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Abstract In this work, we analyzed the effect of different
prescriptions of the IR cutoffs, namely the Hubble horizon
cutoff, particle horizon cutoff, Granda and Oliveros horizon
cut off, and the Ricci horizon cutoff on the growth rate of clus-
tering for the Tsallis holographic dark energy (THDE) model
in an FRW universe devoid of any interactions between the
dark Universe. Furthermore, we used the concept of con-
figurational entropy to derive constraints (qualitatively) on
the model parameters for the THDE model in each IR cutoff
prescription from the fact that the rate of change of configura-
tional entropy hits a minimum at a particular scale factor aDE

which indicate precisely the epoch of dark energy domination
predicted by the relevant cosmological model as a function of
the model parameter(s). By using the current observational
constraints on the redshift of transition from a decelerated to
an accelerated Universe, we derived constraints on the model
parameters appearing in each IR cutoff definition and on the
non-additivity parameter δ characterizing the THDE model
and report the existence of simple linear dependency between
δ and aDE in each IR cutoff setup.

1 Introduction

The dynamics of the Universe is well explained by the
ΛCDM cosmological model, albeit with the presumption that
the Universe contains dark matter and dark energy in over-
whelming quantities [1–4] where the former dictates how the
objects in the Universe cluster and the latter on how should
the Universe expand. Much of modern cosmology has there-
fore been focused on pinpointing the properties of these quan-
tities to understand the dynamical evolution of the Universe
in the past and the future. In this spirit, many dedicated exper-
iments have been proposed or are in operation but have so
far not yielded any conclusive evidence for the existence of
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the dark Universe and therefore critically affect the viability
of the standard cosmological model. Additionally, the exis-
tence of the so-called Hubble tension [5–10] makes things
worse and hints at the possible existence of unknown physics
and on the possibility of the Universe being governed by an
entirely different cosmological model. It, therefore, compels
us to explore other alternatives to explain these profound
cosmological enigmas.

Holographic dark energy (HDE) models are proving to
be viable alternatives to the static cosmological constant in
addressing some of the above problems. Constructed upon
the holographic principle [11–13], HDE models are also in
harmony with the latest observational results [14–18]. In
HDE, the horizon entropy plays the most crucial role which
if changed, changes the dynamics of the model significantly
[19].

Exercising the modified entropy-area relation reported in
[24] and in conjunction with the holographic principle, the
authors in [25] proposed the Tsallis HDE which could explain
the observed accelerated expansion of the universe and has
been widely studied in the literature. For example, in [19], the
authors studied the dynamics of THDE for various IR cutoff
scales and also for non-interacting and interacting scenar-
ios. In [26], the dynamics of THDE have been studied for
the hybrid expansion law. In [20], THDE model was used
to investigate late-time cosmology in Brans-Dicke gravity.
In [21], the cosmological features of THDE were studied in
Cyclic, DGP, and RS II braneworlds. Stability analysis con-
cerning the THDE model with an interaction between dark
matter and dark energy was studied in [23]. In [22], cos-
mological perturbations in the linear regime on subhorizon
scales for the THDE model assuming a future event horizon
as the IR cutoff was investigated and constraints on model
parameters were imposed. Interested readers can refer to [27]
for a recent review on various HDE models.

As first proposed in [28], the cosmic evolution from a
near-perfect gaussian matter distribution to the highly non-
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linear state owing to the clustering of dark matter haloes could
be due to the dissipation of configurational entropy. Addi-
tionally, the depletion of configurational entropy could also
be responsible for the currently observed cosmic expansion
[29]. The depletion of configurational entropy is inevitable
for a static Universe, since it is unstable due to the presence of
large-scale structures. If we assume the Universe as a whole
to comprise of a thermodynamic system, it, therefore, must
obey the second law of thermodynamics which warrants cos-
mic expansion to suppress the growth of structure formation
due to the absence of entropy generation processes to check
the dissipation of configurational entropy [29]. It must also
be noted that the configurational entropy dissipates for a dust
Universe and only damps out in an accelerating Universe and
that the first derivative of configurational entropy attains a
minimum at a scale factor corresponding to the epoch of the
dark energy domination for that model [29].

The concept of configurational entropy has been used to
study cosmology in power-law f (T ) gravity [39] and in
Chaplygin gas models [40]. In this work, we shall investigate
the growth rate of clustering in the THDE model for various
IR cutoffs to understand how does the different IR cutoffs
influence the growth rate concerning the standard ΛCDM
model and also to put qualitative constraints on the model
parameters from the first derivative of the configurational
entropy.

The manuscript is organized as follows: In Sect. 2, we
briefly summarize the concept of configurational entropy and
growth rate. In Sect. 3, we discuss the Tsallis holographic
dark energy model in different IR cutoffs and discuss the
results and in Sect. 4 we conclude. Throughout the work we
use Ωm0 = 0.315, ΩΛ = 1 − Ωm0 and h = 0.674 [30] and
work with natural units.

2 Configurational entropy and growth rate

Let us consider a large comoving volume V in the cosmos
where the assumptions of isotropy and homogeneity hold
true. Now, V can be divided into a number of smaller volume
elements dV with energy density ρ(

−→x , t) where −→x and t
represent respectively the comoving coordinates and time.

Now, from the definition of configurational entropy in [28]
which was further motivated from the definition of informa-
tion entropy in [31], we can write

Φ(t) = −
∫

ρ logρdV . (1)

Next, the equation of continuity for an expanding Universe
can be expressed as

3
ȧ

a
ρ + ∂ρ

∂t
+ 1

a
� .(ρ−→ν ) = 0, (2)

where a and −→ν represent respectively the scale factor and
the peculiar velocity of cosmic fluid in dV .

Next, multiplying Eq. 2 with (1 + logρ), and then inte-
grating over volume V , we arrive at the following differential
equation [28]

dΦ(a)

da
ȧ + 3

ȧ

a
Φ(a) − χ(a) = 0, (3)

where χ(a) = 1
a

∫
ρ(

−→x , a) � .−→ν dV .
Now, the divergence of peculiar velocity ν can be written

as [29]

�.ν(
−→x ) = −aȧ

dD(a)

da
δ(

−→x ), (4)

where D(a) is the growing mode of fluctuations and δ(
−→x )

represents the density contrast at a given position −→x . Upon
substituting Eq. 4 in Eq. 3, yields after some calculation [29]

dΦ(a)

da
+ 3

a
(Φ(a)−Ψ )+ρ f

D2(a)

a

∫
δ2(

−→x )dV = 0, (5)

where Ψ = ∫
ρ(

−→x , a)dV defines the total mass enclosed
within the volume V and ρ represents the critical density of
the cosmos and

f = dlnD

dlna
= Ωm(a)γ (6)

represents the dimensionless growth rate with Ωm(a) being
the matter density parameter and γ being the growth index.
The growth index in Einstein’s gravity is roughly equal to
6/11 [42] while it is slightly different for modified gravity
models and also for dynamical dark energy models. Ref [41]
derived an analytical expression for γ in f (R, T ) theory of
gravity (where R denote the Ricci scalar and T denote the
trace of the Energy-Momentum tensor) which could be used
to constrain the model parameters for that particular class
of modified gravity models. Different parametrizations for
γ exist in the literature which are both constant and redshift
dependent. In this work, let us work with [32]

γ = 0.55 + 0.05(1 + ω(a = 0.5)). (7)

Solution of Eq. 5 provides the evolution of configurational
entropy in the cosmological model under consideration. In
order to numerically solve Eq. 5, we assume the time inde-
pendent quantities in Eq. 5 to be equal to 1 and set the initial
condition Φ(ai ) = Ψ .

The interesting feature of Eq. 5 is that the first deriva-
tive of configurational entropy (i.e, dΦ(a)

da ) attains a min-
ima at a particular scale factor aDE after which the dark
energy domination takes place [29]. The location of aDE
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for a particular cosmological model is solely dependent on
the relative supremacy of the dark energy and its influence
on the growth history of cosmic structures [29]. It is evi-
dent from the third term of Eq. 5 that the rate of change of
configurational entropy depends on the precise conjunction
of the scale factor, growing mode, and its time derivative
and it is this distinct combination of these quantities which
is accountable for the well-defined minimum observed in
the rate of change of configurational entropy, and denote the
epoch of an accelerating Universe dominated by dark energy,
and is a novel technique to constrain the model parameters
of any cosmological model. So, by comparing the minima
obtained from the ΛCDM model with that obtained from
other dark energy models, we can put qualitative constraints
on the model parameters of different dark energy models and
this is precisely the motivation for this work.

3 Tsallis holographic dark energy

3.1 Expression of energy density

The modified black hole’s horizon entropy suggested in [24]
takes the form Sδ = γ Dδ , where δ represent the Tsallis or
the non-additivity parameter, γ a constant and D the surface
area of the Black hole’s event horizon and for δ = 1, the
usual Bekenstein entropy can be recovered.

The relationship between the entropy S, IR and UV cutoffs
denoted respectively by Π and Θ is given by [11–13]

S3/4 ≥ (ΠΘ)3. (8)

Now, since the energy density for the HDE models scales as
ρDE ∝ Θ4, the general expression for the energy density of
the THDE can be written as [25]

ρDE = AΠ2δ−4, (9)

where A is an unknown parameter. Considering a flat FRW
background with ′−′,′ +′,′ +′,′ +′ metric signature, the first
Friedmann equation assumes the form

H2 = 1

3
(ρDE + ρm) (10)

where ρm and ρDE are the energy density of the dark mat-
ter and the dark energy respectively and therefore the corre-
sponding dimensionless density parameters are defined as

ΩDE = ρDE

ρc
= A

3
H2−2δ,

Ωm = ρm

ρc
, (11)

with ρc = 3H2 being the critical density of the Universe.

It can be clearly seen from Eq. 9 that different choices
for the IR cutoffs will generate different expressions for
the THDE energy density with significantly different dark
energy EoS parameter ωDE . There are currently four dif-
ferent prescriptions for the IR cutoffs, namely the Hubble
horizon cutoff, particle horizon cutoff [33,34], Granda and
Oliveros horizon cutoff [35,36] and the Ricci horizon cut-
off [37]. In the subsequent subsections, we shall numerically
compute the growth rate and the rate of change of configura-
tional entropy for the THDE model with the aforementioned
IR cutoffs.

3.2 Hubble horizon cutoff

For the standard HDE model, the Hubble horizon does not
give rise to an accelerated expansion [33,34]. However, as
shown in [25], for the THDE model, an accelerated expansion
is possible for such a cutoff even in the absence of interacting
scenarios.

Therefore, for the first case, we shall assume the IR cutoff
to be the Hubble horizon represented by

Π = 1

H
. (12)

Substituting Eq. 12 in Eq. 9, the expression of ρDE takes the
form

ρDE = AH4−2δ. (13)

The evolution of the dark energy density parameter (ΩDE )
can be obtained by numerically solving the following differ-
ential equation [25]

Ω
′
DE = 3ΩDE (δ − 1)

[
1 − ΩDE

1 − ΩDE (2 − δ)

]
, (14)

where Ω
′
DE = dΩ

′
DE/dlna. Finally, the EoS parameter

(ωDE ) reads [25]

ωDE = δ − 1

ΩDE (2 − δ) − 1
. (15)

Now, in order to compute the growth rate ( f (a)), we substi-
tute Eq. 15 into Eq. 7 and Eq. 13 into Eq. 6 since Ωm(a) =
1−ΩDE (a) and then substitute the result in Eq. 5 to compute
the rate of change of configurational entropy (Fig. 1).

From the plot of f (a), it is clear that the suppression of
growth rate is minimum for the ΛCDM model, and the steep-
ness increases as the non-additivity parameter δ decreases.
However, the profiles start to coincide at low redshifts (high
scale factor). Additionally, as the parameter δ approaches
two, the profiles become indistinguishable from the ΛCDM
model at all times.
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Fig. 1 Top left panel shows the evolution of growth rate f (a), top right
panel shows the rate of change of configurational entropy ( dΦ(a)

da ), and
the lower panel shows the best fit relation between the non-additivity
parameter δ and the scale factor aDE at which dΦ(a)

da attains a minima

From the dΦ(a)
da plot, a clear dissipation of configurational

entropy is seen in all cases with the ΛCDM model show-
ing the maximum dissipation. This can be explained by the
fact that configurational entropy is a derived quantity and
largely depends on the magnitude of the growth rate. There-
fore, since the ΛCDM model exhibits the maximum growth
rate of clustering, it also tends to dissipate the highest amount
of configurational entropy and the scale factor of minima
occurs at aDE � 0.65 which corresponds to a redshift of
zDE � 0.53. For the THDE model, this dissipation, as usual,
depends on the non-additivity parameter δ, with reduced dis-
sipation rates as δ is lowered. For δ = 1.9, the scale factor of
minima occurs at aDE = 0.62 which corresponds to a red-

shift of zDE = 0.612, while for the δ = 1.5 and 1.1 cases,
aDE � 1.69 (zDE = −0.41) and 0.74 (zDE = 0.35) respec-
tively. The δ = 1.1 case is unphysical and therefore cannot
be considered a viable option. For δ = 1.9 and transition
occur at a redshift which is very close to that obtained in the
ΛCDM scenario and is also consistent with current observa-
tional bounds [38]. The δ = 1.5 case predicts an accelerating
Universe at a much higher redshift which is again observa-
tionally unfavorable.

In the bottom panel, the plot between δ and aDE is shown
where a moderate linear dependency is observed with the
best fit relation of δ = −0.63aDE + 2.1.

3.3 Particle horizon cutoff

In the second case (Fig. 2), we set the IR cutoff to be the
particle horizon defined as [33,34]

Rp = a(t)
∫ t

0

dt

a(t)
, (16)

which satisfies the equation

Ṙp = 1 + HRp. (17)

The expression of the energy density (ρDE ) in this setup reads
[19]

ρDE = AR−4+2δ
p , (18)

The evolution of ΩDE in this setup can be obtained by solving
the following differential equation [19]

Ω
′
DE = ΩDE (ΩDE − 1) (2Σ(δ − 2) + 1 − 2δ) , (19)

where

Σ =
[

3ΩDE H−2+2δ

A

] 1
−2δ+4

, (20)

and the expression for the EoS parameter (ωDE ) reads [19]

ωDE = −
[

1 +
(

2δ − 4

3

)
(1 + Σ)

]
. (21)

The plot of growth rate f (a) for the particle horizon cut-
off depicts the ΛCDM model to have a significantly lower
growth rate than the δ = 1.6 and 1.4 cases, while the δ = 1.1
case has the least f (a) and has the steepest slope. The δ = 1.6
case deviate the most from the ΛCDM model.

From the dΦ(a)
da plot, the δ = 1.6 case as expected exhibit

the maximum dissipation of configurational entropy with the
minima occurring at aDE = 0.87 (zDE = 0.15) which is
observationally not consistent [38]. However, for the δ = 1.4
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Fig. 2 Top left panel shows the evolution of growth rate f (a), top right
panel shows the rate of change of configurational entropy ( dΦ(a)

da ), and
the lower panel shows the best fit relation between the non-additivity
parameter δ and the scale factor aDE at which dΦ(a)

da attains a minima.
The plots are drawn for A = 10

and δ = 1.1 cases, the minima occur respectively at aDE =
0.68 (zDE = 0.45) and aDE = 0.68 (zDE = 0.466) which
is very close to the ΛCDM model with the best fit relation
between δ and aDE reading δ = 1.9aDE − 0.031.

3.4 Granda and Oliveros (GO) horizon cutoff

The GO cutoff was proposed by Granda and Oliveros [35,36]
to resolve the causality and coincidence problems in cosmol-
ogy and is defined as Π = (mH2 + nḢ)−1/2 for which the

expression of the energy density takes the form [19]

ρDE = (mH2 + nḢ)2−δ. (22)

The differential equation required to solve for the evolution
of ΩDE and the expression of the EoS parameter (ωDE ) reads
respectively as (Fig. 3) [19]

Ω
′
DE = (1 − ΩDE )

[
2

n

(
−m + (3ΩDE )

1
2−δ

H
2−2δ
2−δ

)
+ 3

]
,

(23)

and

ωDE = −1 − 1

3ωDE[
3(1 − ΩDE ) + 2

n

(
−m + (3ΩDE )

1
2−δ

H
2−2δ
2−δ

)]
. (24)

The growth rate f (a) for the THDE model with the GO
cutoff differs substantially from the ΛCDM model. The
growth rate diminishes rapidly as δ is lowered. It is also evi-
dent that in all cases f (a) is lower than that of the ΛCDM
model.

The dΦ(a)
da plot shows the ΛCDM model to dispel max-

imum configurational entropy similar to the case when the
IR cutoff is modeled with the Hubble horizon. For δ = 0.6
and 0.7, the minima occurs at aDE = 2.67 (zDE = −0.62)

and 1.88(zDE = −0.46) respectively, both of which predict
a decelerating Universe and therefore unphysical. Nonethe-
less, for δ = 0.8, the minima occurs at aDE = 0.59
(zDE = 0.68) which falls well within the current obser-
vational constraints [38] and also very close to the same
obtained from the ΛCDM model. A strict linear dependency
between δ and aDE is observed with the best fit relation
δ = −0.09aDE + 0.9.

In [19] the authors used the same combination of the free
parameters (i.e, m, n and δ) and reported viable estimates of
kinematical parameters in all cases. However, from this work,
it is clear that only for δ = 0.8, an accelerating universe is
possible. Therefore, it is apparent that the rate of change
of configurational entropy provides an alternative method to
constrain the free parameters and also furnish a robust consis-
tency check to the constraints obtained from other methods
and statistics.

3.5 Ricci horizon cutoff

For the fourth and final case, we shall set the Ricci horizon
as the IR cutoff for which the expression of the THDE model
reads [19,37]

ρDE = λ
(
Ḣ + 2H2

)2−δ

(25)
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Fig. 3 Top left panel shows the evolution of growth rate f (a), top right
panel shows the rate of change of configurational entropy ( dΦ(a)

da ), and
the lower panel shows the best fit relation between the non-additivity
parameter δ and the scale factor aDE at which dΦ(a)

da attains a minima.
The plots are drawn for m = 0.8 and n = 0.5

where λ is an unknown parameter as usual [33,34]. Similar to
the previous case, the first order differential equation which
generate the evolution of ΩDE and the expression of the EoS
parameter (ωDE ) reads respectively as (Fig. 4) [19]

Ω
′
DE = (1 − ΩDE )

[
2

(
−2 + (3ΩDEλ−1) 1

2−δ

H
2−2δ
2−δ

)]
, (26)

and

Fig. 4 Top left panel shows the evolution of growth rate f (a), top right
panel shows the rate of change of configurational entropy ( dΦ(a)

da ), and
the lower panel shows the best fit relation between the non-additivity
parameter δ and the scale factor aDE at which dΦ(a)

da attains a minima.
The plots are drawn keeping λ unity

ωDE = −1 −
(

1 − ΩDE

ΩDE

)

[
1 + 2

3(1 − ΩDE )

(
−2 + (3ΩDEλ−1) 1

2−δ

H
2−2δ
2−δ

)]
. (27)

The f (a) plot in this case shows the ΛCDM profile to
predict significantly higher growth rate than the THDE model
prior a specific scale factor dependent solely on the non-
additivity parameter δ following which the growth rate in the
THDE model exceeds the one for the ΛCDM. For δ = 1, the
profile intersects the ΛCDM at a � 0.52 and at a � 0.81, for
δ = 1.02, the crossing occurs ata � 0.44 anda � 0.9 and for
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δ = 1.05, the same transpires at a � 0.39 and a � 0.94. It is
also noticeable that profiles tend to be steeper with decreasing
δ.

From the dΦ(a)
da plot, the minima for the δ = 1.0, 1.02 and

1.05 cases transpire at aDE � 0.59, 0.66, and 0.71 which in
terms of redshift reads zDE = 0.69, 0.51, and 0.42 respec-
tively. The δ = 1.02 case predict the redshift of transition
in harmony with observations while for the δ = 1 and 1.05
cases, the theoretical prediction of zDE is unsupported with
respect to the current observations constraints [38]. A clear
linear relation between δ and aDE materializes with the best
fit relation λ = 0.42aDE + 0.75.

4 Conclusions

Holographic dark energy (HDE) models are a promising
alternative to the static cosmological constant in explain-
ing the late-time dynamics of the Universe and have already
alleviated some of the major hitches plaguing the ΛCDM
cosmological model [14–18]. These models are built upon
the holographic principle [11–13] where the horizon entropy
plays the most crucial role with different IR cutoffs predict-
ing completely different dynamics for the HDE model under
consideration [19].

Reference [29] reported that the first derivative of configu-
rational entropy attains a minimum at a particular scale factor
aDE after which the dark energy domination takes place. The
location of aDE for a particular cosmological model is solely
dependent on the relative supremacy of the dark energy and
its influence on the growth history of cosmic structures [29].
It is evident from the third term of Eq. 5 that the rate of change
of configurational entropy depends on the exact conjunction
of the scale factor, growing mode, and its time derivative
and it is this distinct combination of these quantities which
is accountable for the well-defined minimum observed in
the rate of change of configurational entropy, and denote the
epoch of an accelerating Universe dominated by dark energy,
and is a novel technique to constrain the model parameters
of any cosmological model.

Thus, upon employing the idea, we tried to constrain the
non-additivity parameter δ for the THDE model and other
free parameters appearing in each IR cutoff case by juxta-
posing the theoretical estimate of aDE in each case with that
reported by current observations.

We find that there exists a suitable parameter range
between which the THDE model predicts an accelerating
universe in each IR cutoff recipe at a suitable redshift con-
sistent with observations and report the existence of simple
linear dependencies between the non-additivity parameter δ

and aDE in each IR cutoff prescription.
It may be noted that in most of the previous studies related

to the THDE model, the model parameters were constrained

Table 1 The table shows the scale factor for minimum aDE , redshift
of transition zDE for different choices of the non-additivity parameter δ

and the best fit equation for δ as a function of aDE for the THDE model
with different IR cutoff prescriptions

IR cutoffs δ aDE zDE Best fit equation

Hubble horizon 1.1 0.74 0.35

1.5 1.69 -0.41 δ = −0.63aDE + 2.1

1.9 0.62 0.612

Particle horizon 1.1 0.68 0.466

1.4 0.68 0.45 δ = 1.9aDE − 0.031

1.6 0.87 0.15

GO horizon 0.6 2.67 -0.62

0.7 1.88 -0.46 δ = −0.09aDE + 0.9

0.8 0.59 0.68

Ricci horizon 1.00 0.59 0.69

1.02 0.66 0.51 δ = 0.42aDE + 0.75

1.05 0.71 0.42

by obtaining observationally consistent values for some of
the cosmological parameters such as the deceleration param-
eter, EoS parameter, and Hubble parameter, while in this
paper, we have imposed constraints on the model parameters
from the fact that the rate of change of configurational entropy
must exhibit a minimum at a certain observationally favored
scale factor range which denotes the epoch of an accelerating
Universe, and therefore present an alternative method to con-
strain the model parameters for the THDE model and also
furnish a robust consistency check to the constraints obtained
from other methods and statistics.

The motivation to carry out the analysis with multiple IR
cutoffs was simply to check whether all of these IR cutoff
prescriptions lead to the rate of change of configurational
entropy attaining the minimum at the suitable scale factor
range consistent with observations, and understand how does
the growth rate of clustering differs in each IR cutoff recipe
when compared with the standard ΛCDM model, and finally
to check whether any dependency is observed between the
scale factor of minimum (aDE ) and the non-additivity param-
eter (δ). Now, since there exist corners in parameter spaces
for all the IR cutoff prescriptions, we do not report here the
existence of a more realistic IR cutoff. Thorough investiga-
tions are required in this regard to compare the usability,
and understand which of these IR cutoffs best describes the
dynamics of the Universe.

As a final note we add that although the THDE model is
turning out to be promising, more work is needed to under-
stand its viability in cosmology. We plan to carry out an analy-
sis to constrain the non-additivity parameter δ from the con-
straints coming from Big-Bang nucleosynthesis and check
whether the constraints obtained could explain the acceler-
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ated expansion. Such a study could turn out to be an acid test
for the THDE model.
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