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Abstract 1 

Background: Acclimation to light is a driver of tropical forest dynamics and key to understanding 2 

the coexistence of dipterocarps, and how their demographic rates and traits trade-off. 3 

Aims: We examined light niche divergence in six dipterocarp species and hypothesised that 4 

seedlings can be functionally grouped, and allocate resources to either growth or storage in response 5 

to light changes.  6 

Methods: A pot experiment was performed to measure size-specific growth rate, wood density and 7 

total non-structural carbohydrate (NSC) concentrations of dipterocarp seedlings exposed to a 8 

simulated gap opening. 9 

Results: Light demanding species responded to a gap opening with increased growth and decreased 10 

wood density, whereas shade-tolerant species showed a greater relative increase in NSC 11 

concentration. Iditol–an alditol–was identified, and Dryobalanops lanceolata responded to a gap 12 

opening with a significantly smaller increase in alditol concentration compared to other species. 13 

Conclusions: We group light demanding and shade-tolerant species based on their acclimation to 14 

light and show that a generalist species is unique based on its response of NSC concentration to a 15 

gap opening. Our findings emphasize that the ecology of these species needs to be further studied in 16 

the context of their physiology to support their effective use in large-scale forest restoration efforts. 17 

 18 

Keywords 19 

Borneo, dipterocarps, NSC concentration, iditol, demographic rates, functional traits, size-specific 20 

growth rate, light acclimation, shade-tolerants, light demanders 21 

22 
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Introduction 1 

The ecology of tropical tree species has been studied extensively at the seedling stage and in 2 

response to light, a main driver of tropical forest dynamics (Augspurger 1984; Bloor 2003; Baltzer 3 

& Thomas 2007; Baraloto & Forget 2007; Philipson et al. 2012; Paine et al. 2015). Some studies 4 

have tested how seedlings respond to changes in light availability that occur during sudden gap 5 

formation or closure caused by tree- or branchfalls in a natural forest (Osunkoya and Ash 1991; 6 

Parsons et al. 1994; Huante and Rincon 1998; Dalling et al. 2004; Philipson et al. 2014). Such 7 

events dramatically alter both light availability and microclimatic conditions and offer a potential 8 

regeneration niche axis along which species may be differentiated (Canham 1989; Denslow et al. 9 

1998; Poorter 2005; Marthews et al. 2008). Early theoretical concepts on the importance of canopy 10 

gap dynamic processes and how they drive the coexistence of tree species, such as the gap size-11 

niche partitioning (Connell 1978; Hartshorn 1978; Denslow 1980) or cross-over point irradiance 12 

(Givnish 1988; Latham 1992; Sack and Grubb 2001), have been challenged for their over-simplicity 13 

(Brokaw and Scheiner 1989; Raich and Christensen 1989; Brown and Whitmore 1992; Barker et al. 14 

1997; Agyeman et al. 1999; Brown et al. 1999; Kitajima and Bolker 2003; Baraloto et al. 2005). 15 

Mean growth rate may be positively correlated between low-light and high-light conditions and thus 16 

show no rank reversal in performance among species, however comparison of mean growth rate and 17 

survival for the same species may still reveal a trade-off.  18 

 These initial ideas of driving mechanisms that promote species diversity have been further 19 

explored by expanding the spatial and temporal limits. One example is the observed trade-off in 20 

seedlings to grow rapidly under high-light environments of large canopy gaps, versus the ability to 21 

survive in low-light conditions typical of the forest understory (Hubbell and Foster 1992; Kitajima 22 

1994; Kobe et al. 1995; Poorter 1999). In addition, the idea of ontogenetic niche shifts and the 23 

divergence in regeneration niches were framed to explain how acclimation to light (light niche 24 

divergence) may promote coexistence by allowing species to partition forest light conditions 25 

(Myers and Kitajima 2007; Poorter and Kitajima 2007; Kitajima and Poorter 2008). For example, 26 



 6 

sudden increases or decreases in light may force a seedling to selectively allocate resources into 1 

structural tissue for current growth (e.g. diameter) to outcompete others for access to light or, invest 2 

into denser wood or non-structural carbohydrate (NSC) storage to prolong survival (Kobe 1997; 3 

Canham et al. 1999; Poorter et al. 2010). Although similar questions on light niche divergence have 4 

been tackled before, this study contributes to the comparative body of literature by adding results 5 

from a pot experiment with dipterocarp seedlings where we experimentally simulated a gap opening 6 

event to study the effect on seedling ecophysiology with seedlings that are widely used in large-7 

scale forest restoration efforts (Hector et al. 2011). 8 

 The members of the Dipterocarpaceae (dipterocarps) family (Wyatt-Smith 1995) contribute 9 

about 50% of the upper canopy trees in undisturbed lowland mixed dipterocarp forests and 10 

comprise the majority of commercial timber extracted from South East Asia (Symington 1943; 11 

Ashton 1982). Dipterocarps offer an ideal study system to test these proposed trade-offs between 12 

investing into growth or storage. They belong to the shade-tolerant climax species, but within this 13 

general category have species-specific differences based on their wood density and acclimation to 14 

light (Gustafsson et al. 2016). Philipson et al. (2012) assessed trade-offs in growth rates of 15 

dipterocarp seedlings and observed substantial crossovers among 21 species and no consistent 16 

growth hierarchy across light treatments. This may indicate that the heterogeneity of the light 17 

environment is a driving force to promote diversity in dipterocarps. Further, they assessed trade-offs 18 

between mean growth rate and survival with a cross-comparison among 15 species–covering five 19 

out of the six species in the present study–where the relationship in basal diameter growth and 20 

probability of mortality was found to be positive (Philipson et al. 2014). In addition, this recent 21 

study reported a negative relationship between wood density and the probability of mortality, 22 

suggesting that wood density can serve as a surrogate for survival in the dipterocarp seedlings of 23 

this study. 24 

 Apart from the trade-off in structural tissue (growth and wood density) an additional key 25 

trait that received attention lately is NSC. Recent findings on eight dipterocarp seedlings–including 26 
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four of the species of this study–show that NSC can be linked to increased survival under simulated 1 

drought conditions (O’Brien et al. 2014, 2015). Further, soluble sugar concentration, but not starch 2 

concentration, was reported to significantly increase in woody tissue and decrease in leaf tissue of 3 

Shorea beccariana and S. parvifolia seedlings in response to a simulated drought over 20 days 4 

(Valtat 2015). This shows that carbohydrates may fulfill diverse roles during plant metabolic 5 

adaptation to increased stress and mortality (McDowell and Sevanto, 2010). To what level NSC are 6 

involved in whole plant acclimation to light is currently unknown for dipterocarps and so is the role 7 

of water-soluble carbohydrates (WSC), and specifically alditols. Proposed ecophysiological 8 

functions of alditols in plants are manifold and include primary products of photosynthetic carbon 9 

assimilation, translocation and storage of carbon, and abiotic stress protection (e.g. as compatible 10 

solutes, osmoregulators, and antioxidants) (Bieleski, 1982; Loescher & Everard, 2000). As primary 11 

photosynthetic products, alditols may be stored in source leaves and/or exported to sink tissues 12 

where they may also be stored and/or used for growth. Their storage function is illustrated by the 13 

fact that alditols may easily accumulate to 10-20% of a tissue’s dry weight (Dietz & Keller, 1997; 14 

Loescher & Everard, 2000).  15 

 Hence, the motivation of this study is to elaborate on these latest findings on trade-offs 16 

within, and between, key functional traits in dipterocarps, by forcing seedlings into an altered 17 

carbon balance in a pot experiment to study light niche divergence. We experimentally test for 18 

species-specific light acclimation strategies in the relative change of carbohydrates to structural 19 

tissue to support growth or wood density versus the proportional change in total NSC concentration 20 

or alditol concentration. Our initial hypothesis is that relative changes in selected life history 21 

attributes in response to light acclimation allow for grouping dipterocarps into light demanders and 22 

shade-tolerants, including a generalist species. Based on previous findings in the literature, we 23 

predict that shade-tolerants and the generalist species will show a relative change in carbohydrates 24 

towards denser wood –a trait that positively correlates with survival– wherease light demanders will 25 

increase their mean relative growth. Further, we expect that shade-tolerant species and the 26 
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generalist, as a direct response to light acclimation, will show a greater proportional change in 1 

carbohydrate concentration, wherease light demanding species will increase their mean relative 2 

growth. 3 

 4 

Materials and methods 5 

Experimental set-up 6 

The study site (05º05’20’’ N, 117º38’32’’ E, 102 m.a.s.l.) was located in the Malua Forest Reserve 7 

in the eastern part of Sabah in Malaysian northern Borneo. Six climax dipterocarp species native to 8 

Sabah and widely used for forest rehabilitation (Sabah Forestry Department 2008) were selected for 9 

this pot experiment based on their known range in wood density (Newman et al. 1998) and differing 10 

response in light acclimation (Moad 1992; Zipperlen 1997; Clearwater et al. 1999): Dryobalanops 11 

lanceolata, Hopea nervosa, Shorea argentifolia, Shorea leprosula, Shorea macroptera and Shorea 12 

parvifolia. Four of them are classified as endangered (D. lanceolata, S. argentifolia and S. 13 

leprosula) or critically endangered (H. nervosa) according to the IUCN Red List (2015) and it is 14 

therefore essential to better understand their ecology. 15 

 16 

Study design 17 

The experimental design consisted of ten shade houses (4 x 6 x 5 m) that were aligned in five 18 

blocks of two, randomly allocated to high or low light conditions. In order to minimize self shading, 19 

blocks were sited along an east-west line with 3 m space between the houses and >10 m between 20 

blocks, shade houses were covered with layers of 70% black shade cloth on all sides. Within shade 21 

houses, seedlings were spaced 0.3 m apart. To reduce the effect of herbivory, pots were located 0.3 22 

m above ground and surrounded by wire mesh to protect seedlings from mammal damage. Light 23 

conditions were simulated by using either a single or triple layer of 70% black shade cloth to mimic 24 

respectively (mean ± SEM): a large gap (high; 32.9 ± 4.5% full sunlight; 127.5 ± 13.2 µmol m
-2 

s
-1

), 25 

and the forest understory (low; 2.6 ± 0.6% full sunlight; 11.7 ± 2.3 µmol m
-2 

s
-1

) (see Saner et al. 26 
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2011 for a detailed description on the measurement of experimental light conditions). Light 1 

conditions were representative of the surrounding logged forest and slightly higher compared to 2 

previous studies as the shade cloth had worn somewhat since the shade houses were initially 3 

constructed in 2005 (Saner et al. 2011; Philipson et al. 2014; see Muff et al. 2014 for a 4 

comprehensive analysis of the difference between observed light values and the target values within 5 

replicates). 6 

 All seedlings were grown from the seeds of wild fruiting trees and propagated under nursery 7 

conditions (≈11% full sunlight) at the study site. To minimize intraspecific variation in initial size 8 

we chose seedlings of the same age (18 months) and a similar height of approximately 0.5 m. 9 

Seedlings were transplanted into individual pots (0.3 x 0.4 m) using topsoil that was shredded to 10 

small pieces with a rotating conveyer belt (Royer Model 110, USA) to discharge stones and woody 11 

debris. In order to prevent roots from being damaged, seedlings were kept in the original soil while 12 

transplanting. Seedlings were watered twice daily (morning and late afternoon) to avoid drought 13 

stress and fertilized twice during the course of the experiment with 2.5 g Agroblen (Scotts PBG 14 

Malaysia Sdn. Bhd., Selangor, Malaysia) 6-month slow release fertilizer (16:8:9:3, N:P:K:Mg + 15 

trace elements). They were randomly relocated every month within each shade house to avoid 16 

positioning effects. Four individuals of each of the six species in every shadehouse (n=240) were 17 

present at the start of the experiment in August 2006. On day 155, all seedlings in the low and high 18 

light shade houses were briefly moved into sunlit conditions. One individual per species from each 19 

shade house was then returned to the same light level, while the other was assigned to a new shade 20 

house with a different light level. This meant that half the seedlings experienced constant light 21 

conditions, either low or high for the entire experimental period, while the other half spent the first 22 

155 days in either low or high light and the remaining 165 days in the opposite light treatment while 23 

controlling for the effect of movement between light treatments. Stem diameter (10 cm above 24 

ground) was measured at day 0, 98, 155 and 320 of the experiment (Figure 1). At day 320, all 25 

seedlings were harvested and green volume was measured to calculate wood density for each 26 
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individual plant by taking a wood sample from the lower stem following the water displacement 1 

method described in Chave (2005). Samples were then oven-dried at 60°C for one week until 2 

constant mass (note that this likely reduced total NSC levels by oven drying).  3 

 4 

Seedling growth 5 

Seedling growth rate analysis was done with the nlme package (Pinheiro and Bates 2000) in R 3.2.0 6 

(R Development Core Team 2015). In order to estimate a seedling growth rate for each species that 7 

is unbiased by differences in initial size across species, we estimated size-specific diameter growth 8 

rates (SGR) (Nicieza and Alvarez 2009; Paine et al. 2012a). The growth rate was calculated by 9 

fitting a non-linear power law of diameter against time for each individual seedling, for details on 10 

the method see also Philipson et al. (2012, 2014). The growth rate was calculated for an average 11 

diameter (5.8 mm) across all species half-way through the experiment.  12 

 Model convergence to estimate SGR could only be achieved for seedlings grown in constant 13 

light conditions (low or high light) and which survived to the final harvest (79 individuals in total 14 

across species). Non-linear models are more difficult to fit than linear models, and in this case 15 

problems were compounded because some individuals simply did not grow in low light (Figure 1). 16 

To overcome this problem, a small number of seedlings (n = 11) from the low light condition were 17 

removed prior to analysis, in particular, S. parvifolia was removed completely.  18 

 Power laws can also be difficult to fit because of trade-offs among the three parameters: the 19 

scaling exponent (a), the growth coefficient (b), and the initial diameter (M0). We therefore decided 20 

to restrict b to a single shared value among all species, which enabled us to fit individual growth 21 

curves to all seedlings where predictions matched the raw data for constant light environments. The 22 

selected model to estimate SGR included main effects of species (F5,146 = 3.6, p < 0.01) and light 23 

(treated as continuous) (F1,146 = 297.2, p < 0.0001). The interaction was not significant and was 24 

therefore not considered for calculating individual SGR. The best value of the growth coefficient b 25 

was 0.1, indicating that the growth was almost linear (0 = linear; 1 = exponential). 26 
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 1 

NSC and WSC analyses 2 

Analysis of NSC concentration was only carried out on seedlings growing under two light 3 

conditions (high-light and low-light). Stem tissue from dipterocarp seedlings was shown to have 4 

slightly higher concentrations of NSC compared to the roots or leaves (O’Brien et al. 2014), and 5 

wood samples from the lower stem were used for carbohydrate analysis in the present study. 6 

However, as the NSC extraction protocol of O’Brien et al. (2014, 2015) was different than in this 7 

study a direct comparison of the NSC and WSC concentration may not be feasible (Quentin et al. 8 

2015). Samples were collected at the final harvest (day 320), transported to the laboratory on the 9 

day of collection and oven-dried at 60°C for one week until constant mass. Samples of >1 g dry 10 

mass were ground to fine powder in a ball mill (Tissue-Lyser, Qiagen, Germany). 11 

 12 

Extraction of WSC 13 

WSC were extracted twice in 1 ml of 80% and 20% ethanol (v/v), respectively, and twice in 1 ml 14 

deionized water (dH2O) (Peters et al. 2007). For each extraction, samples were heated at 80°C for 15 

10 min, placed on ice for 2 min, and centrifuged (15,000 g, 5 min). The supernatants of all 16 

extraction steps were pooled and adjusted to 6 ml with dH2O. WSC (sucrose, glucose, fructose, 17 

myo-inositol and alditols) were then separated, identified and quantified by HPLC-PAD (Peters and 18 

Keller 2009). The remaining tissue was dried at 55°C to remove residual ethanol and subsequently 19 

used to quantify starch. Representative WSC samples were tested for lipophilic substances using a 20 

methanol-activated reverse-phase cartridge (C18 Sep-Pak classic: Waters, Rupperswil, Switzerland). 21 

The HPLC chromatograms of non-delipidated and delipidated extracts were identical (data not 22 

shown), therefore we concluded that delipidation was unnecessary. 23 

 24 

Separation and quantification of WSC 25 
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Aliquots (50 µl) of WSC ethanol extracts were desalted and analyzed by HPLC-PAD (Peters & 1 

Keller 2009). A Ca/Na-moderated ion partitioning carbohydrate column was used to separate WSC 2 

(Benson BC-100 column; Benson Polymeric, Reno, NV, USA). It was operated at 90°C and 3 

isocratically eluted with 0.005% (w/v) Ca/Na2 – EDTA at a flow rate of 0.6 ml min
-1

. The BC-100 4 

chromatographic system consisted of a Gynkotek model 480 High Precision Pump, a Gynkotek 5 

Gina 50 autosampler and a Jones column temperature controller (Ercatech, Berne, Switzerland). 6 

WSC were detected after post-column addition of NaOH (300 mM, 0.6 ml min
-1

) using an ESA 7 

Coulochem II electrochemical detector (ESA, Cambridge, MA, USA), operated with an ESA 5040 8 

analytical cell. WSC (sucrose, glucose, fructose, myo-inositol and alditols) were quantified against a 9 

series of 5 nmol standard carbohydrates (Sigma Aldrich
®

, Switzerland). The quantity of standard 10 

carbohydrates used corresponded to the linear response range of the chromatographic system. An 11 

unknown alditol (retention time: 19.1 min) was compared to a series of 5 nmol standard alditols 12 

(arabitol, erythritol, threitol, xylitol, mannitol, sorbitol, dulcitol and iditol) (supplementary material 13 

Figure S1). However, the latter four hexitols showed similar retention times (around 19 min), and 14 

the unknown alditol was thus further analyzed by GC/MS. 15 

 16 

Derivatization of alditol 17 

For derivatization of the alditol, the desalted and lyophilized samples (20 µl) were dissolved in a 18 

mixture of 40 µl pyridine and 10 µl trimethylsilyl imidazole. The solution was then heated to 60˚C 19 

for 30 min and 1 µl injected into a Thermo Fisher Scientific gas chromatograph-mass spectrometer 20 

(GC/MS) instrument consisting of a Trace GC and a single stage quadrupole MS model DSQ. The 21 

split injector was at 250˚C. The GC capillary column was DB5MS (J&W Scientific, Folsom, CA, 22 

U.S.A.) and was operated from 60 to 300˚C at a gradient of 8°C min
-1

. Helium was used as carrier 23 

gas. The transfer line was at 250˚C. Mass spectra were recorded under electron impact at 70 eV, 24 

over the range 74 to 322 m/z (mass-to-charge ratio) at one scan per second for the full scan mode. 25 

The chromatographic peaks were identified by injection of pure compounds. Iditol was identified 26 
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following Rivier (2003), where the relative intensity ≥ 50% of the base peak has an absolute 1 

tolerance of ± 10%, and for the range between < 50% and ≥ 25% the relative tolerance is ± 15% . 2 

Two fractions (217 and 319.1) with the highest m/z could only be assigned to the iditol standard for 3 

eight random samples, confirming that the alditol is indeed iditol (data not shown). 4 

 5 

Quantification of starch 6 

The Enzytec starch kit for food analysis was used to quantify starch (R-Biopharm, Germany). 7 

Pellets were resuspended in 5 ml double distilled water and starch was gelatinized at 110°C for 30 8 

min. Then aliquots (20 µl) were mixed with 20 µl AGS containing a-amyloglucosidase and a-9 

amylase and incubated at 60°C for 30 min. Aliquots (120 µl) of dH2O were added and the 10 

remaining plant debris removed by centrifugation (15,000 g, 10 min). The supernatant (120 µl) was 11 

transferred into the wells (total volume 323 µl) of a microtiter plate (Greiner clear, Huber & Co 12 

AG, Switzerland) and mixed with 80 µl of solution #1 (containing NADP
+
) for the blank 13 

measurement. The enzymatic reaction was initiated with 1.5 µl of solution #2 (containing 14 

hexokinase and glucose-6-phosphate dehydrogenase). Absorbance was measured after 6 min, at 2 15 

min intervals (reaction peak 14 min) at a wavelength of 340 nm. A glucose (Fluka
®

, Switzerland) 16 

standard was used for starch quantification; starch is expressed as glucoseeq (McCready et al. 1950). 17 

Quantification was performed on a Spectra Max M2 plate reader (Bucher Biotec, Switzerland) 18 

using the SoftMax Pro 4.7.1 (Molecular Devices, Sunnyvale, CA, USA). 19 

 20 

Statistical analysis 21 

In a first step, as already described above in detail, the individual seedling SGR was calculated with 22 

a linear mixed-effects model. In a second step, individual seedling SGR, wood density and NSC 23 

concentration (including starch, WSC and iditol) were then treated as dependent variables in a 24 

second linear mixed-effects model and tested against species, functional group and light treatment 25 

(fixed effects). Shade house (n=5) and individual shade houses (n=10) were treated as random 26 
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effects. Where needed, heteroscedasticity was controlled for by modelling increasing variance with 1 

the varPower function, or in the case of total NSC concentration, starch and iditol concentration the 2 

dependent variable was simply log-e transformed. In a third step, Pearson‘s product moment 3 

correlation was used to test for correlations between species mean values of SGR, wood density, 4 

NSC concentration and iditol concentration. NSC concentration (%), but not pool size (total mg), 5 

was included in the analyses. 6 

 7 

Results 8 

Growth and wood density 9 

A significant main effect of wood density (F1,35 = 121.4, p<0.0001), light condition (F1,4 = 164.0, 10 

p=0.0002) and functional group (F1,35 = 9.8, p=0.0035) on diameter SGR was observed, however 11 

neither two-way interactions between wood density, light condition and functional group nor the 12 

three-way interaction were found to be significant (Figure 2). The negative correlation between 13 

mean diameter SGR and mean wood density across all six species was stronger in high light 14 

(r=0.92, t=4.6, df=4, p=0.01, 95% CI: 0.99 to -0.41) compared to low light (r=0.85, t=2.9, df=3, 15 

p=0.06, 95% CI: -0.99 to 0.11) (Figure 2). Overall, an increase in light decreased wood density by 16 

0.07 g cm
-3

 (F1,4 = 11.7, p<0.05, average wood density in low-light: 0.69 g cm
-3

, high-light: 0.62 g 17 

cm
-3

). A light increase resulted in a marginally (F1,48 = 3.6, p=0.06) higher shift in wood density in 18 

light demanders (0.13 g cm
-3

 relative change (20%): average in low light: 0.65 g cm
-3

, average in 19 

high light: 0.52 g cm
-3

) compared to shade tolerants (0.04 g cm
-3 

relative change (5%): average in 20 

low light: 0.73 g cm
-3

, average in high light: 0.69 g cm
-3

). 21 

 A positive correlation (r = 0.96, t = 6.3, df = 3, p < 0.01, 95% CI: 0.55 to 1.00) was found 22 

between species mean SGR in high-light and mean SGR in low-light conditions. Overall, the light 23 

demanders S. argentifolia and S. leprosula had a faster diameter growth rate compared to the shade-24 

tolerants H. nervosa and S. macroptera or the generalist D. lanceolata (Figure 3).  25 

 26 



 15 

Relative change in NSC concentration and light acclimation 1 

Seedlings of all six species showed lower total NSC concentrations (F1,4 = 60.9, p < 0.01) in low-2 

light compared to the high-light condition and adjusted total NSC concentration within five months 3 

of translocation (Figures 4a and d). Acclimation to a sudden light increase (gap opening) resulted in 4 

a significantly different proportional increase in total NSC concentration across species (F5,20 = 3.2, 5 

p < 0.05). Overall the shade-tolerants (including the generalist species) showed a greater relative 6 

increase in NSC concentration compared to light demanders as a direct response to a simulated gap 7 

opening (F1,24 = 5.7, p < 0.05). NSC was further separated and analysed based on components, 8 

however the finding was consistent with total NSC concentrations when testing for starch 9 

concentration (F1,24 = 4.7, p < 0.05) or WSC concentration (F1,24 = 4.0, p = 0.06).  10 

 11 

Growth and storage 12 

The relationship between the proportional increase in total NSC concentration after a gap opening 13 

(∆ NSC between low and low-high condition) and the average species growth rate under the high-14 

light condition was further examined across species and functional group (Figure 5). Overall, we 15 

found no significant relationship between growth and storage across species. In particular, the 16 

generalist D. lanceolata responded with a slower growth rate and a proportionally lower relative 17 

increase in total NSC concentration as a response to a gap opening. Once this species was excluded, 18 

the relationship between the relative change in growth or storage was significant for the remaining 19 

five species (r = 0.96, t = 5.6, df = 3, p = 0.01, 95% CI: -0.99 to -0.47). However, the light 20 

demanders S. argentifolia, S. leprosula and S. parvifolia invested only marginally less to NSC 21 

concentration compared to the shade-tolerants H. nervosa and S. macropera (F1,3 = 7.6, p = 0.07).  22 

 23 

Contribution of alditols to total NSC concentration 24 

WSC contributed 42–87% to total NSC concentration, depending on species and light condition 25 

(Table 1). A main compontent of WSC was identified as iditol, an alditol present in all six species 26 
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and under all light conditions with a relative concentration compared to total NSC that ranged 1 

between 3-47% (mean absolute concentration: 0.1-17.8 mg g
-1

) (Table 1). Despite the overall 2 

difference in iditol concentration between low light compared to high light conditions, the 3 

interaction between treatment and species indicated that the increase was not signifcant for all 4 

species (F5,40 = 2.4, p = 0.05) (Figure 4b and c). However, seedlings across all six species adjusted 5 

iditol concentrations within five months to their present light condition, suggesting that the trait is 6 

highly adaptive (Figure 4a and d). Seedlings that were translocated from high to low light showed a 7 

significantly lower proportional increase in iditol concentrations than seedlings that were constantly 8 

exposed to low light (F1,4 = 29.5, p < 0.01). Interestingly, the generalist D. lanceolata showed a 9 

significantly smaller increase in iditol concentration as a direct response to a gap opening compared 10 

to all other species (F1,24 = 15.8, p < 0.0001). Correlation between iditol concentration and other 11 

traits did not reveal any significant patterns across species and an inconsistent pattern was observed 12 

within species where a negative relationship between the relative increase in iditol concentration 13 

and wood density in the high light condition was found for three of the six dipterocarp species (S. 14 

macroptera, S. argentifolia, S. leprosula). 15 

 16 

Discussion 17 

Clearly, the selection of species and the replication within each functional group is not 18 

representative to study light niche divergence across the full ecological range with more than 250 19 

species of dipterocarps for Borneo alone (Ashton 2004). However, based on the contrast analysis 20 

performed between functional group in response to light acclimation we can group the six 21 

dipterocarp species based on their changes in selected life history attributes into a light demanding 22 

group including S. argentifolia, S. leprosula and S. parvifolia; and a shade-tolerant group including 23 

Hopea nervosa, S. macroptera and the generalist D. lanceolata. Overall, light demanding species 24 

responded to a gap opening with increased growth and a greater relative decrease in wood density, 25 

whereas shade-tolerant species showed a greater relative increase in NSC concentration. 26 
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 Investing into growth may be the single most important strategy for dipterocarps to escape 1 

the light limited environment of a tropical forest understory after a sudden gap opening (Gustafsson 2 

et al. 2016). However, in contrast to the findings of Philipson et al. (2012), who reported substantial 3 

crossovers among 21 species and no consistent growth hierarchy across light treatments, in the 4 

present study we found no crossovers in growth rates across light conditions and light demanders 5 

showed proportionally higher growth compared to shade-tolerants or the generalist species. Wright 6 

et al. (2010) and Kitajima and Bolker (2003) emphasized that seedlings that grow well in high light 7 

also show higher mortality and reduced stability and resistance in the dark. In dipterocarps, this 8 

mechanism was reported recently, where the relationship in basal diameter growth and expected 9 

probability of mortality was found to be positive, and probability of mortality also correlated 10 

negatively with wood density (Philipson et al. 2014). Testing for a growth-mortality trade-off 11 

requires a negative carbon balance or at least reduced growth in the shade as compared to light 12 

conditions (Myers and Kitajima 2007). During our experiment, none of the seedlings in the 13 

experimental treatment died and although NSC concentration was low it was not fully depleted 14 

even in low-light conditions and with little growth over ten months. For example, S. parvifolia 15 

seedlings did not grow in low light (Figure 3), although NSC concentration for this species was 16 

comparable to other species (Table 1 and Figure 4c). This reflects the ecology of dipterocarp 17 

seedlings, which are well known to be able to persist in the dark forest understorey close to their 18 

light compensation point for years (Watling et al. 1997; Eschenbach et al. 1998; Leakey et al. 19 

2003). The relative change towards increased wood density across all species as a response to low-20 

light conditions was minimal on average, but resulted in a relative change of 20% in light 21 

demanding species which could suggest that wood density may be related to avoidance of structural 22 

damage for prolonged survival, as has been proposed for bark thickness in response to fire regimes 23 

at the global scale (Pausas 2015). However, the functional role of a high wood density is yet unclear 24 

and a global assessment indicated only a weak negative relationship between wood density and 25 
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sapling growth (Larjavaara and Muller-Landau 2012; Philipson et al. 2014; but see Paine et al. 1 

2015). 2 

 As dipterocarps are well known to be resistant to averse environmental conditions the 3 

proportional change in storage may support their prolonged survival under drought (O’Brien et al. 4 

2014) and under light acclimation. By examining the proportional change in NSC and alditol 5 

concentrations, we include additional non-structural traits that have been proposed to be related to 6 

the life history strategies of tropical tree seedlings (Kobe 1997; Myers and Kitajima 2007; Poorter 7 

and Kitajima 2007; Poorter et al. 2010). Our results indicate that seedlings of selected dipterocarps 8 

respond to a sudden light increase with differing strategies and that the increase in NSC 9 

concentration is perhaps not only a reaction to resource limitation. Whereas light demanding 10 

species show a greater increase in growth to outcompete others in the race for canopy access, we 11 

found that they increase proportionally less in storage. We therefore argue that the exposure to 12 

sudden light changes and subsequent changes in storage levels,-such as the response to a gap 13 

opening as described above, is a successful experimental approach to indicate life-history strategies 14 

and associated trade-offs in key functional traits. It is important to note that the findings presented 15 

here are based on a pot experiment, where seedlings in the constant high light environment showed 16 

signs of being pot bound with modified roots (roots moving around the walls of the pot in a circular 17 

fashion). We can therefore not conclude that the results are directly comparable to what happens in 18 

the field under more natural conditions. 19 

 Still, little is known about the functional role of NSC and its sub-components (starch and 20 

soluble sugars) in dipterocarps. The results presented here are based on lower stem tissue only and 21 

do not include root or leaf NSC concentration. Dipterocarp seedlings of the species presented here 22 

were shown to have slightly higher but comparable concentrations of NSC in stem compared to 23 

roots or leaves (O’Brien et al. 2014, but see Quentin et al. 2015). Carbohydrate concentration in 24 

dipterocarps was found to increase during drought periods and especially soluble sugars could be 25 

important to avoid hydraulic failure through osmotic regulation (O’Brien et al. 2015). In our study, 26 
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seedlings in constant high light did not show a trade-off between growth and a proportional change 1 

in NSC concentration, providing some evidence that they invest into both growth and storage when 2 

light access is optimal. However, hydraulic failure is most likely to occur under adverse conditions, 3 

for example during phases of water-stress or increased growth. Since the seedlings in our pot 4 

experiment showed an increase in growth and proportional storage as a response to a sudden gap 5 

opening we assume that: (i) NSC is continuously metabolized during the growth phase as a direct 6 

response of light demanders to the light increase and therefore depleted, or (ii) the higher 7 

proportional change in carbohydrates of shade-tolerants is beneficial to later stages of the seedling 8 

ontogentic development, otherwise a simultaneous relative increase in growth and storage at the 9 

same time could be a more effective strategy. The first assumption may support the theory of 10 

divergence in the regeneration niche, where the ecophysiology of functional group differs in the 11 

response to a sudden gap opening (light niche divergence). The second assumption may support 12 

ontogenetic niche shifts (Kitajima and Porter, 2008) in a constant race to gain access to the canopy 13 

level. 14 

 Through a controlled gap opening, as can be observed in response to a sudden tree- or 15 

branch-fall under natural conditions, we show that in this pot experiment light demanders tended to 16 

allocate proportionally less resources into NSC, starch or WSC concentration compared to shade-17 

tolerants (including the generalist species). This led to further propose a trade-off between the 18 

maximum growth rate and the proportional change in NSC concentration in response to a gap 19 

opening that was supported across five out of the six species (including all light demanders and 20 

shade-tolerants). A clear exception to this proposed trade-off was found in the response of D. 21 

lanceolata. This species took an intermediary role by responding with a low maximum relative 22 

growth rate and proportionally less NSC concentration. Interestingly, D. lanceolata also responded 23 

to the gap opening with a significantly smaller increase in alditol concentration compared to all 24 

other species. These ecophysiological responses of its proportional change in NSC and alditol 25 

concentrations are the main arguments for identifying D. lanceolata as a generalist. The generalistic 26 
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response of D. lanceolata may not be surprising as this species is highly aromatic and young trees 1 

produce a clear yellow resin know as ’oil of camphor’ (Oldfield et al. 1998). We argue that the 2 

investment into defense mechanisms to resist herbivory may play an important role for species that 3 

do not follow the proposed trade-off in the present study (Paine et al. 2012b). 4 

 The functional role of alditols in dipterocarps remains unclear and further research will have 5 

to address the movement of soluble sugars in response to acclimation. Würth et al. (2005) reported 6 

that the relative share of mobile carbon compounds was less than 10% for carbohydrates other than 7 

starch, sucrose, fructose and glucose for 17 species of adult tropical trees. Hence, it may be that the 8 

observed iditol in the present study is only present at the seedling stage, where, depending on the 9 

light condition, it contributed 3-47% (mean absolute concentration: 0.1-17.8 mg g-1) to total NSC 10 

concentration. An early study reports the occurrence of iditol in berries of mountain ash (Sorbus 11 

aucuparia) which also shows ectomycorrhizal symbiosis, as is the case for dipterocarps, however 12 

no indication of the physiological role was given (Plouvier 1963). In the present study, seedlings 13 

that were translocated from high to low light showed proportionally lower iditol concentration 14 

compared to seedlings that were constantly exposed to low light. This could suggest that iditol plays 15 

a role in the adaptation of seedling metabolism in response to altered light levels, however little is 16 

known about the preferential use of iditol compared to other WSCs. Iditol could also act as an 17 

abiotic stress protectant when seedlings face adverse environmental conditions, for example if they 18 

are exposed to a sudden gap or overshadowed by a faster growing competitor, after an insect or 19 

pathogen attack (Renaud & Mauffette, 1991; Liu & Tyree, 1997), or as a result of limiting abiotic 20 

conditions (Tattini et al., 1996). Since dipterocarps readily form ectomycorrhizas (Saner et al., 21 

2010; Brearley 2012), future studies should also test for the possible role of iditol between seedlings 22 

and their associated ectomycorrhiza in response to light acclimation. As alditols were shown to 23 

improve stress tolerance, this may yield novel insights into mechanisms of tree species coexistence 24 

at the plant physiological level in tropical forests. Although these ideas remain speculative, the 25 

authors argue that the light acclimation response of iditol in D. lanceolata should be further 26 
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examined to test the potential role as (i) a dynamic carbohydrate buffer to support seedling growth, 1 

(ii) an abiotic stress protectant for adverse environmental conditions or (iii) an intrinsic component 2 

of the dipterocarp-ectomycorrhizal fungi symbiosis. The role of individual carbohydrate 3 

components needs be considered to understand how the diverse dipterocarp community 4 

physiologically adapts to canopy gap dynamics. 5 

 6 

Conclusions 7 

In conclusion, we show through a simulated gap opening in a pot experiment that selected 8 

dipterocarps can be grouped into light demanders that respond with increased growth and a greater 9 

relative decrease in wood density, whereas shade-tolerant species and a generalist show a a greater 10 

relative increase in NSC concentration, including starch and WSC. Alditols were identified across 11 

all species and light levels and although their functional role remains unknown we observed that the 12 

generalist D. lanceolata responded to the gap opening with a smaller increase in alditol 13 

concentration compared to all other species. These findings emphasize that the understanding of the 14 

light niche divergence of these species needs to be broadened and linked to their physiology to 15 

support their effective use in large-scale forest restoration efforts. 16 

 17 
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Figures 1 

 2 

Fig. 1. Dipterocarp seedling growth over time under low- and high-light conditions grown in pots in 3 

a shade-house. Seedlings of six species were non-destructively measured four times on day 0, 98, 4 

155, 320. On day 155 (dotted line) seedlings were either kept under constant light condition (Low: 5 

low-light, High: high-light) or switched between treatments (Low-High: low- to high-light, High-6 

Low: high- to low-light). 7 
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 1 

Fig. 2. Negative correlation across six dipterocarp species between mean (± SEM) size-specific 2 

diameter growth rates (Diameter SGR) and wood density under high- and low-light condition 3 

grown in pots in a shade-house. Open sympols represent the light demanders, full symbols represent 4 

the shade-tolerants and the generalist. Low-light growth for Shorea parvifolia could not be 5 

calculated and the species is therefore missing in the lower panel. 6 
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 1 

Fig. 3. Positive correlation across six dipterocarp species between mean (± SEM) size-specific 2 

diameter growth rates (Diameter SGR) in contrasting light conditions (high and low) grown in pots 3 

in a shade-house. Open sympols represent the light demanders, full symbols represent the shade-4 

tolerants and the generalist. Low-light growth for Shorea parvifolia could not be calculated and the 5 

species is therefore missing. 6 
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 1 

Fig. 4. Diperocarp seedlings adapt NSC concentration within five months to the surrounding light 2 

conditions. NSC concentration (± SEM; mg g
-1 

dry weight) is reported as total NSC (black: 3 

including starch and water soluble carbohydrates, WSCs) and for iditol separately (grey). Seedlings 4 

were exposed to either constant high-light (b) or low-light (c) or translocated (a,d) half-way through 5 

the experiment where they were grown in pots in a shade-house. 6 
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 1 

Fig. 5. Correlation between the proportional change in total NSC concentration (∆ NSC between 2 

low and low-high condition) after a simulated gap opening and the average species growth rate 3 

under high-light conditions across all six dipterocarp species grown in pots in a shade-house (All), 4 

and after removing Dryobalanops lanceolata (-Dry).  5 
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 1 

Figure S1 HPLC-PAD chromatograms of selected samples for the separation, identification and 2 

quantification of water-soluble carbohydrates (WSCs). The retention time of iditol (19.1 min) was 3 

similar to other alditols and the compound had to be further identified by GC/MS. 4 
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Tables 1 

Table 1 Overview of total NSC concentration for all six dipterocarp species in two constant (High, 2 

Low) and two translocated (High-Low, Low-High) light conditions when grown in pots in a shade-3 

house. Mean ± SEM (mg g
-1 

dry weight) are reported for starch, total water-soluble carbohydrates 4 

(WSCs), iditol and total NSC concentration. Note that iditol is included in WSCs and also reported 5 

separately for ease of interpretation. Percentage of contribution to total NSCs is shown in 6 

parentheses. 7 
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