar 
velocity factor, t, that gives the relation between the pecu
liar velocity and the peculiar acceleration of the density 
perturbation in linear theory (Peebles 1980, section 14). 

Likewise, it has been shown (e.g. Peebles 1984; Lightman 
& Schechter 1990; Martel 1991 ) that the present infall velo
city is almost entirely determined by no, with a very weak 
dependence on A. However, Labav et al. (1991, hereafter 
LLPR), as well as Barrow & Saich (1993), showed that this 
is true at the present epoch, but for redshifts in the range 
0.5-2.0, the peculiar velocity is much more sensitive to A 
than to no. 

It is important to note that all studies (spherical infall: 
Peebles 1984, Martel 1991 and LLPR; non-spherical infall: 
Barrow & Saich 1993) without taking into account dark 
matter, were made considering only the linear theory of the 
perturbations and did not take into account the various 
physical processes (except gravitation) that were significant 
in the evolution of the perturbation. 

The main motivation for this paper is to compare the 
peculiar velocity factor, f, deduced by the linear theory, first 
by Peebles (1980) for z=o and then by LLPR for any z, A, 
and no, with the exact calculations of the hydrodynamical 
equations, taking into account the effects of a non-zero 
cosmological constant and the physical mechanisms that 
were present during and after the recombination era upon 
the peculiar velocity field evolution, as well as the amplifica
tion of the density perturbations since the recombination 
era. The physical processes that we take into account are 
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photon drag, photon cooling, recombination, photoioniza
tion, collisional ionization, and hydrogen molecule produc
tion, destruction and cooling - hereafter called simply 
'physical mechanisms'. The basic equations and calculations 
were presented in various papers of de Araujo & Opher 
(1988, 1989, 1990, 1994). We modified the code developed 
by de Araujo (1990) to perform the calculations in this 
paper. The present paper differs from the LLPR paper by 
the inclusion of the 'physical mechanisms' and also differs 
from the LLPR paper in the initial conditions. In the LLPR 
paper, only the growing solution was used. In the present 
paper we use the general solution (the sum of the growing 
and decaying solutions). The general solution is normalized 
with the condition that the time derivative of the perturba
tion is zero at the beginning of the recombination era. 

We give the basic hydrodynamical equations and the 
physical processes used in Section 2. In Section 3 we give a 
brief review of the peculiar velocity field and the results that 
we obtained regarding the peculiar velocity factor. Section 4 
gives the amplification of the density perturbation that we 
discovered. The results and discussions are given in Section 
5, and in the last section we give the main conclusions that 
we obtained. 

2 THE BASIC EQUATIONS AND THE 
MODEL 

The basic equations used (cf. de Araujo & Opher 1988, 
1989, 1990, 1994) are 

op 
-+ V"(pv)=O, (2) ot 
the continuity equation, and 

dv 1 ubT:~ 
-= -V¢--VP---(V-Hr), 
dt P mpc 

(3) 

the equation of motion, where u is the Thomson cross
section, b=4/c the Stefan-Boltzmann constant, and Tr the 
radiation temperature. The last term in equation (2) is the 
term of photon drag arising from the background cosmic 
radiation. The degree of ionization Xe is given by Peebles 
(1968), modified to include collisional ionization. The field 
equation (Poisson's equation) is 

VZ¢=41tGp-A. (4) 

The equation of state is given by 

P=NkB P(l +~) Tm , (5) 

where T m is the matter temperature, kB the Boltzmann 
constant, and N the Avogadro number. For the energy 
equation, we have 

dU Pdp 
-=-L+--
dt p2 dt ' 

(6) 

where L is the cooling function and U is the energy density 
per unit mass of baryonic matter, given by 

3 
U=-NkB Tm(1 + Xe), 

2 

neglecting the contribution of hydrogen molecules. 

(7) 

For the cooling function of the baryonic matter we 
have: 

which includes recombination, photoionization and colli
sional ionization (first term), photon cooling (heating, 
second term), molecular hydrogen cooling and Lyman-IX 
cooling (third and fourth terms, respectively). i.e is the time 
derivative of ~. 

The hydrogen molecular cooling function (L Hj, taken 
from Lepp & Shull (1983), is good for densities n > 0.1 cm-3 

and temperatures 100 K < Tm < 106 K. For Lyman-IX cool
ing, L1,,' we use the expression of Carlberg (1981). With the 
dimensions, densities, and temperatures in the calculations 
made in this paper, radiative transfer is not important. All 
the calculations herein have small optical depth. 

In order to solve the above equations, we use a top-hat 
perturbation of mass Me, with a density Pc, 

Pc = P + PI (t) = p[l + b(t)], (9) 

where b is the contrast density, and a linear dependence for 
the velocity (which is consistent with the density profile) 

(10) 

with rc being the radius of the cloud (or perturbation). 
The system of equations (equations 2-9) was numerically 

integrated using the sub-routine IMSL-DVERK (this uses the 
Runge-Kutta method - see e.g. Press et al. 1992), using 
HP-Apollo 900 and SUN SP ARC2 workstations. 

We started the calculations at the beginning of the recom
bination era TR =4000 K (ZR ~ 1482). 

We studied five models, parametrized by 00 and A, which 
we refer to as models A-E. They are listed in Table 1. These 
models were suggested by Carroll, Press & Turner (1992). 
For each model we analyse clouds of masses 104, lOS and 
106 MG. As an example, we study an initial perturbation 
bi = 10-6, small enough in order to compare with the linear 
approach. 

3 THE PECULIAR VELOCITY FIELD AND 
THE PECULIAR VELOCITY FACTOR 

The peculiar velocity, Vi> is related to the peculiar accelera
tion, g, by the peculiar velocity factor f (Peebles 1980, 
section 14): . 

Hfg 2fg 
v------

I - 41tGpb - 3HQ ' 

Table 1. The models for nT> no and l, utilized in 
the calculations (nr=ilo + A). 

Model QT Qo ,\ 

A 1 1 0 
B 0.1 0.1 0 
C 1 0.1 0.9 
D 0.01 0.01 0 
E 1 0.01 0.99 

(11) 
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Density perturbations with a cosmological constant 

with Table 2. Amplification of an initial perturbation 

a db dlnb 
<5, = 10-6 for all the models. 

/=--=-. 
b da dIna 

(12) Model Mn ALLPR ASF AF 

Starting from the solution of the linearized equation for b A 104 1481 889 4402 
A 105 1481 889 1993 

found by Heath (1977), LLPR generalized the calculation of 
A 106 1481 889 1170 

/ for any value of Do, 2 and redshift z (taking ao= 1): B 104 281 172 567 

/(0.0, 2,Z)=X- 1 [ 2(1 +Z)-2_ ~ (1 +Z)] 

B 105 281 172 306'" 
B 106 281 172 182 
C 104 885 525 1566 
C 105 885 525 923 

(1 +Z)-lX- 3/2 c 106 885 525 574 
-1+ , (13) D 104 35 22 79 

S~1+z)-lX-3/2da D 105 35 22 41 
D 106 35 • 22 21 

where (l+z)-l=a and X= 1 + noZ + 2[(1 +Z)-2 -1]. E 104 425 266 136 
There are two cases for which the solution of equation (13) E 105 425 266 591 
is analytical: first, when no = 1 and 2 = 0, we have / = 1 for E 106 425 266 335 

1.Ii 

I 

U .... 
fLU'R 

----.-.~-~-~-:..:.:::..--~-.------------- ._---------------------------------------------_. ---
O.c:. 

0 

0 - 400 !lOCI 
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Figure 1. The peculiar velocity factor I versus redshift from the recombination era until the present. The dotted curve is ILIYR, the dashed 
curve is ISF calculated without physical mechanisms and pressure, and the solid curve is IF calculated with physical mechanisms. For model 
A, no = 1.0, A = 0.0 and ho = 1.0. 
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all z's; secondly, when 2 = 0 and z = 0, the solution can be 
written in terms of a hypergeometric function, 

00 5 ~/2 
10= ---1+-------

2 2F(2. ~ Z 1_0- 1) 2,2, 2, .:.~ 

(14) 

Approximations for equation (14) have appeared in the 
literature, e.g. 

Peebles 1980: 10 ~ n~·6, 
Lightman & Schechter 1990: 10 ~ nril7. 

Approximations for equation (13) have been made with 
A#O andz=O for the range -5::::;;2::::;;5 and 0.03::::;;00::::;;2, 

LLPR: .r ~OO.6+_ 1+-2 ( no) 
)0 ~"O 70 2' 

2 

Martel 1991: 

These approximations show that for z = 0, 1 is almost 
entirely determined by 00, with a very small dependence on 
2. 

LLPR found an approximate formula valid for allz, 2 and 
00: 

(15) 

They found that for z > 0, 1 is more sensitive to 2 than to 00; 
in particular, in the interval z ~ 0.5-2.0 it is possible to 
discriminate between universes with different cosmological 
parameters. 

- ..............•...................... f!-H'~ ........................... . 

o 

--- --- --- --- --- --
o lIDO 1000 1200 1400 

I 

- ~~:-:':'":~_ ...•.. _ ......... __ ......................... !!-H'!l .. _ ... __ ................... . ----

o 

---
------J~ --- --

o 100 lOG BOO 1000 1200 1400 

II 

- . _ ... _ .......... _ ............... _ . '" .... _ ...... !!-H'!l .. _ ................. _ ...... . ------
- - - - - - - - JSF --- ~--o 

o 400 lOG lOG 1000 1100 1400 

z 

Figure 2. Same as Fig. 1 but for model B, where 00 = 0.1, A. = 0.0 an~ ho = 1.0. 
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Density perturbations with a cosmological constant 815 

4 AMPLIFICATION OF THE DENSITY 
PERTURBATIONS 

The amplification of the density perturbation, 15, from the 
beginning of the recombination era [b(tR)] to the present 
[b(to)] for growing modes (designated by a '+' subscript) 
is 

(16) 

We made the calculation with and wtihout the physical 
mechanisms. 

In order to calculate the amplification by LLPR, we take 
the equations given by LLPR and, after some manipulation, 
find 

-

ALI2R - - , ( 
_ 150)_ X R(l +fR) -Aa~ +Oo/2aR 

bR Xo(1 + fo) - Aa~ + Oo/2ao 
(17) 

where ~= 1 + Oo(aj- 1-1) + A(aJ -1) and 1; = {Oo(l +zjf/ 
[00(1 +Zj)3 - (Qo + A -1)(1 +zy + AW!7, j =0 means the 
present and j = R the recombination era. 

Our amplification, when physical mechanisms are taken 
into account, is evaluated directly from equation (16). 

In linear theory there are two solutions of the perturba
tion equation: a growing solution, 15+, and a damped solu
tion, 15 _. It is usual to use only the solution 15 + to calculate 
the amplification. Our numerical solution calculated with 
our code is for the general solution b=C1b+ +C2L, indi
cating the need to find the values of the proportionality 
constants. We do this by making the reasonable assumption 
that at the recombination era, the temporal derivative of 15 is 
zero. 

fW'R 
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Figure3. Same as Fig. 1 but for model C, where 0 0 =0.1, A=0.9 and ho=1.0. 
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For example, in the case where k=O (flat), .4.=0, and 
without physical mechanisms, it is easy to show that in this 
case the general solution is 

o(z) =C j (1 +Z)2/3 + Cz(1 +z)-\ 

with 

and 

where we assume ZR :::::: 1482. 

o 

..... 

I 

(18) 

(19) 

(20) 

In Table 2 we have: (1) AllPR (from equation 17); (2) ASF 

(numerical calculation without physical mechanisms); and 
(3) AF (our numerical calculation of the amplification, 
taking into account the physical mechanisms). 

The comparison betweenAllPR withAsF shows thatAllPR 

is bigger than A SF' This is because LLPR evaluated the 
amplification using only the growing numerical solution, i.e. 
C j 0 +. We note that the value for the amplification used for 
the simple case of just the growing solution where k = 0 and 
.4.=0 is 1 +ZR (see Weinberg 1972). 

Table 2 shows clearly, fromAF, that the amplification of 
the perturbation 0i has a strong dependence on the physical 
mechanisms. 

For the model that is matter dominated (i.e. model A), 
the amplificationAF is bigger thanAsF or A llPR• Comparing 
model B (00=0.1, .4.=0) with model C (00=0.1, .4.=0.9), 

fW'R / fSF 

M/M0 =10li 

- f _'_'_'_'~'~'..=..: . .:.,: . .:.; . .:.; .~. : .. :::':: :.:: •••••••••• lU'Il .............................•.... 
- - - - - _____ r~ ___ _ 

o 

I M/M0 =108 

..... ~ -.-._. -.~ ...... '"'-. '':';'.:.: . .:...; .;.:.:.:. ............ J).U>JI ........ ~ ...... f~~"" ........... . 
;-.~ - ---

o 

Figure 4. Same as Fig. 1 but for model D, where no = 0.01, A = 0.0 and ho = 1.0. 
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model D (00=0.01, A=O) and model E (00=0.01, A=0.99), 
we find that the presence of a cosmological constant 
increases the amplification. 

Comparing AF with ASF there is seen to be a coupling 
between the cosmological constant and the physical mech
anisms. 

5 RESULTS AND DISCUSSION OF THE 
PECULIAR VELOCITY FACTOR 

Figs 1-5 show the peculiar velocity factor, J, versus redshift 
z from the beginning of the recombination era until the 
present. The dotted curve is equation (15), fILPR; the dashed 
curve is fSF' calculated numerically without physical mech
anisms and pressure; and the solid curve is fF' calculated 
taking into account the physical mechanisms. 

At a first glance we can see that the three curves differ 

.... 
o 

• 

" 
.... 

I 

significantly. Again, as discussed in the last section, the 
difference between fILPR and fSF is a result of the use of the 
general numerical solution (i.e. C1 () + + C2 {) _) in the calcu
lation of fSF (besides the inclusion of the physical mechan
isms). Of course, we use the general solution for the 
evaluation of fF as well. We note that we obtain the same 
results (fILPR versus fSF) as LLPR if the physical processes 
are turned off and the initial conditions are the same. 

As we discussed in the last section, in order to analyse the 
importance of the physical mechanisms, we need to com
pare fSF (dashed curve) with fF (solid curve). In particular, 
the physical mechanisms are important for z~10. 

Figs 1-5 show that there exists a general trend in the 
behaviour of the curve fF' We observe, starting from the 
recombination era until the present, that the physical mech
anisms first push fF below fSF until a minimum, after the 
minimum it increases up to fSF' surpasses fSF and reaches a 

fW'JI / fSF 

fW'R ------.... -=-=-=-~--.:.:-..:..:·.:.:-..:..:-.:.:-.:.:-::.-~-~-~·-------------iSF--------------
---

o ----
o 800 100 1000 1200 1400 

• 

" 
.... 

I 

" -o 

~ fun ----_._--_._-....... -...... __ ........... __ ...... _-_ .... _ ............. ---_ .... _ ....... _-_ .... ---_ ... -........... . 
- - _ fSF 

o 200 400 eoo IlOO 1000 1100 1400 

z 

Figure 5. Same as Fig. 1 but for model E, where !lo=0.01, A=0.99 and ho=l.O. 
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maximum, and then asymptotically goes over to ISF for very 
smallz. 

The behaviour of IF at high z is due mainly to the photon 
drag that strongly damps the perturbations. However, for 
small z the cooling sources become important, helping the 
growth of density perturbations. For z;5 300 the cooling 
mechanisms reach their maximum efficiency by the forma
tion of hydrogen molecules. These cooling mechanisms pre
vent the internal pressure to delay the collapse, making the 
perturbation grow quickly. 

For the models with 00=0.1 (models B and C), the 
cosmological constant has little effect on f, but with 
00=0.01 (models D and E) I is very sensitive to the 
presence of the cosmological constant. 

The influence of the physical mechanisms on the growth 
of the perturbations is enhanced by the presence of the 
cosmological constant. Let us compare models C and E 

4 
1I0DEL A 

3 
Dlal.O bezl.O A-O.O ,.. 

3 2 : ... 
. / 

/ . ' " ._ .. -.&1 • ..;,.; .. ;,;" ", 
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lo,lIme(.) 

II . LI 1I0DEL E 
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~ I 
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I II 

I 
:'/ 
:/ 
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13 14 II II 17 I. lIm.(.) 
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II 

, 
3 ... 

II 

II 

(Figs 3 and 5, respectively) that have non-zero A, but small 
n, with model A (Fig. 1) with A = 0 but with the largest 
density parameter. For cases C and E, IF reaches a larger 
maximum than in the case of model A. This can be 
explained remembering that a non-zero A increases the age 
of the Universe and therefore increases the influence of the 
physical mechanisms. Particularly at late times (small z), 
having more time with a non-zero A, there is a greater 
production of hydrogen molecules, which increases the 
cooling of the cloud, favouring the growth of the pertur
bation. 

In the case of M = 104 M0 for models D and E, the mass 
of the cloud is smaller than the Jeans mass at the re
combination era, meaning that the perturbation evolves 
as an oscillation. This reflects on the behaviour of IF 
(=dln <5/d Ina), which shows peaks arising from the 
changes in d<5/da. 
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1I0DEL B 
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. " . . . " . " . " 
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Figure 6. The evolution of 8 as a function of the time for Models A, B, C, D and E, with M = 104 Mo (solid curve), M = l(f Mo (dotted curve), 
and M = 106 Mo (dashed curve). 
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The evolution of (j as a function of the time, t, can be seen 
in Fig. 6. This figures shows the temporal evolution for 
the five models: solid curve, M = 104 Mo; dotted curve, 
M = lOS Mo; and dashed curve M = 106 Mo. These graphs 
show that the presence of a cosmological constant is import
ant in the evolution of the clouds, mainly in the models of a 
Universe with little matter (models D and E). 

6 CONCLUSIONS 

We studied the effect of physical mechanisms and a cosmo
logical constant on the evolution of primordial clouds, using 
as an example an initial perturbation (jj = 10-6 for cloud 
masses 104, lOS and 106 Mo. Our results compared with the 
interesting result found by LLPR are summarized as 
follows. 

(1) The physical mechanisms have a great influence on 
the evolution of the density perturbations, in particular for 
z>10. 

(2) For models with 00=0.1, the influence of..1. is small, 
but for the models with minimal matter, 00 = 0.01, the evo
lution of the perturbation is very sensitive to the presence 
0fA.. 

(3) For small z, ..1. is important with or without physical 
mechanisms. 

(4) For 00=1.0 and ..1.=0, for 00=0.1 and ..1.=0 and for 
00=0.1 and ..1.=0.9, whereas the maximum value of 
fILPR(max) ~ 1, we have for: (1) M=104Mo, fF(max) ~2; 
(2) M = 105 Mo; fF(max) ~ 1.7; and . (3) M = 106 Mo' 
fF(max) ~'1.2. 

(5) For no=O.Ol and ..1.=0, whereas fILPR(max) ~ 1, we 
have for M=lOSMo, fF(max) ~ 3.1. Similarly, for 00=0.01 
and ..1. = 0.99, we have for M = lOS Mo' fF(max) ~ 5.5. 

In general we find that fILPR is bigger than fSF and fF 
immediately after the recombination era (300 <z < 1400) 
since LLPR assumed only the growing mode which has a 
finite velocity of growth at the recombination era. Initially, 
fSF > fF' since photon drag in fF prevents the growth of fF· 
However, for late z (z~300) fF becomes bigger than both 
fILPR and fSF because the cooling processes in fF helps the 
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growth of the perturbation. fF reaches larger values for non
zero ..1., since non-zero ..1. increases the time in which the 
cooling mechanisms can act (in particular hydrogen mole
cules), which helps the growth of the perturbation. 

Finally, we note that in the above calculations we used a 
very small initial perturbation (jj = 10-6• Using an initial per
turbation (jj> 10-6 amplifies the effects noted in this paper. 
The effects of (jj> 10-6 will be presented in a future 
publication. 
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