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GROWTH PROBLEMS FOR A CLASS OF ENTIRE
FUNCTIONS VIA SINGULAR INTEGRAL ESTIMATES

BY

DANIEL F. SHEA AND STEPHEN WAINGER

Let f be an entire function with zeros {z,}, and let

M(r, f) max0 f(re’)l, L(r, f) min0 f(re’)l,
n(r) n(r, O;f)= L 1,

log log M(r, f)
p lim sup

_. log r

We consider a problem motivated by a classical theorem of P61ya and Valiron;
this gives lower bounds for

(1) c(f)- lim,_.sup log M(r, f)
for functions of finite nonintegral order p. Let

C(p) inf {c(f):fof order p}.
Then P61ya [6] and Valiron [9] [10] proved, independently, that

1
(2) C(p)=-sinp (0pl),

[sin tpl (1 < p < c),
1

sin ,ol > C(p) >
Ao{log p + 1}lsin t,o +(3)

for an absolute constant Ao. The upper estimate in (3) comes from the Lin-
del6f functions

fo(z) ,I-I1= 1 + exp tk (a p -1, q [p]),

for which n(r),- r’, log M(r,f), n lcsc rtp [r when p is nonintegral and
r - o. We conjecture that these fo, having all zeros regularly distributed on a
single ray arg z constant, are extremal for this problem, i.e. that C(p)=
n- [sin p [. But not even the order ofmagnitude of C(p) is known, for p large.
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In this direction, we prove the existence of an absolute constant A such that

(4) c(f)>_Alsinpl (l<p<o)
forfof order p, all of whose zeros lie on a single ray arg z rt, say. For thesef
our proof gives, in fact, an estimate for n(r) in terms of

(5) B(r, f) sup log f(rei)]

for a fixed branch of log f(z).

THEOREM 1. Let f have all zeros real and negative. Then

n(r)(6) lim_.sup B(r, f)
> A lsin tpl (1 < p < o).

We deduce (6) from a known Stieltjes transform representation for log f(z),
cf. (1.2) below, by using singular integral estimates to obtain the L norm
inequality

{ n(r) P x/piB(r) )p Ix/P <_ (A sin ()) tfR. ] dr(7) ifR. trq+ dr --This is valid for q [p], p (q + 1 p)- + e, and suitable sequences e, --, 0,
Rn--- oo.
By iterating (7)we deduce the following:

COROLLARY. Letfhavefinite nonintegral order p. Ifall the zeros off lie on v
rays through O, then

A
(8) c(f) >_- sin riP I,

(9) lim sup
log L(r, f) v

r-. n(r) -> csc rtp

where A is the constant in (6).
While (4) may remain true for all entire functions of order p, some restriction

on the arguments of the zeros is essential in (6) and (9). W. K. Hayman has
constructed entire f of any order p (Po -< P < )with

log L(r, f)
limr_.sup n(r)

<_ -Bo log p

where Bo and Po are positive absolute constants (cf. the estimates on
pp. 501-503 of [4]).

Concerning the correct value of C(p), Valiron [10] asserted that the lower
estimate in (3) has the correct order of magnitude for large p, i.e. that

(10) c(f) < B/log p
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for somefof arbitrarily large half-integral order, but his argument is incorrect.
Wahlund [11] claimed to have an example showing that C(p) < -x Isin zpl
for nonintegral order p > 1 but, as far as we know, this example was never
published.
From (8) we see that functions which satisfy (10), with p large and half-

integral, say, would have to have zeros with fairly complicated sets of argu-
ments. However, these zeros could not be expected to be very uniformly spread
throughout the plane, as in Hayman’s examples [4], since those f satisfy
n(r) > A log M(r, f) (ro < r < oo) with A independent of p.
The P61ya-Valiron result (3) was established at a special sequence of r-values

(these days often called the P61ya peaks of n(r)), i.e. their proofs give

(11 lim inf
j-oo

n(r) sin

log M(ri, f) >- Ao{log p + 1)Isin rp + zt

for any entire f of order p and {rj} any sequence satisfying rj o and

(12) n(t)< n(ri)()
p-

(1 _<t <ri), n(t)< n(ri)()
p+

(t>ri)

for some ej 0 (j --. ).
Perhaps surprisingly, the bound in (11) does have the correct order ofmagni-

tude, as an inequality at the P61ya peaks of n(r), even for the functions of
Theorem 1" In Section 3 we construct f, of arbitrarily large order p and with
negative zeros only, for which

(13) lim sup n(r) <
2

-.oo log M(r,f) log p

holds for every sequence {rj} of peaks of n(r)(or of log M(r, f)). Since these f
satisfy both (4) and (13), and since the second part of (3)is derived from (11),
there is no reason to believe that (3) gives a good lower estimate for C(p).
We mention that our inequalities (6)-(9) have restatements with n(r) replaced

by S(r)= n(t) dt/t, provided the constant A is replaced throughout by Alp.

1. Proof of Theorem 1

We put q [p] and assume f(0)= 1. Then for any s > 0 we can write

(1.1) logf(z) log rIs(z + Rs(z
where

IIs(z)- l-[t.>s 1+ , exp tk (Zn=--tn<O)’

IR(z)l <_ C log M(2s, f) (1 1 =r _> 2s)
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for a constant C (Edrei and Fuchs [1], pp. 296, 313, 314).
After an integration by parts,

(1.2) log n()= (-1)’z’+’
dt

q+ + z

From (1.2)and (5),

(1.3) B(r, I-l) rq+ suPo

K(r, t, O)= e

(larg zl < :).

,j. n(t, o; rli_)K(r, t, O)at
0

tq+

-i0r + cos 0 + it sin 0
r2 + 2 + 2tr cos 0

(0<r< ),

so that B(r, I-ls)/r+1 can be considered a kind of maximal function. We shall
establish the norm estimate

(1.4) Jo [B(r, rL) n(r, O,
dr p>-i dr<%,jo q+l-p

Assuming (1.4), we complete the proof of Theorem 1. Recall from (1.1) that
n(r, O, I-I)= 0 for < s. Thus from (1.1), (1.4)and Minkowski’s inequality, we
obtain

rq+ dr

)-< op ll -[ n(r) pdr + n (p)
log M(2s, f)

Sq + 1/p

with B a(p)= C(p 1)-/’. Since by Jensen’s theorem n(2s) < 2 log M(4s, f),
we have

. B(r,f) dr < P 12 s
(1.6)

lipwhere B2(p)= B(p) + zp is bounded for p bounded away from 1 and .
By an elementary argument [7, p. 208], there exist x, ---, , K, such that

(1.7) log M(r, f)> 1/2 log M(x,, f) -, (x, < r < K,x,).
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Choose s s x/4, so that for e > 0 and p (q + 1 p)- (1 + e) we have,
by (5),

.oo )P -j?"x" (log M(r, f))P[B(r, f dr> dr(1.8)

> (1-K)llg M(x"’ f )
Since we can choose arbitrarily small, (1.6) implies

(1.9, (1-,, f; [B(r’f))Pdr <gp J’ ()dr
where () 0 and p (q + 1 p)- when 0. Thus (1.5)yields (6)and
(7).
To deduce the corollary, we write f(z) H= (eiz) where each fXz) has

negative zeros only, and genus q, and let n(r)= n(r, 0; ),

log
j=l j=l

Then

and by (1.6) and the Minkowski, Jcnscn and HSldcr inequalities,

+ f[n(r) (logM(4s,))/

) /" (4s)vx-x/e@/e{fz (, dr + Bz(P)si=/.
Choose x,, K, to satisfy (1.7)with log M(r,f) replaced by (r). Using (1.11)
and the first inequality in (1.9), the argument used in (1.8) yields

sizr/ e /"CB2(p) ar

"[n(r)

where as before p (q + 1 p)- ’(1 + e). Thus, (1.11) and the second inequa-
lity in (1.10)imply

(1-,) .21 (s:p [log[zif(re)[ )P dr Vp-lv J2Sn’m ()V dr

where and p behave as in (1.9). We deduce (8) and (9), in a stronger form than
stated: In those inequalities, v can be replaced by vo-q.
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2. Proof of (1.4)
For fixed s > 0, let

qb(r) n(r, 0; Hs)r-q- 1,

so that (1.3) becomes

(I)(r) sup
0<0<

We proceed to estimate

O(r) B(r, rIs)r-q- 1,

) ck(t)K(r, t, O)dt
0

in terms of the Hardy-Littlewood maximal function

sup ii  tt)
e>0 t-rl<e

and the maximal Hilbert transform

We shall prove

H*c(r) sup
e>O

(2.1) O(r) _< 12Mb(r)+ H*dp(r)+ 10 j (t)
o t+r

Assuming (2.1), we deduce

dr.

(2.2) I111. 121lMbll,. + IIH*.II + A(p)llbll
for (q + 1 p)-I < p < here A(p) 10rt csc (n/p) by a simple application
of Minkowski’s inequality (cf. [8, p. 271]).
By a classical estimate (e.g. [8, p. 7]),

10p
(2.3) IIM,/,II < 114’11,, (p > (q + 1 p)-l).P--p--1
We also have

(2.4) IIH*II < A2( p / (P > (q + 1
xp- i / pz

for an absolute constant A2; this can be derived for example when p > 2 from
the estimate of [8, p. 67] together with (2.3), and for 1 < p < 2 from [8, pp. 42,
21, 22]. (Or, compare the estimates in [12, pp. 256-258] for an equivalent [15,
p. 256] problem.) Since

P <- -1 -< ;t csc (; ) (l < p -< 2 )’ p-lP _<p<ztcsc(;)(p>2),_
(2.1)-(2.4) yield (1.4).
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It remains to prove (2.1). We have from (1.3)that

O(r) _< sup p(t)Kj(r, t, n -O)dt
j= \O<0<n

where, if we let D- (r- t)2 + 2tr(1 -cos 0),
r t(1 cos 0) sin 0

gl-"
D K2"- D K3-- D

Now K2 < 4/(r 4- t) and, if we let e2 2r2(1 cos 0), then

r-t
K

(r- t)2 4- 2
4- A1 Q 4- Ax

where 0 < A < 2/(r + t). We estimate bQ in terms of H*b, Mq and

by observing that

sup>o J b(t)e dt_<sup>o

dp(t)P(r t)dt, Pc(r)= (r + )-’,

+ sup
>0

where, since b _> 0 and 0 < 0 < n,

T <_ H*(r)+ 2 sup G(r),
e>0

In Ka, set 1/20 and 2r sin so that

where

K3_<

Thus

where

2t sin

(r-t)2+4rtsin2 O

IAI _<

T2 < 2Mb(r).

P(r- t)+ A

2 sin lr-
(r--t)2 +4r2 sin2 q/

O<e<2r t-rl<e t-

1 4
r r+t

and, since e 2r sin if,

(It-r <e<2r)

dp(t) r(t r)

r + T:

dp(t)
dt.

dt
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Summing up,

(I)(r) < 3 sup>o q* P(r)+ 2Mq(r)+ H*(r)+ 10 ,.,4(t)r+t dt.

Now (2.1) follows from the fact [8, p. 62] that sup>o P(r) < Mck(r).
3. An example

As far as we know, earlier studies comparing the growth of n(r) [or N(r)] with
that of sup0 [f(rei)[ have always, explicitly or implicitly, computed this
growth at the P61ya peaks of n(r) [or N(r)]. This is true ofthe papers of Valiron
[9], P61ya [6] and Wahlund [11 ], as well as ofmore recent papers of Williamson
[14] and Fuchs [2]. We give an example showing that the order ofmagnitude in
p of the classical estimate (11) cannot be improved at the peaks (of n(r), N(r)or
log M(r, f)).

This example is related to a question raised by Williamson in [14]. The
method of [14] gives a sharp estimate

(3.1) log M(r,f) <_ {ztp/[sin
at peaks {r} of N(r), whenfhas negative zeros only and satisfies Williamson’s
additional assumption A [14, p. 500] on the location of the points z where
If(z)[ M([z[,f). In [13], Wheeler shows that A does not hold for allfwith
negative zeros. This fact also follows from our examples (3.5) below, since (3.1)
itself fails for these f

In [2], Fuchs proves an inequality implying

(3.2) SUpo log f(riei+))f(rei-

< {2zp/}sin zp + o(1)}N(r) (j )
for certain fl near /2p and {r} any sequence of peaks of N(r). Our estimates
(3.7)-(3.8) for the functions (3.5)show that one cannot expect (3.2)to remain
valid for fl near 0. (Compare also [3], where Fuchs proves a version of (3.2) not
uniform in 0, but for which the restriction on fl is removed.)
Our examples are defined as follows" Let p > 4 be given and let {b,} be a

sequence with 0 < b, < b, +x (k > 1), and b, o so that
k-1

(3.3) Z b]= o(b/)
j=l

Let q [p] and define v(t)= 0 (0 _< < b), bo 0 and

iv(2bk_x) + (t bk)t- if b <_ <_ Ebk, k >_ l
(3.4) v(t) lv(2bk) if 2bk <_ < bk + 1, k >_ 1.

We can now define

(3.5) f(z) .I-l, E
z
q
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where e(z, q)= (1 z) exp (E,=, zk/k)and the sequence {a,} is determined by
0 < a, < a,+l (n _> 1) and n(t)= n(t, 0;f)= [v(t)]. Let ra= 2ba (k _> 1). Then
{ra} is a sequence of peaks of n(t), as defined in (12). Further, a little calculation
shows that any sequence {Ra} of peaks of n(t) must satisfy

(3.6) 1 <_r’k/Rk_<l+o(1) (k--*)

for some subsequence {r,} of {ra}, say {r,} {rk}. We shall prove

(3.7) lim inf log M(RR, f)/n(Ra) > 2-1/2 log p 3.
k-*oo

Thus, for p sufficiently large, these fsatisfy (13). Further, since (3.4)and (3.6)
imply

(3.8) n(r)/N(r) A(p)

for r near Rk and k c, with A(p) > 2p for Po < P < , it is clear that thesef
fail to satisfy (3.1). Also, if {tk} is any sequence of peaks of log M(r, f), it is easy
to see, from (3.4) and (12), that (13) remains valid with rk replaced by tk.
To prove (3.7), let z Rk and write

rk

log If(z) log
bk

dn(t) + Sa(z)

where, by (3.3), Sk(Z)/n(Rk) 0 (k ). Writing Rk R, rk r and z Rei,

(3.9) log f(z)l n(r)log + (- 1)’
r cos qO + cos (q + 1)0 at- o(n(r))

r2 -k- 2 -t- 2tr cos 0

when k , uniformly in 0. We now put 0 rt rt/4q and Rs in (3.9), and
obtain

lim inf
log M(Rk, f)

a n(Ra)
2s-1 1-s

1/2sq+l-p(1-s)2+q-2 ds + log E(e’/, q)l.

Here the integral is bounded below by

1-s
(2s-1)(l_s)2+q 2 ds 2 X2 2 ds > log 1.

/2 -I" q

Since log E(e’/4, q)l > -1, (3.7)follows at once.
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