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Forward-backward multiplicity correlation strengths have been measured with the STAR detector for

Auþ Au and pþ p collisions at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV. Strong short- and long-range correlations (LRC) are

seen in central Auþ Au collisions. The magnitude of these correlations decrease with decreasing
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centrality until only short-range correlations are observed in peripheral Auþ Au collisions. Both the dual

parton model (DPM) and the color glass condensate (CGC) predict the existence of the long-range

correlations. In the DPM, the fluctuation in the number of elementary (parton) inelastic collisions

produces the LRC. In the CGC, longitudinal color flux tubes generate the LRC. The data are in qualitative

agreement with the predictions of the DPM and indicate the presence of multiple parton interactions.

DOI: 10.1103/PhysRevLett.103.172301 PACS numbers: 25.75.Gz

The study of correlations among particles produced in
different rapidity regions may provide an understanding of
the elementary (partonic) interactions which lead to hadro-
nization. Many experiments show strong short-range cor-
relations (SRC) over a region of �� 1 units in rapidity
[1,2]. In high-energy nucleon-nucleon collisions (

ffiffiffi

s
p �

100 GeV), the nonsingly diffractive inelastic cross section
increases significantly with energy, and the magnitude of
the long-range forward-backward multiplicity correlations
(LRC) increases with the energy [2]. These effects can be
understood in terms of multiparton interactions [3].

In high-energy nucleus-nucleus collisions, it has been
predicted that multiple parton interactions would produce
larger long-range forward-backward multiplicity correla-
tions that extend beyond �1 units in rapidity, compared to
hadron-hadron scattering at the same energy [4–6]. The
model based on multipomeron exchanges (dual parton
model) predicts the existence of long-range correlations
[4,5]. In the color glass condensate (CGC) picture of
particle production, the correlations of the particles created
at early stages of the collisions can spread over large
rapidity intervals, unlike the particles produced at later
stages. Thus, the measurement of the long-range rapidity
correlations of the produced particle multiplicities could
give us some insight into the space-time dynamics of the
early stages of the collisions [6].

One method to study the LRC strength is to measure the
magnitude of the forward-backward multiplicity correla-
tion over a long range in pseudorapidity. Such correlations
were studied in several experiments [1,2,7–11] and inves-
tigated theoretically [5,6,12–16]. In this Letter, we present
the first results on the forward-backward (FB) multiplicity
correlation strength and its range in pseudorapidity in
heavy ion collisions at the Relativistic Heavy Ion
Collider (RHIC) measured by the STAR experiment.
Earlier analyses in STAR have focused on the relative
correlations of charged particle pairs on the difference
variables �� (pseudorapidity) and �� (azimuth). It was
observed that the nearside peak is elongated in �� in
central Auþ Au as compared to peripheral collisions [9].
In the present work, the measure of correlation strength as
defined in Eq. (1) and the coordinate system differs from
that of these earlier STAR measurements. The FB correla-
tion strength is measured in an absolute coordinate system,
where � ¼ 0 is always physically located at midrapidity
(the collision vertex), instead of the relative � difference
utilized in other 2-particle analyses. These differences

allow the determination of the absolute magnitude of the
correlation strength.
The correlation strength is defined by the dependence of

the average charged particle multiplicity in the backward
hemisphere, hNbi, on the event multiplicity in the forward
hemisphere, Nf, such that hNbi ¼ aþ bNf, where a is a

constant and b measures the correlation strength:

b ¼ hNfNbi � hNfihNbi
hN2

fi � hNfi2
¼ D2

bf

D2
ff

: (1)

In Eq. (1), D2
bf (covariance) and D2

ff (variance) are the

backward-forward and forward-forward dispersions, re-
spectively [4,5].
The data utilized for this analysis are from year 2001

(Run II)
ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV minimum bias Auþ Au col-

lisions (�2:5� 106 events) at the RHIC, as measured by
the STAR experiment [17]. The FB correlation has been
studied as a function of the centrality of the collision. The
centralities studied in this analysis account for 0–10, 10–
20, 20–30, 30–40, 40–50, and 50–80% of the total hadronic
cross section. All primary tracks with distance of closest
approach to the primary event vertex <3 cm in the time
projection chamber (TPC) pseudorapidity range j�j< 1:0
and with transverse momentum pT > 0:15 GeV=c were
considered. This region was subdivided into bins of width
� ¼ 0:2. The FB intervals were located symmetrically
about midrapidity (� ¼ 0) with the distance between bin
centers (pseudorapidity gap ��): 0.2, 0.4, 0.6, 0.8, 1.0, 1.2,
1.4, 1.6, and 1.8. To avoid a bias in the FB correlation
measurements, care was taken to use different pseudora-
pidity selections for the centrality determination which is
also based on multiplicity. Therefore, the centrality deter-
mination for the FB correlation strength for�� ¼ 0:2, 0.4,
and 0.6 is based on the multiplicity in 0:5< j�j< 1:0,
while for �� ¼ 1:2, 1.4, 1.6, and 1.8, the centrality is
obtained from j�j< 0:5. For �� ¼ 0:8 and 1.0, the sum
of multiplicities from j�j< 0:3 and 0:8< j�j< 1:0 is
used for the centrality determination. The effect of central-
ity region selection on FB correlation strength was also
studied by narrowing the region to j�j< 0:3, 0.2, and 0.1
for all �� bins. This increases the FB correlation strength
by�10–15% at the most. Since the pseudorapidity particle
density (dN=d�) plateau at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV in Auþ Au

collisions extends over the region of interest [18], this
procedure yields consistent particle counts in the FB mea-
surement intervals. An analysis of the data from (Run II)
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pþ p collisions at
ffiffiffi

s
p ¼ 200 GeV was also performed on

minimum bias events (�3:5� 106 events) using the same
track cuts as for the Auþ Au analysis. Corrections for
detector geometric acceptance and tracking efficiency
were carried out using a Monte Carlo event generator
(HIJING) and propagating the simulated particles through
a GEANT representation of the STAR detector geometry.

In order to eliminate (or at least reduce) the effect of
impact parameter (centrality) fluctuations on the measure-
ment of the FB correlation strength, each relevant quantity
(Nf, Nb, N

2
f, NfNb) was obtained on an event-by-event

basis as a function of the event multiplicity, Nch. The
average uncorrected mean multiplicities hNfiuncorr,
hNbiuncorr, hN2

fiuncorr, and hNfNbiuncorr in each centrality

bin were calculated from a fit to the Nch dependences
[19,20]. The functional forms that were used are linear in
Nf, Nb and quadratic in N2

f and NfNb for all �� bins.

Tracking efficiency and acceptance corrections were then
applied to hNfiuncorr, hNbiuncorr, hN2

fiuncorr, and hNfNbiuncorr
to each event. Then, the corrected values of hNfi, hNbi,
hN2

fi, and hNfNbi for each event were used to calculate the
backward-forward and forward-forward dispersions, D2

bf

and D2
ff, binned by centrality, and normalized by the total

number of events in each bin. This method removes the
dependence of the FB correlation strength on the width of
the centrality bin. As a cross check, an alternative method
of centrality determination was also carried out using the
STAR Zero Degree Calorimeter (ZDC) for the 0–10%
centrality range, and the results are shown in Fig. 1(a)
along with the 0–10% most central events from the mini-
mum bias dataset. Statistical errors are smaller than the
data points. Systematic effects dominate the error determi-
nation. The systematic errors are determined by binning
events according to the z vertex in steps of 10 cm varying
from�30 to 30 cm and the maximum value of the fit range
(0–570, 0–600, and 0–630) for hNfi, hNbi, hN2

fi, and

hNfNbi vs Nch. An additional error could arise due to finite

detection efficiency in the TPC. This is estimated to be
�5% for most central collisions. The overall systematic
errors due to the fit range, which causes a correlated shift
along the y axis, are shown in figures as boxes.

Figure 1 shows the FB correlation strength as a function
of �� for pþ p and centrality selected Auþ Au colli-
sions along with the ZDC based centrality results. The
results from ZDC are slightly lower as compared to the
0–10% most central events sampled from minimum bias
datasets using Nch. It is observed that the magnitude of the
FB correlation strength decreases with the decrease in
centrality. The FB correlation strength evolves from a
nearly flat function for 0–10% to a sharply decreasing
function with �� for the 40–50 and 50–80% centrality
bins, which is expected if only short-range correlations
(SRC) are present [4]. The FB correlation strength values
for 40–50 and 50–80% centrality bins at large gap (��>

1:0) have an average value near zero. The individual b
values are near zero within their systematic errors. Figure 1
shows that the dependence of the FB correlation strength
with �� is quite different in central Auþ Au compared to
pþ p collisions. It is also observed that the FB correlation
strength decreases faster in the peripheral (40–50% cen-
trality) Auþ Au as compared to pþ p collisions. This
indicates that the short-range correlation length is smaller
in Auþ Au collisions than in pþ p.
Figure 2 shows the dependence of the dispersions D2

bf

and D2
ff on �� for central Auþ Au collisions [Fig. 2(a)]

and pþ p collisions [Fig. 2(b)]. The nearly constant value
of D2

ff with �� represents the dispersion within the same

� window, which has approximately the same average
multiplicity for all �� values. The behavior of D2

bf is

similar to the FB correlation strength. Thus, the FB corre-
lation variation with the size of �� is dominated by the
D2

bf in Eq. (1).

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18 (c)
 p+p

FB
 C

or
re

la
tio

n 
St

re
ng

th
 b

η∆

0

0.1

0.2

0.3

0.4

0.5

uA+uA (b)
 10-20%

 20-30%

 30-40%

 40-50% 50-80%

FB
 C

or
re

la
tio

n 
St

re
ng

th
 b

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 0-10%

 ZDC central
 ~ 0-10%

 Au+Au(a)

FB
 C

or
re

la
tio

n 
St

re
ng

th
 b

FIG. 1 (color online). (a) FB correlation strength for 0–10%
(circle) and ZDC based centrality (square) (b) FB correlation
strength for 10–20, 20–30, 30–40, 40–50 and 50–80% (square)
Auþ Au and (c) for pþ p collisions as a function of �� at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV. The error bars represent the systematic point-

to-point error. The boxes show the correlated systematic errors.
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Short-range correlations have been previously observed
in high-energy hadron-hadron collisions [1]. The shape
of the SRC function is symmetric about midrapidity and
has a maximum at � ¼ 0. It can be parameterized as
/ expð���=�Þ, where � is the short-range correlation
length and is found to be �� 1. Thus, the SRC are sig-
nificantly reduced by a separation of �1:0 units of pseu-
dorapidity [5,21]. The short-range correlation length is
smaller in nucleus-nucleus collisions as compared to
high-energy hadron-hadron collisions [8,16]. The remain-
ing portion of the correlation strength can be attributed to
the LRC. This can be seen in Fig. 1(b) where the magnitude
of the FB correlation strength is zero for ��� 1 for 40–
50% centrality. In case of 0–10% Auþ Au collisions, the
magnitude of FB correlation strength is 0.6, indicating that
60% of the observed hadrons are correlated.

The FB correlation results are compared with the pre-
dictions of two models of Aþ A collisions widely used at
RHIC energies—HIJING [22] and the Parton String Model
(PSM) [23]. The PSM is the Monte Carlo implementation of
the Dual Parton Model (DPM) [5] or Quark-Gluon String
Model (QGSM) concepts [24], considering both soft and
semihard components on a partonic level. The HIJING

model is based on perturbative QCD processes which

lead to multiple jet production and jet interactions in matter
[22]. Nearly 1� 106 minimum bias Auþ Au collisions at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV were simulated for each model. The

PSM events were obtained without string fusion options.

We used HIJING version 1.383 with default options. We
have also simulated 10� 106 pþ p minimum bias events
at the same cms energy to provide the reference for com-
parison with Auþ Au collisions. The correlation analysis
was carried out exactly in the same manner as for the data.
Both PSM and HIJING predictions are lower than the data as
shown in Fig. 3, but PSM exhibits a large LRC for��> 1:0
while HIJING predicts significantly smaller correlations
than observed in the data. In case of pþ p collisions, the
HIJING prediction agrees with the data. The PSM does not

show the decrease of b with �� as seen in the data. These
trends are illustrated in Fig. 3, where the variation of the FB
correlation strength with �� is shown for Auþ Au,
HIJING, and PSM. The strong fall of b with �� in HIJING

provides some constraints on the contribution of impact
parameter fluctuations to the correlation strength (Fig. 3).
Recently, the hadron-string dynamics (HSD) transport
model [25] and CGC [26] have addressed the possible
effect of impact parameter fluctuations on the correlations
with different results.
A description of the FB correlations, which qualitatively

agrees with the measured behavior of FB correlation
strength, is provided by the dual parton model (DPM)
[4]. As mentioned earlier, the FB correlation strength is
controlled by the numerator of Eq. (1). For the case of
hadron-hadron collisions,
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D2
bf ¼ hNfNbi � hNfihNbi

¼ hkiðhN0fN0bi � hN0fihN0biÞ
þ ½ðhk2i � hki2Þ�hN0fihN0bi (2)

where hN0fi and hN0bi are the average multiplicity of

charged particles produced in the forward and backward
hemispheres in a single elementary inelastic collision [5].
The average number of elementary (parton-parton) inelas-
tic collisions is given by hki. The first term in Eq. (2) is the
correlation between particles produced in the same inelas-
tic collision, representing the SRC in rapidity. The second
term, hk2i � hki2, is due to the fluctuation in the number of
elementary inelastic collisions and is controlled by unitar-
ity. This term gives rise to LRC [4,5].

Recently, long-range FB multiplicity correlations have
also been discussed in the framework of the CGC or
glasma motivated phenomenology [21,27]. The glasma
provides a QCD based description which includes many
features of the DPM approach, in particular, the longitudi-
nal rapidity structure [28]. This model predicts the growth
of LRC with collision centrality [21]. It has been argued
that the long-range rapidity correlations are due to the
fluctuations of the number of gluons and can only be
created at early time shortly after the collision [6,29].

In summary, this is the first measurement of long-range
FB correlation strengths in ultra relativistic nucleus-
nucleus collisions. A large long-range correlation is ob-
served in central Auþ Au collisions that vanishes for 40–
50% centrality. Both DPM and CGC argue that the long-
range correlations are produced by multiple parton-parton
interactions [4,6]. Multiple parton interactions are neces-
sary for the formation of partonic matter. It remains an
open question whether the DPM and CGC models can
describe the LRC reported here and the nearside correla-
tions [9] simultaneously. Further studies of the forward-
backward correlations using identified baryons and mesons
as well as the dependence of the correlations on the colli-
sion energy may be able to distinguish between these two
models.
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