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 A database management system is a constant application of science that 

provides a platform for the creation, movement, and use of voluminous data. 

The area has witnessed a series of developments and technological 

advancements from its conventional structured database to the recent 

buzzword, bigdata. This paper aims to provide a complete model of a 

relational database that is still being widely used because of its well known 

ACID properties namely, atomicity, consistency, integrity and durability. 

Specifically, the objective of this paper is to highlight the adoption of 

relational model approaches by bigdata techniques. Towards addressing the 

reason for this in corporation, this paper qualitatively studied the 

advancements done over a while on the relational data model. First, the 

variations in the data storage layout are illustrated based on the needs of the 

application. Second, quick data retrieval techniques like indexing, query 

processing and concurrency control methods are revealed. The paper 

provides vital insights to appraise the efficiency of the structured database in 

the unstructured environment, particularly when both consistency and 

scalability become an issue in the working of the hybrid transactional and 

analytical database management system. 

Keywords: 

Big data  

Hybrid transaction/analytical 

processing 

Online analytical processing 

Online transactional processing 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Sucharitha Shetty 

Department of Computer Science and Engineering 

Manipal Institute of Technology 

Manipal Academy of Higher Education, Manipal, India 

Email: sucha.shetty@manipal.edu 

 

 

1. INTRODUCTION  

Internet computing, smartphones have made every layman, academician, industrialist, developer a 

part of the database management system. In light of this awareness, there is a pressing demand to provide the 

best of knowledge in the least time to these customers. Many different types of databases are in use today. 

However, for many years, the relational database in various splendiferous models captured in the form of  

row-store, column-store and hybrid store has been around. The traditional model of a database of single 

machines can no longer meet the growing demands. The information must be put away on disk or in a remote 

server as the measure of information increases. Therefore, the queries used to fill the visualization may take 

minutes, hours or longer to return, bringing about long holding up times between the co-operations of every 

user and diminishing the capacity of the user to investigate the information rapidly [1]. 

Today, the trend is moving away from a “one-size-fits-all” structure [2]. During the early 1990s, 

companies wanted to collect data from multiple operating databases into a business intelligence data ware-
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house. This information had to be processed to deliver the best results in the shortest response time resulting 

in the distinction between online analytical processing (OLAP) and online transactional processing (OLTP). 

OLAP systems provided answers to multi-dimensional queries that contribute to decision-making, planning and 

problem-solving. On the other hand, OLTP mainly concentrates on the CRUD operations (create, read, update 

and delete). Different column-oriented OLAP frameworks, for example, BLU [3], Vertica [4], Vectorvise, as 

well as many in-memory OLTP frameworks, including VoltDB [5], Hekaton [6] and many others, have seen a 

rise in the database sector. Hardware developments have been the biggest push for new database designs. Over 

the years, disk space has undergone an increase in Moore’s law [7]. The second generation of OLAP and OLTP 

systems makes better use of multi-core and large memories. 

All of these innovations have contributed to the rise of a new database paradigm known as big data 

that does not provide all of the relational model’s operations but do scale to big data sizes. NoSQL or key-

value stores, such as Voldemort [8], Cassandra [9], RocksDB [10], offer fast write throughput and lookups on 

the primary key [11], and very high scale-out, but lack in their query capabilities, and provide loose 

transactional guarantees. SQL-on-Hadoop solutions [12] (e.g., Hive, Impala, Big SQL [13], and Spark SQL 

[14]) use OLAP model templates and column formats to run OLAP queries over large static data volumes. 

These frameworks are not arranged as real-time operational databases albeit appropriate for batch processing. 

The amalgamation of simultaneous transactional and analytical workloads is a subject that is now 

looked upon by database vendors and industry analysts. It is known as hybrid transactional and analytical 

processing (HTAP). This system must provide answers to simple transactional queries to complex analytical 

queries. Applications of HTAP include banks and trading firms which have transactions that raise the volume 

of data almost every second, and they also need to evaluate their fund at the same time. In industries related 

to telecom services, energy-related companies need to analyze their past and present states of their networks. 

HTAP allows decision-makers to become more conscious of the past and present state of the company and 

where it is going. It is also the fact that not all companies could benefit from this system as one of the factors 

could be a delay in the process itself rather than software. HTAP tries to address the few major drawbacks of 

traditional approaches [15]: 

a. Architectural and technical complexity: Earlier data had to go through the process of extraction, 

transformation, and loading (ETL) phase i.e. the data had to be extracted from the operational database, 

then transformed to be loaded into the analytical database. 

b. Analytical latency: Prior it would take a long time to turn live data into analytical data. This could be 

appropriate for certain applications like month-end combinations. But this is not feasible for real-time 

analyses. 

c. Synchronization: If both analytical and transactional databases are segregated and the researcher attempts 

to drill down to the origin at some point during the analysis, then there is a risk of “out-of-synch” error 

messages 

d. Data duplication: For keeping up predictable information all through, the conventional methodology had 

various duplicates of similar information that had to be controlled and overseen. 

e. Reader-writer problem: Conventional DBMS had the trouble executing both OLAP and OLTP together as 

readers would block writers and writers would block readers [16]. 

As a result, the demand for mixed workloads resulted in several hybrid data architectures, as 

demonstrated in the “lambda” architecture, where multiple solutions were grouped, but this increased 

complexity, time-consumption, and cost. The lambda architecture is divided into three layers: a) the batch 

layer for han- dling and pre-processing append-only collection of raw data; b) the serving layer which 

indexes batch views so that we can accommodate low latency ad-hoc queries; and c) the speed layer which 

manages all low latency requirements using quick and incremental algorithms over recent data only [17, 18]. 

The study covers the below objectives: 

a. The paper illustrates development and innovation done towards the refinement of the relational 

model in terms of data storage layout and efficient data retrieval methods. 

b. It acknowledges the complexities involved in the simultaneous usage of both transactional and analytical 

processing in a relational model with the introduction of the current approach known as hybrid 

transactional and analytical processing. 

c. The paper incorporates an understanding of big data models adopting a structured database. 

 

 

2. DATABASE 

The database is the fundamental heart for the working of huge information banks which are ensured 

by not uncovering how the information is sorted out in the framework. While structuring a database, the 

fundamental three conditions should be taken care of: Ordering dependency (whether the data should be stored 

in an ordered way or not, keeping into account insertion and deletion as a bottleneck), indexing dependency 
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(the selection of attributes for indexes should be such that they can be built and removed from time to time) 

and access path dependency (the path to be chosen to fetch the data either sequentially or by indices) [19]. 

Among the various data models for the database management system proposed over a while, this paper 

focuses on the relational model which is the most prominent. Early referencing strategies in programming 

languages didn’t distinguish the logical structure of the information from its physical structure. However, the 

relational model which was introduced in the mid-1970s gave a clear division [20]: information is organized 

as tables and it is up to the database management framework to choose how these tables are taken care of in 

the memory [21]. 

Later, as the size of data increased with the advent of the internet, the need for fast retrieval of data 

became the need of the hour. This lead to the division of a single relational model to separate transactional 

and analytical data models maintaining the structured database. On an everyday premise, the mix of addition, 

deletion, update and basic queries on data is named as online transactional processing (OLTP). However, a 

typical issue with the database is it appears to be very broad, and the techniques of query processing frequently 

search the whole set repeatedly. So one of the preliminary approaches used was sampling. In contrast to 

customary information, be that as it may, sampling information is inalienably questionable, for example, it 

doesn’t speak to the whole populace information. It is along these lines beneficial to return the results of the 

query as well as the confidence intervals that show the outcomes’ accuracy [22]. Besides, there may be no or 

too few samples in a certain section in a multidimensional space [23]. It needs some further research to 

produce trustworthy findings. The conventional astuteness says that since (1) numerous samples must be 

taken to accomplish sensible accuracy, and (2) sampling algorithms must do an I/O disk per tuple inspected, 

while query assessment algorithms can amortize the expense of an I/O disk on a page containing all tuples, 

and (3) in sampling, the overhead of starting an activity is n times when n is the number of samples taken; 

however if the query is analyzed, the overhead is just once brought about, the cost of evaluating the size of the 

query by sampling is too high to ever be effective [24]. This eventually leads to online analytical processing 

(OLAP) becoming attractive. Further, as velocity, assortment and volume of information have expanded the 

requirement for a mix of both transactional and explanatory databases is unavoidable for constant real-time 

decision making [25]. This platform which empowers to deal with an assortment of information and executes 

the two exchanges and complex inquiries with low latencies are termed as hybrid transactional and analytical 

processing (HTAP). Figure 1 represents a block diagram that summarizes the key points covered in the paper. 

 

 

 
 

Figure 1. Block diagram of HTAP 

 

 

3. DATA STORAGE MODELS 

The structure of the database can be seen as the process of representation, index creation, processing, 

and maintenance. Nelson et al. [26] proposed the evolutionary list file [ELF] structure which was adopted in 

the design of the relational model. ELF structure emphasis the key elements of file structure as entities, lists, 
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and links. The earliest implementation of the relational approach can be seen as a research project launched in 

the summer of 1968 at the Massachusetts Institute of Technology known as Mac advanced internet 

management system (MacAIMS) [27], incorporating reference numbers now known as primary keys, user 

access rights, and B-tree concept. Thereafter, several relational data models were proposed of which a few 

are mentioned below. 

 

3.1.  N-ary storage model (NSM) 

This model is also well-known as a row-store where N stands for the number of columns in the 

table. Most of this DBMS followed the volcano-style processing model in which one tuple (or block) of 

information is processed at a time. Row stores claim to stake for workloads that query an increased number 

of attributes from wide tables. These workloads include business (e.g., network performance and management 

applications) as well as in scientific fields (e.g., neuroscience, chemical, and biological applications). Several 

important datasets, related to the medical field are made of more than 7000 attributes. One of the solutions 

being, constantly increasing support for large tables, for instance, SQL Server today permits 30K columns per 

row but at the maximum, only 4096 columns are allowed in the SELECT query. This storage layout shows 

slower performance for OLAP queries where there is a need for a limited number of attributes, as row-stores 

generate disk and memory bandwidth overhead [28, 29]. 

 

3.2.  Decomposition storage model (DSM) 

DSM [30] partitions an n-property relationship vertically into n sub-relations, which are accessed 

based on the interest for the corresponding values of the attribute. In each sub-relation of the component, a 

surrogate record-id field is required with the goal that records can be arranged together. Sybase-IQ 

incorporates vertical partitioning for data warehouse applications within conjunction with bitmap indices 

[31]. DSM needs consid- erably less I/O than NSM for table scans with just a few attributes. Queries 

involving multiple attributes from a relationship need to spend extra time bringing the participating sub-

relations together; this extra time can be important. There is also space wastage for the extra record-id field in 

each of the sub-tables. 

 

3.3.  Partition attributes across (PAX) 

PAX [32] addresses the issue of low cache utilization in NSM. Unlike NSM, all values of a specific 

attribute are grouped by PAX on a mini page within each page. PAX makes full use of the cache resources 

during sequential access to data, as only the values of the required attribute are loaded into the cache. PAX 

does not optimize the I/O between disk and memory relative to DSM. Unlike NSM, PAX loads all the pages 

that belong to the relationship for scans into the memory, regardless of whether the request needs all or only a 

few of the attributes. 

 

3.4.  Multi-resolution block storage model (MBSM) 

MBSM [33] is responsible for handling both I/O performance and main memory cache use. It shares 

the positive cache behavior of PAX where attributes are stored in physical contiguous segments. Disk blocks 

are grouped in super-blocks with a single-record stored in a partitioned manner among the blocks and then 

these blocks in-turn are organized in fixed-size mega-blocks on the disk. MBSM only loads pages from the 

disk with the values of related attributes. Better performance while inserting/updating data and does not need 

a join to rebuild records. They work faster for sequential scanning and slower for random. They are optimized 

for un-compressed fixed-width data. 

 

3.4.  Column-stores 

Column-store systems [34] partition a database vertically into a collection of separately stored 

individual columns. Here, instead of the primary keys, virtual ids are used as tuple identifiers, as ids reduce 

the width of the information stored on the disk. The offset location is used as the virtual identifier. It is useful 

for OLAP operations. It offers better cache usage bypassing cache-line sized blocks of tuples among operators 

and working on different values one after another, instead of utilizing an ordinary tuple-at-a-time iterator. It 

also provides late materialization, compression and decompression techniques, Database cracking and 

Adaptive indexing features. Druid [35] is an open-source real-time analytical data store which is column 

oriented in structure. It supports two subsystems one in the historical node for read-optimization and others in 

the real-time nodes for write-optimization. However, the real-time system is used to ingest high data but does 

not support data updates. The drawbacks include frequent multiple inserts and updates are slow. 
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3.5.  Hybrid stores 

If one knows a priori the workload for a given application, then it is possible to use a sophisticated 

hybrid system that can be precisely calibrated for the given workload. Through the analysis of query workloads, 

a cache-efficient attribute layout can be designed. This is the concept followed in data morphing [36]. This 

layout can then be used as a template for storing data in the cache. As a consequence, fewer cache misses 

occur during query processing when compared to NSM and DSM under all types of workloads. The drawback 

of this technique is that, if the query workload changes dynamically reorganizing data according to new data 

layout can take time and make performance decrease. Along these lines, below are mentioned few such hybrid 

systems [37]. 

a. In clothe storage model, separate data layouts are designed for in-memory and non-volatile storage. 

Clotho creates in-memory pages individually tailored for compound and dynamically changing work-

loads, and enables efficient use of different storage technologies (e.g., disk arrays or MEMS-based storage 

devices) [38]. The layout on the disk follows the PAX model and the in-memory pages contain attributes 

according to queries’ demands. 

b. Fractured mirrors retain the best of the two data models namely NSM and DSM. Fractured mirrors create 

data layouts of both NSM and DSM in the two disks but they are not identically mirrored [39]. If the 

NSM table is divided into two equal segments and similarly DSM is divided into two equal segments. 

Then, one combination will be on one disk and so on the other. Since, if there is a query skew then there 

will be maximum disk utilization. Also, due to fractured mirrors, better query plans can be formulated to 

minimize the L1 and L2 cache misses. The drawback of Fractured Mirrors design is the duplication of 

space 

c. H2O [40] presents two new concepts. One is data access patterns and multiple storage layout for a single-

engine. The system decides an adaptive hybrid system during query processing that which partitioning 

model is best for that query class and its corresponding data pieces. As the load changes based on the 

query, the storage, and the access patterns will continuously change to it accordingly. Vertical partitioning is 

done based on creating groups of columns that are frequently accessed together. 

d. Dynamic vertical partitioning [41] uses a set of rules for the development of an active system called 

dynamic vertical partitioning-DYVEP which dynamically partitions distributed database in the vertical 

order. In the case of static vertical partitioning, some attributes may not be used by queries hence wastage of 

space. So, in this approach DYVEP monitors queries and collects and evaluates relevant statistics for the 

vertical partitioning process to decide if a new partitioning is necessary, and if so, it fires the Vertical 

Partitioning algorithm. If the vertical partitioning scheme is better than the already existing one, then the 

system reorganizes the scheme. The architecture of DYVEP has three modules: Statistic collector, 

partitioning processor, and partitioning reorganizer. Acceptable query response time was observed when 

experimented on a benchmark database TPC-H. 

Narrow partitions perform better for columns accessed as a major aspect of analytical queries (for 

example through successive scans). Conversely, wider partitions perform better for columns accessed as a 

major aspect of OLTP-style query, because such exchanges frequently insert, delete, update, or access huge 

numbers of a row’s fields. It was seen that performance improvement of 20 percent to 400 percent over pure all 

column or all row structures is both increasingly adaptable and delivers better plans for main memory 

frameworks than past vertical partitioning approaches. Database device vendors have different storage 

engines to serve workloads with different characteristics effectively under the same software suite. For 

example, MySQL supports multiple storage engines (e.g. InnoDB, MyISAM), but it is difficult to 

communicate on the storage layer between different data formats. More specifically, a different execution 

engine is required for each storage engine. 

 

 

4. RELATED WORKS ON DATA RETRIEVAL 

This section is divided into third subsections. The first section presents various strategies adopted 

for data indexing. The second subsection describes the common query processing techniques used to speed 

up the data retrieval process. The third subsection describes the concurrency control methods used to prevent 

transaction mismatches. 

 

4.1.  Indexing 

Relational model indexing [42] is a blessing for the database management system for fast and quick 

retrieval of data through bypassing the traversal of every row. An index may include a column or more, and 

sometimes the size of an index may grow larger than the table it is being created for, but eventually, the index 

will provide a rapid lookup and fast access to the data. This compensates for the overhead of having indexes. 

Table 1 provides a glimpse of various indexing strategies followed so far. 
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Table 1. Various indexing methods 
Indexing Strategy Ref Properties Challenges 

B-Tree [43] to manage situations where records 

were expected to surpass the size of 

the main storage and disk operations 
were required 

Simultaneous updates 

Log Structured Merge-tree [44] insertion efficiency their query performance is comparatively worse 

than a B- Tree 
Bloom Filter [45] negligible space Storage savings are at the cost of false positives. 

However, this drawback does not impact 

information processing if the likelihood of an 
error is small enough 

R-tree [46] manage this multidimensional array 

queries effectively 

Index consumes more memory space 

Minmax indexes or block 

scope indexes 

[47] quick scanning of extremely large 

tables 

the need to update each page range’s  stored  

min/max values as tuples are inserted into them 

Inverted index [48] Recommended for fast keyword and 
full-text searches. Here, the query is 

resolved by looking at the word ID 

in the inverted index 

large storage and mainte nance cost for insert, 
update and delete operation 

Function-Based Indexes [49] built on expressions-works on lin 

guistic sorts, case insensitive sorts 

can be used only on cost-based optimization 

Application domain in- dexes [49] applies   to   specific application 
domain-used mainly in applica tions 

related to spatial data, video clips 

application-specific software related to 
indexing has to be incorporated 

 

 

4.2.  Query processing 

A query is a language expression that identifies information from a database to be retrieved. To address 

a query, a database optimization algorithm must choose from several known access paths [50]. The point of 

query optimization is to discover a query assessment technique that limits the most significant performance 

metric, which can be the CPU, I/O, and network time, the time-space result of locked database objects and 

their lock span storage costs, complete resource use, even energy utilization (for example for battery-controlled 

laptops), a mix of the above-mentioned, or some other performance measures [51]. Table 2 presents several 

related studies dealing with query optimizations. The internal specifics of implementing these access paths and 

deriving the associated cost functions are beyond the scope of this paper. 

 

 

Table 2. Studies related to query optimization 
Ref. Objectives Method 

[52] Proposed a method of dynam ically 

adjusting database per formance in a 

computer system based on the 
request made by the database query. 

Access plans are generated for incoming process query and for each of the plans the 

desired memory is calculated and the estimated cost for the same is calculated. A 

comparison is done with the estimated cost for the current memory. 

[53] Addresses the problem of cleaning 

the stale data from Materialized 
Views 

This clean sample is used to estimate aggregate query results. The approach is a 

maintenance view strategy that is employed periodically for a given materialized view. 
During this periodic interval, the materialized view is marked stale and an estimated 

up-to-date view is developed. 

[54] Proposes a caching method whereby 
the compiler is optimized to perform 

caching. 

Every cache is assigned a Web variable. If a query is run with no WHERE clause, then 
no free Web variable is assigned. However, if a query has WHERE clause, then that 

condition field becomes the Web variable. Based on the insert and update on the web 

variable, accordingly, the cache is refilled 
[55] Design a web cache with im proved 

data freshness 

The main memory database is used to cache result sets of previous queries for 

subsequent reusing. Invalidation of the cache works by replacing or deleting obsolete 

data directly in a caching system. For single table queries, the parser extracts the 
selection predicates from the where clause and maintains a list of predicates and its 

corresponding rowsets in the cache. 

[56] Extends traditional lazy evaluation In lazy evaluation, by contrast, the evaluation of a statement does not cause the 
statement to execute; instead, the evaluation produces a single batch of all the queries 

involved in building the model until the data from any of the queries in the batch is 

needed either because the model needs to be displayed, or because the data is needed to 
construct a new query. 

[57] Analyses of multiple queries and 

suggests frequent queries and query 
components. 

Mining query plans for finding candidate queries and sub-queries for materialized 

views will, in turn, optimize all the queries of these components. These frequent 
components may represent frequent sub-queries. Here, importance is given to the 

analysis of query execution plan than to the query text since most of the time query is 

the same but the representation of it in text form is different. 
[58] Dynamically adjusts the materialized 

view set using Clustering  

With the help of the similarity threshold, a cluster of SQL queries is found and any new 

query whose similarity is below the threshold, then a new cluster is formed. 
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4.3.  Concurrency control 

OLTP DBMS supports the part that communicates with end-users. End users send requests for some 

purpose (e.g. buy or sell an item) to the application. These requests are processed by the application and then 

the transactions are executed in the database to read or write to the database. Concurrency control has a long 

and rich history that goes back to the start of database systems. Two-phase locking and time-stamp ordering are 

the two classes of algorithms used in concurrency control. The first method of ensuring the proper execution 

of simultaneous DBMS transactions was the two-phase locking (2PL). Under this scheme, transactions must 

obtain locks in the database for a particular element before a read or write operation on that element can be 

performed. 2PL is considered a negative approach because it believes that transactions overlap may occur and 

therefore need to be locked. However, if this lock is uncontrolled, it may lead to deadlock. Another approach 

is the Timestamp ordering (T/O) concurrency control scheme where an increase in timestamp is produced for 

serialization of transactions. These timestamps are used during conflicting operations such as reading and 

writing operations on a similar component, or two different write operations on a similar element [16]. 

Multi-core systems are now omnipresent [59], conventional DBMSs, however, still scale poorly 

beyond a few cores. The main weakness of OLTP databases is their concurrency control algorithm. Previous 

work showed that concurrency control algorithms suffer from bottlenecks of both fundamental and artificial 

scalability [60, 61]. Threads spend a significant amount of time waiting for a global lock to be obtained by a 

large number of cores. This is a fundamental bottleneck inherent in the way these algorithms work. The two 

major scalability bottlenecks: (1) conflict detection and (2) allocation of timestamps. The conflict detection 

bottleneck is detecting and resolving deadlocks is a burdensome operation that consumes most of the 

transaction’s processing time as the number of cores increases, even for relatively low contention levels. 

Although recent work improves some artificial weaknesses, fundamental bottlenecks remain. 

In conventional databases, the function of concurrency control mechanisms is to decide the 

interleaving order of operations between simultaneous transactions over shared data. But there is no 

fundamental reason to rely on concurrency control logic during the actual execution, nor is it necessary to 

force the same thread to be responsible for the execution of both the transaction and concurrency control 

logic. This significant in- sight was found in subsequent studies [62] which could lead to a complete paradigm 

shift in how we think about transactions [63, 64]. It is important to note that the two tasks of placing the order 

for accessing shared data and implementing the logic of the transaction are completely independent. Such 

functions can therefore tech- nically be carried out through separate threads in different phases of execution. 

For instance, Ren et al. [65] propose ORTHRUS which is based on pessimistic concurrency control, where 

transaction executing threads delegate locking usefulness to devoted lock manager threads. ORTHRUS 

depends on explicit message-passing to convey among threads, which can acquaint pointless overhead with 

transaction execution regardless of the accessible shared memory model of a single machine. 

Multi-version concurrency control (MVCC) is a commonly used method for concurrency control, as 

it enables modes of execution where readers never block writers. MVCC methods have a long history as 

well. Rather than refreshing data objects, each update makes another version of that data object, with the end 

goal that simultaneous readers can, in any case, observe the old version while the update transaction continues 

simultaneously. Therefore, read-only transactions never need to pause and don’t need to utilize locking. This is 

an amazingly desiring property and the motivation behind why numerous DBMSs actualize MVCC [66]. The 

optimistic approach to concurrency control came from Kung and Robinson, but only one-version databases 

were considered [67]. The optimistic techniques [68] are used in applications where transaction conflicts are 

very rare. In this approach, the transactions are allowed to perform as desired until a write phase is encountered. 

Thereby, increases the degree of concurrency. 

Snapshot isolation (SI) [69] is a multi-versioning scheme used by many database systems. To isolate 

read-only transactions from updates, many commercial database systems support snapshot isolation which not 

serializable (Oracle [70], SQL Server [71] and others). However, many articles have addressed the conditions 

under which SI can be serialized or how it can be serialized. In 2008, Cahill et al released a detailed and 

realistic solution [72]. Their technique requires transactions to check for dependencies of read-write. 

Techniques such as validating read and predicate repeatability checks have already been used in the past [73]. 

Oracle TimesTen [70] and solidDB [74] from IBM employ multiple lock types. 

 

4.4.  RUM conjecture 

The fundamental challenges faced by every researcher, programmer or network architect when 

designing a new access method is how to reduce read times (R), upgrade costs (U), and memory/storage 

overhead (M). It is observed that while optimizing in any two areas would negatively impact third. Figure 2 

presents an overview of RUM conjecture. 

The three criteria that people working on database systems are seeking to design for are outlined by 

researchers from Harvard DB lab: Read overhead, update overhead, and memory overhead [75]. Tree-based 
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data structures [76] are mainly targeted for improving the read requests, traded for space overhead and increase 

in update time as the nodes get shifted and new nodes get added. Utilizing adaptive data models gives better 

read execution at a greater expense of support. Adding metadata to permit traversals, (for example, 

fragmentary falling) may influence write time and space yet may expand read time. 

 

 

 
 

Figure 2. Indexes in the RUM space 

 

 

LSM-Trees [44], the Partitioned B-tree [77] and the Stepped Merge algorithm [78] optimize the 

performance of write. All updates and deletions in LSM Trees do not require searching for disk data and 

guarantee sequential writings by deferring and buffering all insert, modifying and deleting operations. This 

comes at a price of higher maintenance costs and compaction requirements and more expensive reads. At the 

same time, LSM Trees help improve memory performance by avoiding reserving space and enabling block 

compression. 

Compression (for instance, algorithms, for example, Gorilla compression [79], delta encoding, and 

numerous others) could be used to maximize memory capacity, adding some read and write overhead. Heap 

files and hash indexes, for example, will give great performance guarantees and lower overhead storage due 

to the simplicity of file format. Trade efficiency reliability can be tested by using approximate data structures 

such as Bloom Filter [45], HyperLogLog [80], Count Min Sketch [81], Sparse Indexes such as ZoneMaps 

[82], Column Imprints [83] and many others. Choosing which overhead(s) to streamline for and to what 

degree, stays a noticeable piece of the way toward planning another access method, particularly as hardware 

and workload changes after some time [84]. 

 

 

5. STORAGE-TIERING TECHNIQUES 

Storage tiering [85], or transferring data between different storage types to suit data I/O 

characteristics to that of storage, is a strategy that administrators have been using for many years. Data aging is 

the easiest and most common reason for this. That is, as sections of the data age, they change their access 

patterns, and are less likely to be accessed: the data will cool down and eventually get cold. Cold data have 

very different I/O patterns from warm and hot data, and thus storage needs. Also, hot data may have specific 

storage needs for a largely random I/O pattern for an OLTP server workload. For example, SQL Server can 

use a design based on a per-node or a CPU. Even latches and memory objects can be dynamically partitioned 

by SQL Server to minimize a hot spot. 

There are different customary strategies for surveying whether the data is viewed as significant: (i) 

frequencies analysis because of the workload, (ii) predefined business rules dependent on expert examination 

or functional expertise, and (iii) storing (cache) approach. The principle behind the access frequency analysis 

is simple: the more data is accessed, the more important it is and hence the higher the likelihood of repeated 

accesses. There are various approaches to quick and resource-efficient monitoring of data accesses. One ex- 

ample is the logging scheme proposed by Levandoski et al. [86] using techniques of sampling and smoothing 

to minimize memory usage. By contrast, rule-based approaches require application experts to work manually 
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[87]. An example might be: “All payments made older than a year are cold.” Business rules have many 

advantages: knowledge of the domain. High precision can be introduced, especially given the time parameter. 

But at the same time, experts can devise rules that are too weak and lose the potential for optimization. Also, 

current online transactional or analytical processing (OLxP) frameworks are getting progressively 

unpredictable be- cause of the combination of different platforms (for example operational reporting, 

warehousing, transaction processing, information mining applications, and so forth.) which make rule-driven 

experts move towards impossible in the long haul. Caching is another way of finding important data. For 

example, page buffer monitoring using least recently used or most recently used policy [88]. Such methods 

can be faster than frequency approaches and consume less memory. On the other hand, they may be less 

precise and have high bookkeeping overhead. Developers need to update their cache configuration constantly 

as the workload of their application varies [89]. In reality, however, it is difficult to identify changes in 

workload for large applications [90]. Despite understanding the improvements in the workflow, developers 

still have to make a lot of effort to understand the new workload and re-configure the caching system 

manually. 

The technique for query filtering and tuple reconstruction was suggested by Boissier et al. [91]. All 

the attributes used to evaluate the query are stored in DRAM. This info gives enough data to rebuild the 

information separating it into two segments: (i) tuples kept in main memory and (ii) tuples moved to disk. 

Two methods were presented to compute the hotness of a table cell and discussed the advantages and 

disadvantages of both approaches. To do as such, they presented two kinds of bit-vectors: columnar and row 

vectors, containing data about the hotness of a column or a row. They at that point proposed to cluster segments 

with comparative hotness behavior and to consolidate columnar vectors of each cluster into a single vector. This 

helped to reduce the complexity of sorting large datasets and tuple reconstruction. 

 

5.1.  Big data models-interdependence and complementary 

5.1.1. Data storage model 

SQL in Map-reduce systems: Mapreduce, well-known for processing very large datasets in a parallel 

fashion using computer clusters is a highly distributed and scalable program. However, when it comes to 

joining different datasets or finding the top-k records, it is comparatively slow. To overcome this, the 

relational approach needs to be adopted. As such two strategies are employed (1) Usage of SQL-like 

language on top of Map-reduce, e.g., Apache Pig and Apache Hive (2) inte- grate Map-reduce computation 

with SQL e.g., Spark. 

Not only SQL (NoSQL): NoSQL provides higher availability and scalability over traditional databases 

by using distributed and fault-tolerant architecture [92]. With these computers can be added easily, replicated 

and even support consistency over a while. The various types of NoSQL being Key-value store (e.g 

Cassandra, Riak), Document-store (e.g, Couch DB, Mongo DB), Tabular data- stores (e.g, HBase, BigTable) 

and Graph Database. However, in most of these, creating custom views, normalization and working with 

multiple relations is difficult. Though originally SQL was not supported by NoSQL, present observations 

indicate the need for highly expressive and declar-ative query language like SQL. This is observed in a 

couple of systems like SlamData, Impala and Presto that support SQL Queries on MongoDB, HBase and 

Cassandra [93]. 

Graph database is widely explored nowadays to analyze massive online semantic web, social 

networks, road networks and biological networks. Reachability and shortest path queries are time- consuming 

to be performed in relational databases using SQL. Writing recursive and chains of joins is unpleasant. 

However, since RDBMS stores many relations that can be related to graphs in the real application, 

combination of the two, could produce better results. AgensGraph [94] is a multi-model graph database based 

on PostgreSQL RDBMS. It enables developers to integrate the legacy relational data model and the flexible 

graph data model in one database. 

NewSQL: This class of database incorporates both the scalability and availability of NoSQL systems as 

well as the ACID properties of the relational model. Systems with SQL engines like InfoBright and MySQL 

Cluster support the same interface like SQL with better scalability. Sharding is done transparently in systems 

like ScaleBase and dbShards providing a middle layer that fragments and distributes databases over multiple 

nodes. Based on the application scenarios, most of these new SQL systems are used to learn SQL [60]. 

 

5.1.2.  Indexing 

Indexing in big data is a challenge for several reasons [95], primarily because the volume, variety, 

and velocity (3V’s of Gartner’s definition) of big data are very large; a generated index should be small (a 

fraction of the original data) and fast in comparison with the data because searches must consider billions or 

even trillions of data values in seconds. As big data models entertain multi-variable queries, indexing is 

required to be in place for all in-operation variables to provide faster access for individual variable search 
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results that are further combined for a collective response as a whole. Models should have the ability to 

produce smaller indexes when there is a possibility for granularity reduction. The indexes should be able to 

be portioned easily into sections whenever the opportunities for parallel processing arise. As the rate of data 

generated under the big data era is very large, to process data in place, an index should be built at the same 

rate. The indexing strategies in Big Data can be classified into artificial intelligence (AI) approach and non-

intelligence (NAI) approach. 

In AI, the indexes are formed based on a relationship that is established by observing similar 

patterns and traits among data items or objects. The two popular approaches for the AI indexing approach 

are: 

a. Latent semantic indexing (AI) which uses singular value decomposition for finding patterns between 

unstructured databases. It consumes more memory space. 

b. Hidden Markov model is based on the Markov model. It uses states connected by transitions that depend 

on the present state and independent of previous states. States depend on the current query and store the 

results and it also helps to predict future queries. It demands high computational performance. In NAI, 

the indexes are based on frequently queried data sets. It uses indexes used in the relational model like B-

tree, R-Tree, X-Tree, LSM, bloom filter. Also, there are indexes like generalized search trees, 

generalized inverted index which is implemented similar to B-tree and supports arbitrary indexes. 

 

5.1.3. Query processing 

Even for newer platforms based on MapReduce and its variants, the interest in big data models 

which are well known for highly parallel platforms, the network-transmission cost, storage cost, I/O cost of 

movement of data across nodes is significant when query optimization is concerned. The popular frame- work, 

such as MapReduce hence lags in query processing efficiency [95]. In Map Reduce, a query also has to be 

translated to a set of MapReduce jobs sentence by sentence. This is time-consuming and dif- ficult. Hence, 

high-level languages proposed for Map-reduce such as PIG and HIVE resemble SQL in many ways. 

Google’s BigQuery runs in the cloud to overcome the optimization Issues. Here, the data is not indexed 

instead stored in columnar format and b-tree architecture is used. In this tree, the data is distributed among 

nodes. It provides a query language similar to SQL. Cassandra employs materialized views for complex 

query analysis. Expensive table joins and data aggregation is excluded. 

 

5.1.4. Concurrency control 

Versioning the database is an important feature to control concurrency in big data models [95]. New 

changes are assigned a number, known as the version or revision number. It allows us to find the latest 

version of a database table and eases audit trailing. MongoDB, CouchDB, HBase, Google’s BigTable are few 

examples which use versioning. With this powerful technique of versioning for such voluminous data, comes 

the potential problems like all the data that makes the particular version needs to be stored again in the 

database. This could lead to interdependencies between objects so to track the differences is a task. 

 

 

6. HTAP 

HTAP systems are capable of reducing deployment, maintenance, and storage costs by eliminating 

the ETL cycle and, most significantly, allowing real-time analysis over production data. Terms such as online 

transactional analytical processing (OLTAP) or Online transactional or analytical processing (OLxP) are also 

synonymous with them [96]. The Oracle RDBMS in-memory option (DBIM) [97] is an industry-first 

distributed dual-format architecture which enables highly optimized columnar-format processing of a 

database object in main memory to break performance barriers in analytical query workloads while retaining 

transactional compatibility with the corresponding OLTP optimized row-major format which remains in 

storage and accesses through the database buffer cache. 

SAP HANA scale-out extension [98], a modern distributed database architecture was designed to 

separate transaction processing from query processing and use a high-performance distributed shared log as 

the persistence backbone. It provides full guarantees of ACID (Atomicity, Consistency, Isolation, and 

Durability) and is based on a logical timestamp framework to give MVCC-based snapshot isolation without 

requiring synchronous replica refreshes. Rather, it uses asynchronous update propagation to ensure 

consistency with the validity of timestamps. MemSQL[99] is a distributed memory-optimized SQL database 

which is a shared- nothing architecture that excels in analytical and transactional mixed-time processing. This 

exploits in-memory data storage with MVCC and memory-optimized lock-free data structures to permit 

highly simultaneous reading and writing of data, empowering ongoing analytics over an operational database. 

It ingests as well as keeps the data in row format in the in-memory. However, once data are written to disk, it 

is translated to columnar format for faster review. 
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Appuswamy et al. [100] designed a new architecture for the hybrid transaction and analytical 

processing named heterogeneous-HTAP (H2TAP). OLAP queries are data-parallel tasks. HTAP uses the 

kernel-based execution model for executing OLAP queries on the GPU. However, for OLTP queries which 

are task-parallel tasks, it uses message passing-based parallelism. Kemper et al. [34] proposed a hybrid 

system, called HyPer, which can handle both ongoing and analytical queries simultaneously by maintaining 

consistent snapshots of the transactional data. HyPer maintains the ACID properties of OLTP transactions as 

well as executes multiple OLAP queries by taking the current and consistent snapshots. The system makes 

use of the operating system functionality of using fork(). All modifications to OLTP are made to a different 

area called Delta which consists of replicated database pages. OLAP operations are given the view of virtual 

memory. Whenever a transactional query is performed using the fork()-operation a virtual memory snapshot is 

created. This will be used for executing the OLAP session. Frequently, OLAP is converged with the Delta by 

forking another process for the state-of-the-art OLAP session. 

The project Peloton [101] intends to create a self-governing multi-threaded, in-memory HTAP system. 

It provides versatile data organization of data, which changes the data design at run-time based on-demand 

type [102]. Wildfire [103] is an IBM Research project which produces an HTAP engine where both analytical 

and ongoing requests go through the same columnar data format., i.e. Parquet [104] (non-proprietary storage 

format), open to any reader for all data. The Spark ecosystem is also used by Wildfire to allow distributed 

analytics on a large scale. This allows analysis of the latest committed data immediately by using a single data 

format for both data ingestion and analysis. 

Sadoghi et al. [105] proposed L-Store (direct information store) that joins ongoing transaction and 

analytical workload handling inside a single unified engine by creating a contention-free and lazy staging of 

data from write-optimized to read-optimized data. Pinot [106] is an open-source relational database that is 

distributed in nature proposed by LinkedIn. Though it is designed mainly to support OLAP, for applications 

that require data freshness, it is directly able to ingest the streaming data from Kafka. Like a traditional 

database, it consists of records in tables that are further divided into segments. The data in segments is stored 

in columnar format. Hence, data size can be minimized using bit packing, etc. 

 
 

7. PERFORMANCE FACTORS 

Various key performance factors affect the performance of the database. Learning these variables 

helps identify performance opportunities and avoid problems [107]. The performance of the database is 

heavily dependent on disk I/O and memory utilization. The need to know the baseline performance of the 

hardware on which the DBMS is deployed is needed to set performance expectations accurately. Hardware 

component performance such as CPUs, hard drives, disk controllers, RAM, and network interfaces will have a 

significant impact on how quickly your database performs. System resources are, therefore, one of the key 

factors affecting performance. The overall system performance may be influenced by DBMS upgrades. 

Formulation of the query language, database configuration parameters, table design, data distribution, etc., 

permit the optimizer of the database query to create the most productive access plans. 

The workload equals all the requests from the DBMS, and over time it varies. The overall workload is 

a blend at some random time of user queries, programs, batch tasks, transactions, and machine commands. For 

example, during the preparation of month-end queries, there is an increase in workload whereas the other days’ 

workload is minimum. Workload strongly influences database performance. The selection of data structures 

that adapt to changes in workloads and pinnacle request times plans help to prepare for the most productive 

utilization of the system resources and enables the maximum possible workload to be handled. 

The transaction throughput generally measures the speed of a database system, expressed as a number 

of transactions per second. Disk I/O is slower relative to other system resources such as CPU which reduces 

throughput. Hence, techniques are identified to keep more data in cache or memory. The contention is another 

condition where at least two workload components endeavor to utilize the system in a clashing way for 

instance, multiple queries endeavoring to refresh a similar bit of information simultaneously or various work- 

loads going after system resources. Along these lines, throughput diminishes as the contention increments. 

Latency otherwise called response time or access time is a proportion of to what extent it takes the database 

to react to a single request. Two such latencies in the database are (i) write latency is the number of mil- 

liseconds required to fulfill a single write request. (ii) read latency is the number of milliseconds required to 

fulfill a read request [108]. In parallel databases, every lock operation in a processor introduces a lot of 

latency. Overload Detection is also desired to restrict the response time of a server to be below a certain 

threshold to retain customers [109]. Nevertheless, if many user transactions are executed concurrently, a 

database system can be overwhelmed. As a consequence, computing resources such as CPU cycles and 

memory space can be exhausted. Also, because of data contention, most transactions can be blocked or 

prematurely ended and restarted. 
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In terms of physical space and query processing time, cost models are useful in analyzing the cost 

[110]. Cost models provide the inputs (data distribution statistics and operator execution algorithms in a 

query plan) needed to estimate the cost of query plans and thereby facilitate the selection of optimal plans 

[111, 112]. An important concept underlying the execution of a query plan is that it takes fewer resources 

and/or minimum time to process fewer data [113]. What series of operations require fewer data and time for 

request execution is not always clear. Thus, the cost model provides some real insight into a database 

system’s actual physical design and performance. 

 

 

8. CONCLUSION  

The study focused on the importance of relational model merits to the big data. Potential determinants 

(e.g. data storage layouts and data retrieval techniques) related to the relational model were also highlighted. 

The paper mainly contributed to the literature on the storage layouts, indexing, query processing, and 

concurrency control techniques in the relational model. The study revealed there are a few key areas that still 

need to be worked upon in the relational models. The identification of gaps in indexing has led to an 

understanding that it is not straightforward to index the data being distributed and accessed on a large scale to 

allow efficient point lookups. Faster point access to these objects is still an open issue. Efficient indexing 

algorithms have been explored, but as the RUM conjecture states, any two optimizations lead to the third 

being reduced. Con-currency in many-core systems is still a matter of research. In the case of MVCC, the 

overhead grows with each concurrent update. 

The paper also highlighted the on-going research on hybrid transactional and analytical processing 

(HTAP). While there are many systems classified as HTAP solutions out there, none of them support true HTAP. 

Current frameworks provide a reasonable platform to support transactional as well as analytical requests when 

sent separately to the system. Nonetheless, none of the existing solutions support effective transactional and 

analytical request processing within the same transaction. However, today most HTAP systems use multiple 

components to provide all the desired capabilities. Different groups of people usually maintain these different 

components. It is, therefore, a challenging task to keep these components compatible and to give end-users 

the illusion of a single system. Last, the study also proffered the acceptance and implementation of a few 

significant methodologies of the relational model in big data. The present system demands for data to be both 

“offensive” (data being exploratory) and “defensive” (control of data). 
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