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1 Introduction

Over the past two decades there has been a new and increased interest in the
concept of causality in statistics. This interest has lead to various new ap-
proaches for defining and studying causality in statistical terms. In medical
sciences, studies are typically driven by questions that are causal in nature,
for example questions of treatment effects or the effect of some other inter-
vention. Causality can, however, also be about understanding mechanisms,
addressing questions about possible mediating variables and their effects.
For example, considering which variables the treatment effect is mediated
through. Answering any such questions about causality systematically re-
quires extensions to standard statistical methods.

Infectious disease modelling is a field that has also received an increasing
amount of attention over the last decades with the spread of HIV, the recent
swine flu pandemic, the threat of avian flue and many others. Infectious
diseases have re-emerged as a threat to western countries; and there has
also been an increasing focus on Third World medical problems. As medical
research in Western countries traditionally has had chronic diseases such as
heart disease and cancer as the major areas of focus, new statistical models
are required to understand the spread of infectious diseases.

The main aims of this thesis are to study approaches for estimating the
causal effect of treatment on survival from HIV/AIDS using data from ob-
servational studies, and the concepts of epidemic growth rates and dynamic
modelling of infectious diseases. These aims are met by studying methods for
estimating the causal effect of treatment, and addressing the concept of direct
and indirect effects by dynamic path analysis, using data from the Swiss HIV
Cohort Study. Epidemic growth rates and reproduction numbers are studied
together with a dynamic model for HIV/AIDS progression and models for
estimating influenza related excess mortality using Norwegian surveillance
data.

A recurrent theme in this thesis is infectious disease, and the methods
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discussed are all applied in either a HIV/AIDS or influenza setting. However,
the methods cover different areas of statistical and mathematical modelling;
the two most important are infectious disease modelling and causality. There
are four papers included in this thesis, and even though Paper 3 and Pa-
per 4 address causal inference directly, Paper 1 and Paper 2, considering
infectious disease modelling, complement these last two papers with regard
to causality in infectious diseases. Paper 1 and Paper 2 illustrate how in-
fectious disease modelling is strongly connected to a causal way of thinking.
There are obvious similarities between mechanistic causality as discussed in
Paper 4, and modelling infectious diseases using dynamic multi-stage mod-
els, as in Paper 1. Paper 2 is an example of how questions in medical
science are causal in nature, and how these questions can be addressed using
public health surveillance data.

In Paper 1 we study the use of epidemic growth rates and reproduction
numbers, with application to a multi-stage model for HIV/AIDS progression.
In Paper 2 we estimate influenza related excess mortality, epidemic growth
rates and reproduction numbers using Norwegian surveillance data. In Pa-
per 3 we introduce a method for estimating the causal effect of treatment
using data from a HIV/AIDS cohort study, while in Paper 4 we build on
some of the ideas from the previous paper to analyze the same type of data
using dynamic path analysis. The four papers follow at the end of this thesis.

The outline for the rest of the thesis is as follows: Section 2 gives an in-
troduction to infectious disease, focusing on HIV/AIDS and influenza in par-
ticular. Modelling of infectious disease, HIV/AIDS progression, influenza re-
lated excess mortality, reproduction numbers and growth rates are discussed
in Section 3. Causality and causal modelling are discussed in Section 4, in
particular with respect to counterfactual causality and to methods for mak-
ing causal inference from observational studies. Direct and indirect effects
are discussed in Section 5, emphasizing graphical models and dynamic path
analysis. The four papers are summarized in Section 6, while a final discus-
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sion is found in Section 7.

2 Infectious diseases

Infectious diseases are diseases caused by a transmissible agent replicating in
an infected host. New infections occur when susceptible hosts are exposed to,
and then acquire the agent. Agents can transmit from one host to another,
creating a chain of transmissions in the population; this is the most distinctive
feature of infectious disease epidemiology [1].

There are many reasons why infectious disease has received more atten-
tion in recent years: influenza and HIV have already been mentioned, while
other examples are the occurrence of resistant tuberculosis, the SARS epi-
demic, the fear of bio-terrorism, multi-resistant microbes in hospitals and
various sexually transmitted diseases [2]. However, as the methods in this
thesis are all applied to either data on HIV/AIDS or influenza, the following
discussion will be limited to these two infectious diseases.

2.1 HIV/AIDS

Human immunodeficiency virus (HIV) is a virus that attacks the human im-
mune system by infecting cells such as the helper/inducer T cells. These cells
are also designated as CD4 cells. The stage of HIV infection is typically mea-
sured by the CD4 cell count and by the viral load (the number of copies of
HIV RNA in the blood). The most severely affected patients are prone to re-
peated opportunistic infections and neoplasms, characterized as the acquired
immune deficiency syndrome (AIDS) [3]. Since the discovery of HIV and
AIDS in the early eighties, the disease has spread worldwide at an alarming
rate. The pandemic was in 2002 estimated to have infected 42 million people,
increasing at a rate of 5 million new infections per year, and causing 3 million
deaths per year – the majority were in the sub-Saharan Africa [4]. In most
western countries, the HIV epidemic is mostly associated with certain risk
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groups, such as men who have sex with men and injecting drug users. Recent
treatment, using highly active antiretroviral treatment (HAART), and often
referred to as just antiretroviral treatment (ART), has shown a substantial
reduction in disease progression among infected patients [5], but a vaccine
has yet to be discovered.

Historically, HIV/AIDS surveillance in the western countries focused on
monitoring the AIDS incidence, and even after the HIV test became available,
reports of HIV incidence were slow to be adopted. However, after the intro-
duction of HAART, disease progression became less predictable and AIDS in-
cidence no longer represented transmission trends. HIV case-reporting there-
fore became more urgent. HIV prevalence was typically monitored through
surveys among different risk groups [6]. Today there are many huge multi-
center cohort studies, national and international collaborations, gathering
relevant information about HIV infected individuals. Examples include the
Multicenter AIDS Cohort Study (MACS) [7] in the USA and the Swiss HIV
Cohort Study [8].

The methods in Paper 1, Paper 3 and Paper 4 in this thesis are all
applied to HIV/AIDS.

2.2 Influenza

Influenza is an infection of the respiratory tract caused by influenza viruses.
The viruses are transmitted by contact, droplet and airborne transmission,
and are highly transmissible in high density communities [9]. The infection
is typically characterized by sudden-onset fever, dry cough, nasal conges-
tion, headache, muscle pain, weakness, and loss of appetite [10]. Influenza is
usually self-limited with recovery in 2–7 days. Pneumonia is a common com-
plication. Most patients make a full recovery, but the severity of influenza
epidemics vary with virus type, and for certain high risk groups influenza can
be a deadly disease. The highest mortality is found among the elderly and
patients with underlying severe diseases, and for these risk groups annual in-
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fluenza vaccines are recommended in many countries [11]. Seasonal influenza
usually causes annual outbreaks of varying length and severity during the
winter months in the northern hemisphere. Occasionally, new virus variants
appear, to which few or no-one is immune, possibly causing an influenza
pandemic. There were three big influenza pandemics in the last century: the
Spanish flu in 1918–19, the Asian flu in 1957–58 and the Hong Kong flu in
1968–70. More recently, we had the so-called swine flu pandemic emerging
from Mexico in 2009.

Most developed countries monitor influenza activity by measuring the
number of patients seeking health care, the virologically confirmed cases or
by other markers for influenza-like illness (ILI). In Norway from 1998, weekly
numbers on influenza have been collected from sentinel practices using the
number of ILI cases per total number of consultations. Mortality due to
influenza is, on the other hand, harder to discern, and influenza is rarely
recorded as the cause of death in Norway [11].

The methods in Paper 2 in this thesis are applied to Norwegian ILI data.

3 Infectious disease modelling

The notion of infectious disease modelling is most often used for infectious
disease transmission models, compartment models or dynamic systems ex-
plaining and predicting the movement of infection through a population over
time [1]. Even though there is a long history of mathematical modelling in
epidemiology, going back to Bernoulli in the 18th century, the dynamic sys-
tem approach first became popular in the 1920s. Since then, the methodology
surrounding this type of models has been exposed to numerous conceptual
and technical developments [4]. The models are used to predict the course
of epidemics and to investigate the effect of change in model parameters.
Changes in model parameters can represent change of risk-seeking behavior,
the introduction of vaccines, medication or any other countermeasure.
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Infectious disease modelling has become a huge field, and the methodology
covered in this thesis will be limited to certain groups of models. We will con-
sider the type of compartment models mentioned in the introduction of this
section, which are used to model HIV/AIDS progression in Paper 1. Other
types of models are models for estimating excess mortality using epidemic
surveillance data and data on overall mortality, as studied in Paper 2. These
latter models are somewhat on the side of what is usually denoted infectious
disease modelling, as they do not model the spread or progression of disease
as the compartment models above. Instead, they are based on fitting models
to observed epidemic curves using regression techniques. Other important
concepts within infectious disease modelling are reproduction numbers and
epidemic growth rates. Both Paper 1 and Paper 2 discuss the estimation
and use of these quantities.

Examples of other areas in infectious disease modelling, not covered in
this thesis, are expansions of the mentioned compartment models into multi-
host models, models with stochastic dynamics, spatial models and network
models. For an introduction to these topics, see for example Keeling and
Rohani [4].

3.1 Compartment models

Generally, transmission models for infectious disease consider members of the
population to fall into compartments, stages or states such as ‘susceptibles’,
‘infectious’ and ‘recovered’ [1]. This example of compartments is used in the
famous SIR model by Kermack and McKendrick from the 1920s [4]. Simple
transmission models for infectious disease use only two or three compart-
ments, but many more compartments can be used in more complex situa-
tions. An example of a basic SIR model is illustrated in Figure 1. Here, S,
I and R denote the susceptible, infectious and recovered part of the pop-
ulation. Correspondingly, the notation S(t), I(t) and R(t) is used for the
number of individuals in each of the three compartments. λ(t) and γ are
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transition rates, specifically the rate of infection and the rate of recovery.
The infection rate λ(t) is dependent of the number of susceptible individu-
als in the population, usually by λ(t) = k · s(t), where k is the number of
new infections transmitted by one individual per unit time and s(t) is the
proportion of susceptible individuals in the population at time t.

� � �

Figure 1: An example of a simple SIR model with transition rates λ(t) and γ.

The SIR model shown in Figure 1 can be modeled using the ordinary
differential equations

dS

dt
= −λ(t)I(t),

dI

dt
= λ(t)I(t) − γI(t),

dR

dt
= γI(t).

Despite their simplicity, these differential equations cannot be solved explic-
itly and are therefore solved numerically [4]. The models can of course be ex-
tended and altered in various different ways, for example by including demog-
raphy (individuals entering and leaving the system with certain rates), other
dependencies between compartments or by including more compartments.
For further reading on the SIR model and related models, see Paper 1 and
also Keeling and Rohani [4] or Diekmann and Heesterbeek [12].

3.1.1 A model for HIV/AIDS progression

One extension of the simple compartment models discussed in the previous
subsection is described in Paper 1, as a model for HIV disease progres-
sion among homosexual men in England and Wales. See Figure 2 for an
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Figure 2: A generalized SIR model for HIV/AIDS progression.

illustration (figure reprinted from Paper 1).
The model in Figure 2 is a generalized SIR model [13] and, compared with

the model in Figure 1, it has been extended with demography and the use
of a multi-stage Markov model to replace the single infectious compartment.
The added demographic parameters include N , m and m0. N is the number
of individuals entering the susceptible stage per unit time, while m is rate
to which the susceptibles die, or leave the system uninfected, and m0 is the
background mortality rate. Note that a background mortality rate, such
as m0, should generally affect all states where individuals are still alive.
However, for simplicity, m0 is only added to state 11, 12 and 13 in the model
in Figure 2. The rate m0 is small compared to the other transition rates
and it makes no practical difference whether to include them. Including such
rates could, on the other hand, be essential for other exposure groups, such
as injecting drug users [14].

The other parameters λ(t), ai, bi, di, fi, gi and mi for all i are transition
rates, and h1, h2 and h3 are factors decelerating, or modifying, certain tran-
sition rates. The model is based on the Markov model in Aalen et al. [18],
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and the parameters are based on previous estimated rates and on published
studies of HIV/AIDS. See Paper 1 for further details.

3.2 Estimating influenza-related excess mortality

Another type of model that can be applied to infectious diseases are models
for estimating the excess mortality attributable to disease using surveillance
data on disease incidence and numbers of overall deaths. In Paper 2, such
models are used to estimate the excess mortality due to influenza. As in this
paper, the discussion in the following section will focus mainly on applications
to influenza. These models could however also be used to estimate other
types of excess mortality. For example, they are commonly used to estimate
excess mortality related to heat waves as in Fouillet et al. [15]. Generally, the
models will not only apply to excess mortality, but also to other equivalent
situations, such as estimating excess hospitalization [16].

Excess mortality is usually defined as the difference between the observed
number of deaths and the expected number of deaths, where the latter is the
expected number of deaths without the occurrence of influenza. There are
various ways of quantifying this number of expected deaths, but they can
generally be divided into three types of models.

In the most simple classic epidemic-threshold models, the excess mortality
is defined as all deaths exceeding a seasonal baseline threshold, found for
example by averaging over periods without influenza outbreaks.

Models based on cyclic regression or time series calculate this threshold
in a more advanced manner, modelling seasonal variation using paramet-
ric models. Typically, the parts of the mortality and influenza time series
where epidemics are meant to have occurred are excluded from the estimating
process [17].

Other models are based on Poisson regression, negative binomial regres-
sion or other related regression models. Unlike the cyclic regression and
time series models, they model the mortality using influenza activity as an
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explanatory variable, together with other important explanatory variables.
The models used in Paper 2 fall into this category. Using these models
the excess mortality is estimated as the difference between the observed and
the predicted mortality from the regression model, leaving out the influenza
contribution.

Beside the aforementioned differences between these three types of mod-
els, they also vary significantly within these categories. The differences will
typically lie in the model specification, the type of marker for influenza ac-
tivity and other variables affecting mortality, which additional covariates are
being included, reasoning surrounding what periods should be excluded from
the estimating process, whether weekly data are used or data with another
resolution and so on. All of these aspects could affect the excess mortal-
ity estimate. The principal advantage of using models based on Poisson or
negative binomial regression is that other competing causes for excess mor-
tality, such as the incidence of other diseases or factors such as temperature,
can be included as covariates. Also, modelling the seasonality using mark-
ers means that parametric shapes of seasonality do not need to be assumed.
However, if data only are available for short time periods, the ability to add
such parametric assumptions would be an advantage.

For further discussion and references, see Paper 2 as well as Nunes et
al. [17].

3.3 Reproduction numbers and epidemic growth rates

A common goal when modelling infectious disease is to quantify the growth
of an epidemic, usually by estimating reproduction numbers. These are im-
portant quantities because they give a better understanding of the magnitude
and the potential course of an epidemic. For example, calculating reproduc-
tion numbers from compartment models can give information about what
type of countermeasures would be sufficient for preventing outbreaks. Repro-
duction numbers and epidemic growth rates are among the topics in Paper 1
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and Paper 2.
Generally, a reproduction number is the average number of secondary

infections caused by one infected individual during the infectious period.
The term basic reproduction number (R0) is used for the reproduction

number of one individual introduced into a completely susceptible popula-
tion. In a homogeneous population with random mixing, where c is the
expected number of contacts per unit time, β is the probability that a con-
tact between a susceptible and an infected leads to transmission and D is
the average length of the infectious period, R0 can be calculated as [12,13]

R0 = cβD

Alternatively, for the basic SIR model in Figure 1, using the corresponding
notation, R0 is given by

R0 = k

γ
. (3.1)

For basic SIR models with demography or other basic compartment models,
similar expressions for R0 exists.

If R0 > 1, the introduction of an infected individual in a population
has the potential to set off an epidemic. Otherwise, if R0 < 1, an added
infectious individual would produce less than one new infection on average,
and the infection will die out. In other words, R0 = 1 is the threshold that
decides whether an epidemic is possible.

If the population is not completely susceptible, the infected individual in
question will sometimes ‘try’ to infect an individual who is already infected.
The effective reproduction number (Re(t)) [13] is the average number of new
infections caused by one individual introduced into such a population, and
can be calculated as

Re(t) = R0 · s(t), (3.2)

where s(t) again is the proportion of susceptibles at time t.
The reproduction numbers R0 and Re are the most common reproduction

11



numbers being used, and they have an important role in infectious disease
modelling and assessment. There are however other variants, such as the
actual reproduction number (Ra(t)), which describes the actual spread of an
epidemic that has already occurred. Ra is calculated as the average number of
secondary cases per case to which the infection has actually been transmitted
during the infectious period in a population [13,19]. For the basic SIR model,
the expressions for Ra(t) and Re(t) are identical, but this is generally not the
case for more complex models.

Another type of quantity that is related to the growth of an epidemic
is the epidemic growth rate. The intrinsic growth rate (r) [13] denotes the
growth rate at the very beginning of an epidemic outbreak. Here, the growth
is exponential, and the intrinsic growth rate corresponds to an exponen-
tial growth rate. The intrinsic growth rate r differs from the reproduction
numbers in the way of describing epidemic growth. While the reproduction
numbers describe the reproduction over an individual’s infectious period, r

describes the immediate growth of the entire epidemic. For long lasting in-
fections, where disease progression can change, or be uncertain, r might be
a more meaningful quantity than reproduction numbers such as R0. An ob-
vious example of such a long lasting infection is HIV, where the situation for
infected individuals has changed when new treatment, such as HAART, has
become available.

For the basic SIR model in Figure 1, r is found by

r = k − γ. (3.3)

The growth rate can also be expressed as a time-dependent growth rate
(r(t)) [13]. For the same basic SIR model, r(t) is

r(t) = λ(t) − γ, (3.4)

or the difference between the ‘birth’ rate and ‘death’ rate of new infections
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per unit time.

To read more about reproduction numbers and epidemic growth rates, see
Paper 1 or Diekmann and Heesterbeek [12]. In Paper 1 we also discuss how
to estimate these quantities in more advanced compartments models, while
estimation from observed data is discussed in both Paper 1 and Paper 2.

4 Causal inference

Saying something about the relationship between cause and effect for certain
variables or events is one of the main aims of natural and social sciences,
including medical research. However, the methodology for extracting such
causal relationships has been the subject of fierce debate over the years [20].
In statistics, maybe even more than in other fields, there has traditionally
been a very cautious attitude towards talking about causation, based on an
awareness of the fundamental difference between statistical association and
actual causal relationships [2]. This attitude has to some extent gradually
changed over the last decades, with what could be called a growing causal
movement within statistics. People like J. Pearl, J. M. Robins, D. B. Ru-
bin and others began to develop frameworks for causal thinking in statistics,
speaking of and defining concepts like causal effects. However, what statis-
ticians speak of under the causality banner varies. One categorisation is to
divide the topics into the following three areas of statistical causality: coun-
terfactual causality, graphical models and predictive causality [2].

The methods discussed in the following sections, and in Paper 3 and
Paper 4 fall within the first two areas. The topics in this section are within
counterfactual causality, while Section 5.1 will touch on the area of graphical
models and the concepts of direct and indirect effects.
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4.1 Counterfactual causality

The main objective in counterfactual causality is to measure the effect of
some intervention, such as medical treatment or another preventive health
measure.

Take, for example, the causal effect of treatment with regard to patients’
lifetime. Every patient i has two possible responses: one if the patient was
given treatment, Y1i, and one if the patient was not given treatment, Y0i.
Such responses are also called potential outcomes [20]. The causal effect of
treatment for patient i is then merely

θi = Y1i − Y0i. (4.1)

Ideally, this would be the causal effect we are interested in, but obviously
both potential outcomes are not possible to observe. One of the outcomes
can be observed, the other is counterfactual and cannot be observed, simply
because it does not exist. This has been called the fundamental problem of
causal inference [22], but it does not mean that causal inference is impossible.

The alternative to the causal effect in (4.1) is to look at the average causal
effect. If Y1 and Y0 are the potential outcome random variables, the average
causal effect, often referred to as just the causal effect, is [21]

E[θ] = E[Y1 − Y0] = E[Y1] − E[Y0]. (4.2)

The definition of a causal effect in equation (4.2) could also be written
using do-operator notation, where setting a variable X to a value x is denoted
by do(X = x), or do(x) for short. Given two disjoint sets of variables X and
Y , where x1 and x0 are two distinct realizations of X, the causal effect of X

on Y , θ, can be denoted by [20]

E[θ] = E(Y |do(x1)) − E(Y |do(x0)). (4.3)
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The average causal effect from (4.2) or (4.3) is found as the average out-
come for patients receiving treatment minus the average outcome for patients
not receiving treatment. Models for estimating such effects are called coun-
terfactual models or potential-outcome models. For these estimates to be
unbiased, there are two main assumptions which need to hold:

1. The stable unit treatment value assumption (SUTVA): The causal ef-
fect for a particular patient does not depend on assignments of other
patients and there are no hidden versions of treatment [23].

2. (Strong) ignorability: Treatment assignment T is independent of the
outcomes given a vector of all the observable covariates X, or (Y1, Y0) ⊥⊥
T |X [21]. In other words: the treatment assignment mechanism can
be said to be ignorable, given all observed covariates.

The randomized controlled trial (RCT) has for long been seen as the gold
standard in medical research [24]. In RCTs the patients are randomly as-
signed to different groups, such as a treatment group and a control group.
The resulting effect estimate is then the difference between the mean re-
sponse in the different groups. In this way, ideal RCTs fulfill the ignorability
assumption through the random treatment assignment. However, the ideal
set-up can be violated for many reasons; perfect control over patients is hard
to achieve, randomization into placebo groups is not always ethical, and
the presence of randomization itself might influence the participation in the
study. In other words, it is not always feasible to create a RCT. HIV treat-
ment is a good example of when random treatment assignment would not be
ethical: assigning a patient to placebo would be to deny the patient possible
life-saving treatment [20]. Studies of such treatment effects would then have
to lean on observational studies.

Observational studies are empirical investigations of treatments, poli-
cies or exposures, and their effects. The studies may have the same goal
as RCTs, but differ in that the investigator cannot control the treatment
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assignment [25]. The main examples of such observational studies used in
this thesis are the many large HIV cohort studies, especially the Swiss HIV
Cohort Study [8] analysed in Paper 3 and Paper 4.

In an ideal RCT, because of the randomization, we have that association
is causation. This is not the case in observational studies. Here, in general
association is not causation. However, observational studies are often the
only alternative for causal inference, and there exist methods that permit
the estimation of causal treatment effects from observational data, under
certain assumptions [26].

4.2 Causal inference from observational studies

To say something about the average causal effect of an observed treatment
status variable D on an outcome variable Y in observational studies, the
treatment selection mechanism [21] has to be taken into the model. In other
words, the bias due to any lack of randomization has to be adjusted for.
For pre-treatment differences, there are two types of confounders creating
such selection biases: the observed or measured confounders, and the ones
not measured, but suspected to exist, the unobserved or unmeasured con-
founders. A goal in causal inference of observational studies is then to adjust
for all observed confounders, and to assess and reduce sensitivity to possibly
unmeasured confounders. The methodology needed to do this will vary with
the complexity of the treatment selection and the data.

If the treatment exposure is fixed, and given that there are no unmea-
sured baseline covariates or model misspecifications, conventional methods
to adjust for confounding by baseline covariates such as stratification, match-
ing and/or regression would give consistent estimators of the causal effect.
However, when estimating the causal effect of a time-varying treatment on
an outcome, conventional methods could fail to have a causal interpretation,
even when there are no unmeasured confounders, no model misspecification,
and all of the time-dependent confounders are controlled for [28].
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HIV cohort data, such as the Swiss HIV Cohort Data, are a typical exam-
ple where such problems of time-dependent confounding are present. Time-
dependent confounding could be present when a variable, affected by past
treatment, is both a predictor of future treatment and of outcome [29].

In the HIV cohort setting, patients are typically observed through re-
peated visits, where at each visit the treatment indicator variable and vari-
ables such as the outcome and other relevant covariates are updated. An
example of a time-dependent confounder would be the CD4 cell count, which
because treatment for HIV is not given before the patient is at a certain stage
of disease, is a predictor of future treatment and outcome (usually AIDS or
death). Also, treatment would again increase the CD4 count; past treatment
will affect later CD4 levels. Methods for estimating the causal effect of treat-
ment in the presence of time-dependent confounding in such datasets will be
the theme for the rest of this section.

4.2.1 Marginal structural models

The most established method for estimating the causal effect of a time-
dependent exposure A on an outcome Y in the presence of time-dependent
confounding covariates L is probably the marginal structural model (MSM)
[29, 30]. Using the notations of Robins, Ak and Lk denote the values of the
time-dependent variables A and L at the discrete time point k, such as in
the kth month since start of follow-up.

The models are called marginal because they model the marginal distri-
bution of the counterfactual random variables Ya0=1 and Ya0=0, and struc-
tural because they model the probabilities of counterfactual variables, often
called structural models in econometrics and the social sciences [29]. The
parameters of the MSM can be estimated using so-called inverse probability
of treatment (IPT) weights, and implemented as an extension of standard
methods such as the Cox proportional hazards model.

One way to understand the MSMs and the IPT weighting procedure is
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to think of the problem of unmeasured counterfactuals as a missing data
problem. Ideally we would want the ‘full data’, including all potential out-
comes for every individual, but in our observed data the counterfactuals are
obviously missing. However, the situation is similar to when dealing with
censored data, and a method for adjusting for dependent censoring such as
inverse probability weighting can be used.

Consider an observational study, such as a HIV cohort study, with non-
random and monotone missingness (if the patient drop out, he does not come
back). When dealing with dependent censoring, inverse probability of censor
(IPC) weights [31,32] are used to account for the missing observations in the
dataset. The idea is to ‘rebuild’ the dataset to what it would have looked
like without any censoring, by weighting each observed individual at time t

with the inverse probability of being observed at time t. This corresponds to
weighting each individual to account for the number of ‘similar’ individuals
who have dropped out. The probability of being observed, or 1 minus the
probability of being censored, could be estimated using logistic regression,
adjusting for all relevant covariates. In addition, inverse probability weights
are often stabilized to achieve greater efficiency (see next paragraph) [30].

Continuing with a notation similar to the one by Robins and Hernan, let
C(t) be 1 if a patient is censored at time t and 0 otherwise, V a vector of
time-independent baseline covariates, Ā(t) = {A(u); 0 ≤ u < t} the covariate
history up to time t, and similarly for C̄(t) and L̄(t). Ā(0) and C̄(0) is by
definition 0. The stabilized IPC weight for patient i at time t is

wi(t)

=
t∏

k=0

P [C(k) = 0|C̄(k − 1) = 0, Ā(k − 1) = āi(k − 1), V = vi)]
P [C(k) = 0|C̄(k − 1) = 0, Ā(k − 1) = āi(k − 1), L̄(k − 1) = l̄i(k − 1)]

.

(4.4)

Using unstabilized weights would correspond to using the weights from equa-
tion (4.4), but replacing the numerator with 1. This way of weighting for

18



dependent censoring using stabilized IPC weights is used in both Paper 3
and Paper 4 in this thesis.

A MSM can be fitted in a similar way using IPT weights, weighting for the
‘missing’ counterfactuals. To simplify, treated patients are weighted with the
inverse probability of being treated and untreated individuals are weighted
with the inverse probability of being untreated. The IPT weight for patient
i at time t can be written

w∗
i (t)

=
t∏

k=0

P [A(k) = ai(k)|Ā(k − 1) = āi(k − 1), V = vi)]
P [A(k) = ai(k)|Ā(k − 1) = āi(k − 1), L̄(k − 1) = l̄i(k − 1)]

.

(4.5)

A MSM could be fitted adjusting for dependent censoring, using the combined
weights wi(t) × w∗

i (t).
The idea is that, in the weighted dataset, treatment is independent of the

confounders. The MSM models a situation where treatment is randomized.
The MSM relies on four main assumptions [33]:

1. Consistency. Each individual’s counterfactual outcome under their ob-
served exposure is the same as their observed outcome.

2. Exchangeability. This breaks down to an assumption of no unmeasured
confounders, and is often referred to as the no unmeasured confounders
assumption.

3. Positivity. There must be both exposed and unexposed individuals at
every level of the confounders, so that there are positive probabilities at
all levels. This assumption is sometimes referred to as the experimental
treatment assignment (ETA) assumption.

4. No model misspecification. The MSM must be correctly specified, in-
cluding the probability of treatment and censoring models.
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The assumption of exchangeability (or no unmeasured confounders) is not
testable using observed data, but can be explored with sensitivity analysis [33].

The MSM fitted with IPT weights has both strengths and weaknesses [28],
one of the weaknesses being that the IPT weights can be unstable. If the time
periods, indexed by k in (4.5), are small, the probability in the denominator of
the same equation can be very small, resulting in inordinately large weights
and both bias and imprecision [28]. The problem with instability in IPT
weights is discussed in Paper 3.

4.2.2 Other existing methods

There are alternative methods to the IPT weighting of MSMs for estimating
causal effects for time-varying exposures in the presence of time-dependent
confounders. These methods will give identical effect estimates if certain
requirements are maintained, but in general different estimates can be pro-
duced. The estimates will depend on both the causal contrast of interest and
the method’s robustness [28].

One such method is the g-computation [35] of MSMs, also referred to by g-
formula. The g-computation estimation corresponds to maximum likelihood
estimation of MSM parameters [34].

Simplified, if f(y|do(A = a)) is the distribution of counterfactual or po-
tential outcomes over all individuals, where A is the set of all possible expo-
sure levels a, the causal effect of A on the outcome Y could be evaluated,
given that this distribution was known. However, only the distribution of
outcomes for the actually received exposures is observed, and the effect of
A on Y would be biased when there exists a time-dependent confounder L.
The solution called g-computation is to use the factorization [36]

f(y|do(A = a)) =
∫

l
f(y|do(A = a), L = l)f(l)dl, (4.6)

which corresponds to ordinary standardization when exposure is a fixed base-
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line characteristic, but not when exposure is time-dependent [1]. Under the
assumptions of no unmeasured confounders and consistency, the term in (4.6)
is equal to the observable quantity

∫
l
f(y|A = a, L = l)f(l)dl, (4.7)

which, in simple cases, can be computed directly [28,36].
G-computation of MSMs could be an option when the ETA assumptions

of the IPT weighted MSMs do not hold, and also if it is easier to predict
the outcome given exposure and confounding variables than it is to predict
the exposure given the confounding variables. However, the g-computation
algorithm is often impractical and requires more complicated, iterative pro-
cedures than fitting a MSM using IPT weights [36].

Faced with a choice of modelling the exposure, as in the IPT weighted
MSM, and modelling the outcome, as in the g-computation of MSMs, a third
alternative is to do both, and combine the two approaches. Such methods are
formalized as double robust methods, where the ‘double robust’ term reflects
that the method has two ways to discover the correct answer [1]. Such
methods are not discussed any further in this thesis.

Another alternative method is the g-estimation [37] of so-called structural
nested models (SNMs). G-estimation is based on the concept of counterfac-
tual failure times. The idea is that for every individual i, the counterfactual
failure time Ui is the failure time that would have occurred if the individual
was unexposed throughout follow-up. It is then assumed that exposure ac-
celerates the failure time by a factor of exp(−ψ), which is called the causal
survival time ratio. G-estimation is a method for estimating this parameter
ψ [38], and is related to the accelerated life models by Cox and Oakes [1].

Formally, the counterfactual failure time Ui,ψ can be derived from the
observed failure time Ti by

Ui,ψ =
∫ Ti

0
exp(ψei(t))dt, (4.8)
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where ei(t) is 1 if individual i is exposed at time t and 0 otherwise. In
the presence of time-dependent confounding, ψ cannot be estimated using
standard accelerated failure time methods, but it can by using g-estimation.
The key assumption is that there are no unmeasured confounders or, in other
words, that all variables contributing to whether an individual is exposed at
a certain time are measured. If this assumption holds, it means that at each
measurement time the exposure is independent of the counterfactual failure
time Ui. G-estimation is now the search for the value ψ0, for which exposure
at each measurement time is independent of Ui,ψ0 . This could be achieved by
fitting a logistic regression model, modelling exposure by ei(t) with Ui,ψ and
all confounders as covariates. The confounders are then typically the other
covariates at the current time point t, and the values of the other covariates
and exposure at previous time points and baseline. A series of such logistic
regression models are then fitted, with different values of ψ. The g-estimate
of ψ, ψ0, is the value of ψ giving a Wald statistic at zero (a p-value of 1) for
the regression coefficient belonging to the Ui,ψ covariate [38]. In the presence
of censoring, g-estimation becomes more complex [1].

The methods discussed in this section so far (IPT weighting of MSMs,
g-computation of MSMs and g-estimation of SNMs) are referred to as g-
methods [28], where the ‘g’ stands for generalized, meaning that g-methods
generally can be used to estimate the effects of time-varying treatments [39].

However, methods for adjusting for confounding in observational stud-
ies can be classified into two categories: g-methods and stratification-based
methods [39]. Stratification-based methods include stratification, restriction
and matching, and estimating the association between exposure and outcome
in subsets of the population, where the exposed and unexposed are assumed
to be exchangeable [39].

One way to view all these methods is that they try to mimic the situa-
tion of a randomized controlled trial (RCT). The g-methods mimic a RCT
by modelling a situation where the exposure is independent of the confound-
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ing covariates, for example by weighting. Stratification-based methods can
mimic a RCT in a more direct sense, by constructing subsets of the pop-
ulation where exposed and unexposed can be compared without bias. The
method discussed in the next subsection, and in Paper 3, is a method based
on mimicking RCTs by manipulating the observed data.

4.2.3 The sequential Cox method

We still consider estimating the causal effect of an exposure in the presence
of time-dependent confounders using observational data. Say that the ex-
posure variable is a dichotomous treatment variable where, once treatment
is initiated, individuals by definition do not return to being untreated. The
sequential Cox method [40] is based on mimicking a sequence of RCTs, each
of which can be analysed using a standard Cox proportional hazards model,
and then combining these analyses using composite likelihood inference [41].
The method is presented formally in Paper 3.

Each of the mimicked RCTs when using the sequential Cox method are
constructed based on individuals starting treatment in a certain time interval
k, called the reference interval. If the measurement scale in such data is
months since inclusion in the study, each observation month could define
such a time interval, but there are also other intervals that could be used.

The individuals initiating treatment in time interval k form the treat-
ment group in the mimicked trial, while the individuals not yet on treatment
by interval k form the control group. However, the individuals not yet on
treatment by interval k are artificially censored from the mimicked trial if
they start treatment at a later time point (in an interval > k). Then, in the
Cox proportional hazards analysis of one such mimicked trial, baseline co-
variates and covariate values at time interval k would typically be controlled
for. Time-dependent confounding variables would be affected by exposure,
and are thus not included. Only covariate values at baseline and at the ‘local
baseline’ in the mimicked trial (covariate values at interval k) are included.
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If there is bias due to dependent censoring, this could be adjusted for using
IPC weights, along with the dependent censoring introduced by the artificial
censoring needed to construct the mimicked trials. Including such weights,
the estimated parameter in a weighted Cox model would have a causal in-
terpretation if:

1. there are no unmeasured confounders,

2. the model for estimating the hazard rate is correct, and

3. the model for estimating the censor weight is correct.

The idea is now to construct such mimicked RCTs for every possible ref-
erence interval k. Say there are K such trials to mimic. The partial score
functions from each of the K mimicked trials can be combined using com-
posite likelihood techniques [41] to estimate an overall effect of treatment.
See Paper 3 for details. This overall estimate will still have a causal inter-
pretation given the assumptions that:

1. the treatment effect is the same in every trial, and

2. the effect of treatment is the same for all covariate histories before the
reference interval k, given covariates at interval k.

However, the first of these two assumptions can be relaxed by interpreting
the overall effect estimate as an average or aggregated causal effect over all
mimicked trials. Using the composite likelihood to combine the analyses is
similar to taking a weighted average.

As for the other methods, the sequential Cox method has advantages and
disadvantages. One advantage compared to the IPT weighted MSM is that
the problem of unstable IPT weights is avoided (see Paper 3 for further
discussion). Another advantage is that possibilities open up due to the con-
ditioning on covariate values at time k; this makes it possible to investigate
treatment effects for different covariate values at the time of treatment start.
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A third advantage is that the model is easy to implement using standard
methods and software once you have constructed a dataset for each of the
K mimicked trials. Then the overall effect estimate could be estimated us-
ing a stratified weighted Cox model, stratified on k. A disadvantage is that
you could end up creating a very large pseudo dataset, consisting of data
for all the K constructed trials. Also, the confidence intervals based on the
Wald statistics would not be valid, and using bootstrap methods can be time
consuming.

5 Direct and indirect effects

The concepts of direct and indirect effects are connected to a mechanistic
view of causality [2]. The idea is that the effect of treatment can be divided
into a direct effect and an indirect effect. An indirect effect is the effect
of treatment going through some intermediate variable. Depending on the
situation, there can be many such indirect effects of one treatment going
through different intermediate variables. The direct effect is the remaining
effect not mediated through any of these intermediate outcomes.

Path analysis is a method for estimating such direct and indirect effects
for a set of variables, using a pre-specified system of causal relationships.
These relationships between variables are usually represented in a path dia-
gram, which we will describe further in Section 5.1.2. Path analysis was orig-
inally developed by geneticist Sewall Wright in the 1920s [42, 43]. Decades
later, in the 1950s and 1960s, it was introduced in economics and sociology.
During the 1970s it grew more popular and emerged in numerous papers in
fields such as psychology, political science, ecology and others [44], and it
was generalized into structural equation modelling (SEM).

Since it was introduced, path analysis has been subject to criticism and
debate considering the value of the method, especially with regard to causal-
ity. When Wright used the word ‘causal’ in connection with his first path
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models, it started a furious debate with Henry Niles [45], even though he
urged people to be cautious about the use. Many of the criticisms by Niles,
and the responses to them, have been repeated in the modern discussion of
path analysis and SEM. Most of the criticism is related to cases where there
is insufficient information to specify causal relations and where the usefulness
of applying the model is unclear [46].

More recently, in relation with to growing causal movement in statis-
tics, there has been new attempts to handle many of these problems using
counterfactual frameworks, structural model frameworks, graphical methods
and combinations of these. Authors such as Robins [37, 49], Greenland [48],
Pearl [50], Rubin [51], van der Lan [52] and many others have developed
methods for the identification of direct and indirect effects [47].

It is also being argued that when the goal is to understand underlying
mechanisms, it is natural to think in less definite terms than tends to be
the case for statistical causal inference. Here, causality is usually viewed
as absolute; either the effect is causal, or it is only an apparent effect due
to confounding or bias [2]. Even in cases where the information on causal
relations is insufficient and the usefulness of the model unclear, a specified
model could still be used to explore relations that will be tested in subsequent
studies [46].

When discussing direct and indirect effects in the remainder of this thesis,
the focus will mainly be on topics related to the dynamic path analysis of
Paper 4. However, there will also be given a short introduction to graphical
models, such as causal directed acyclic graphs and path diagrams, which are
related topics when estimating such effects. To read more on classical path
analysis, SEM and direct and indirect effects in general, see the references
given above or Pearl [20].
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5.1 Graphical models

A graphical model is a statistical or probabilistic model where dependencies
between random variables are represented by means of a graph [53]. Graph-
ical models in statistics is a huge field, including wide classes of models such
as Bayesian networks, Markov networks and others. The topics in this sec-
tion will be limited to two specific types of graphical models, namely causal
directed acyclic graphs and dynamic path diagrams. These types of graphical
models are used in Paper 3 and Paper 4 in this thesis. For other methods,
see for example Lauritzen [54].

5.1.1 Causal directed acyclic graphs

Much of the theory around graphical models in causality was presented by
Judea Pearl in his book from 2000 [20]. Most of these models are based on
the use of directed acyclic graphs (DAGs). Often, statements in the counter-
factual or potential outcome framework can be represented concisely using
graphs, and Pearl also showed that many fundamental concepts in the two
different frameworks were equivalent. It was shown that such graphical mod-
els provide a direct and powerful way of thinking about causal systems and
that identification strategies could be used to estimate effects within such
systems [21]. In the following section there will be a short introduction to
some of these concepts, starting with some graph terminology [1, 20].

A graph is a set V of vertices or nodes and a set E of edges. The nodes
usually represent random variables, while the edges, which are links or the
arrows in the graph, are connections between the nodes. An edge between
two variables indicates a certain relationship between them. An example of
a graph is given in Figure 3.
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Figure 3: A graph with four nodes X, Y , Z and Y .

An edge could be undirected, like the edge (X, Y ), directed, like the edges
(U, Y ) and (Y, Z), or bidirected like the edge (X, U) [20]. If all edges are
directed, the graph is called a directed graph. A path in a graph is a sequence
of edges connected to each other, such as ((Y, X), (X, U), (U, Y ), (Y, Z)) in
Figure 3. This is regardless of the direction of the edges. A directed path
is a special case where all the edges are directed from the starting node to
the end node. Any other path is an undirected path. If there exists a path
between two nodes, these nodes are said to be connected, otherwise they are
disconnected. A cyclic graph is a graph where there exists at least one path
going out of a node which can be followed through directed edges back to the
original node. An acyclic graph is a graph that contains no such cycles. So,
a directed acyclic graph (DAG), is a graph that is both directed and acyclic,
such as the graph in Figure 4.

�
�

�
�

Figure 4: A direct acyclic graph (DAG).

A node, or variable, where two arrowheads meet, such as Y in Figure 4, is
called a collider. The children of a variable are the variables that are affected
directly by that variable. For example, Y is a child of both the variables X
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and U , and Z is a child of Y . Correspondingly, parents of a variable are
the variables directly affecting that variable; X and U are the parents of Y .
Generally, variables affecting another variable, directly or indirectly through
a certain path, are called ancestors, while variables being affected, directly
or indirectly, are called descendants. A node, or variable, without parents is
called exogenous, otherwise it is endogenous.

A causal DAG is a DAG where the arrows can be interpreted as causal
relationships and where all common causes of any pair of variables in the
graph are included [55].

Generally, as listed in [1], four different causal structures can contribute to
the association between two variables X and Y : 1) X causes Y , 2) Y causes
X, 3) X and Y share a common cause which has not been conditioned on
(confounding), or 4) it has been conditioned or selected on a variable which
is affected by X and Y , on a variable which is influenced by such a variable,
or on a variable sharing causes with X and Y (collider bias).

Besides giving a visual representation of a causal system, the methodology
around causal DAGs is a powerful tool for identifying causal relations and
for recognizing and avoiding common mistakes in causal analysis. One such
important tool is d-separation, or directed graph separation. Here, a path is
called open or unblocked if it has no colliders along it. If there is a collider
on the path, it is called closed or blocked. Two variables are said to be d-
separated if there is not an open path between them, and otherwise they are
said to be d-connected. If two variables are d-separated, it implies that they
are marginally independent [1].

There is also a concept of graphical conditioning, called conditional d-
separation, which can be summarized by the following rules: 1) to condition
on a non-collider Z on a path blocks the path at Z, and 2) to condition on
a collider W , or a descendant of W , opens the path at W .

There are also other concepts. An undirected path from X to Y is called
a back-door path if it starts with an arrow pointing into X. To identify the
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causal effect of X on Y , all back-door paths must be blocked. A set of
variables S is said to satisfy the back-door criterion for identifying the effect
of X on Y if it contains no descendants of X and there are no open back-door
paths from X to Y when conditioning on S.

To read more about these and related methods see Pearl [20] and Roth-
man, Greenland and Lash [1]. Some of the concepts discussed in this section
are used in Paper 3.

5.1.2 Path diagrams

In path analysis, or more generally in SEM, a path diagram is a graphical
representation of the model in question. The diagram is equivalent to a set
of equations defining this model (in addition to distributional assumptions)
[56]. Unlike the DAGs, dynamic path diagrams could have bidirected arrows,
representing correlation between variables. For more on path diagrams for
SEM, see for example Raykov and Marcoulides [56] and Spirtes et al. [57].

A dynamic path diagram is a version of the regular path diagram, which
illustrates dependencies for time-dependent variables. It can be viewed as a
set of time-indexed DAGs for all t ∈ [0, ∞) [58]. An example of a dynamic
path diagram can be seen in Figure 5 [2]. Here, A is a fixed covariate, for
example a treatment indicator, and L(t) is a time-dependent covariate. dD(t)
is the increment of some event of interest, measured by some counting variable
D(t), for example death. α1(t), β1(t) and β2(t) are the path coefficients,
where, for example, β2(t) describes the effect of the covariate L on dD at
time t.

The use of dynamic path diagrams is related to the method of dynamic
path analysis, which is the topic in the next subsection and in Paper 4. For
more on dynamic path diagrams, see Fosen et al. [58].
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Figure 5: A dynamic path diagram with three nodes, A, L(t) and dD(t), path
coefficients α1(t), β1(t) and β2(t).

5.2 Dynamic path analysis

In path analysis the aim is to estimate the path coefficients from a path
diagram, analogous to the path coefficients in the dynamic path diagram in
Figure 5. The main assumption is that each variable is a linear combination
of all the parents in the path diagram. Estimating the path coefficients
in a regular path analysis would correspond to fitting a number of linear
regression models, regressing each variable or node in the graph onto all of
its parents. The effect belonging to a certain path in the graph, from one
variable to the outcome variable of interest, such as the indirect effects, is
found as the product of all the estimated path coefficients along that path.
The total effect can be found as the marginal effect on the outcome, but
additivity also provides that the sum of the direct effect and the indirect
effects add up to the total effect. To read more about regular path analysis
and SEM in general, see for example John C. Loehlin [59].

Dynamic path analysis is a generalization of regular path analysis; it is
a combination of path analysis and Aalen’s additive regression model [2].
Dynamic path analysis is carried out using recursive least squares regression,
as in regular path analysis. Each node in the dynamic path diagram is
regressed onto its parent for each time t. The set of variables can be divided
into a covariate set (L1(t), L2(t), ..., Lp(t)) and an outcome. In contrast to
regular path analysis, the outcome in dynamic path analysis is an outcome
process dD(t). See the dynamic path diagram in Figure 5. In dynamic path
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analysis, the covariates can be both fixed and time-dependent. The path
coefficients going into the node of the outcome process are estimated using
the additive regression model, with the outcome process as the dependent
variable and its parent variables as covariates.

Analogous to regular path analysis, the effect attributable to a certain
path at time t in the dynamic path diagram can be calculated as the product
of all the path coefficients belonging to that particular path at time t. This
is done for all possible times t, and the direct and indirect effects are plotted
against time, as the time-dependent effect or regression function itself, or as
cumulative effects. Using the example in Figure 5, the direct effect of A is
β1(t), while the indirect effect of A is the effect α1(t)β2(t), going through
L(t). Again, the total effect is found as the marginal effect, and also the sum
of the direct and the indirect effects.

Dynamic path analysis still has some limitations, discussed for example
by Martinussen [60]. The most important reason to be cautious when in-
terpreting estimates of direct and indirect effects is the possible bias due
to unmeasured confounders. This poses an even bigger problem when es-
timating such effects than when estimating marginal or total effects. With
the latter, for the estimate to be unbiased, there should be no unmeasured
confounders between treatment and the outcome. When estimating direct
and indirect effects, there should in addition be no unmeasured confounders
between the mediator and the outcome. See Figure 6 for an illustration of
such an unmeasured confounder U(t) in the dynamic path diagram from
Section 5.1.2. Assumptions of no unmeasured confounders are in general not
testable, and will be even more difficult to control in more advanced path
models than in the regular regression framework.

Despite the reservations, dynamic path analysis is a useful tool for better
understanding how the effect of a treatment on a time-to-event endpoint
is mediated through time-dependent covariates [60]. See Paper 4 for a
further discussion on these topics. For more detailed reading on dynamic path
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Figure 6: A dynamic path diagram showing a possible unmeasured confounder
U(t).

analysis, see especially Fosen et al. [58], Aalen et al. [2] and Martinussen [60].

5.2.1 Composite dynamic path analysis

In Paper 4 we discuss a situation where it is reasonable to be interested
in direct and indirect effects, or path coefficients for that matter, averaged
over many dynamic path analyses. Such analyses could be the dynamic path
analyses of multiple mimicked RCTs, such as the ones being constructed
using the sequential Cox method in Section 4.2.3 and in Paper 3.

Multiple dynamic path analyses can be combined by aggregating over
their estimating equations, which corresponds to the composite likelihood
inference [41] used in Section 4.2.3 or, more loosely speaking, to a kind
of weighted averaging over the different analyses. To estimate aggregated
path coefficients, both such composite linear regression models and compos-
ite additive regression models have to be fitted. Using artificially censored
datasets such as the mimicked randomized trials from Section 4.2.3 and Pa-
per 3, dynamic path analysis is generalized into composite weighted dynamic
path analysis [61]. See Paper 4 for more details on both aggregating and
weighting dynamic path analysis models.
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6 Summary of the papers

The current section gives a brief summary of the four papers that form this
thesis.

6.1 Paper 1: ‘Growth rates in epidemic models: Ap-
plication to a model for HIV/AIDS progression’

In this paper we discuss the use of epidemic growth rates and reproduction
numbers, with application to compartment models for infectious diseases.
The compartment model used to illustrate the methods is a generalized SIR
model for HIV/AIDS progression, based on a Markov model in an earlier
paper by Aalen et al. [18].

We discuss the use of these different reproduction numbers and growth
rates, such as the basic reproduction number R0, the effective reproduction
number Re(t), the actual reproduction number Ra(t) and the intrinsic growth
rate r. We also discuss the relationship between them, study their behav-
ior using our HIV/AIDS progression model and briefly discuss how these
quantities can be estimated from observed data.

The main aim of the paper, beside summarizing the different reproduction
numbers and growth rates, is to communicate that, apart from the basic
reproduction number R0 (the predominant quantity), many other measures
of epidemic growth will give important supplementary information, and in
some situations be more relevant than R0.

6.2 Paper 2: ‘ Estimating influenza-related excess mor-
tality and reproduction numbers for seasonal in-
fluenza in Norway, 1975–2004’

The main aim of this paper is to estimate the mortality attributable to sea-
sonal influenza in Norway, using surveillance data on influenza-like illness
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(ILI) and data on overall mortality. Such data is available from the Nor-
wegian Notification System for Infectious Disease and the Cause of Death
Register at the Norwegian Institute of Public Health. Even though most
influenza patients make a full recovery, it can be a deadly disease for the el-
derly and patient groups with certain underlying severe diseases. Therefore,
measuring the impact of influenza on mortality is an important public health
priority.

In addition to the estimation of excess mortality, we also study the esti-
mation of reproduction numbers. This work can be seen as an addition to
the work on reproduction numbers and growth rates in Paper 1. In the
paper we discuss methodological differences in existing methods for estimat-
ing excess mortality, used on data from other countries, before we estimate
the excess mortality in Norway from 1975 to 2004 using a Poisson regression
based model. Excess mortality is estimated for the overall population and
for different age groups.

We estimate overall influenza-related excess mortality in Norway to be an
average of 910 deaths per season, or 2.08% of overall deaths. Age-grouped
analyses indicate that the major excess mortality is among the elderly in the
population. Estimates of the reproduction numbers for the different seasons
range from about 1.00 in seasons with no significant outbreak to 1.69.

6.3 Paper 3: ‘A sequential Cox approach for estimat-
ing the causal effect of treatment in the presence of
time-dependent confounding applied to data from
the Swiss HIV Cohort study’

In this paper we discuss the estimation of the causal effect of treatment from
observational data, in the presence of time-dependent confounding. As in
Paper 1, the focus is on HIV/AIDS, here using data from the Swiss HIV
Cohort Study.
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We introduce a method based on mimicking a sequence of randomized
controlled trials, and analyse them together using Cox regression and com-
posite likelihood inference. We compare our method to the MSM fitted using
IPT weights, which is perhaps the most established method for controlling
for such time-dependent confounding.

We show how the sequential Cox method introduced in this paper avoids
the use of IPT weights and the instability problems associated with the use of
such weights in a MSM. We discuss the differences between the two models,
the parameter being estimated, and how these differences lead to different
possibilities when it comes to estimation. We also see that when estimating
the overall effect of HIV treatment on data from the Swiss HIV Cohort Study,
both the sequential Cox method and the IPT fitted MSM give similar results.

6.4 Paper 4: ‘Analysing direct and indirect effects of
treatment using dynamic path analysis applied to
data from the Swiss HIV Cohort Study’

In this paper the aim is to estimate direct and indirect effects of treatment
for HIV using dynamic path analysis. As in Paper 3, the application is to
data from the Swiss HIV Cohort Study.

As in the previous paper, we construct and analyse mimicked randomized
trials from the original data. We extend regular dynamic path analysis to
include censor weighting and define composite estimates of direct and indirect
effects, combining all the mimicked trials.

We show that even simple dynamic path models, with one mediating
variable such as the HIV-1 RNA or CD4 level, serve as a useful tool to
investigate underlying processes that are often ignored when estimating total
treatment effects. The results when applying these models to the Swiss data
show that most of the treatment effect goes through the RNA level for the
first three or four years after starting treatment. Using CD4 instead of RNA
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as the intermediate variable results in a smaller estimate of the indirect effect.
We also discuss the limitations of such methods, and the need for caution
when interpreting estimates of direct and indirect effects, for example with
regard to possibly unmeasured confounders.

7 Discussion

The work in this thesis covers two main areas: infectious disease modelling
and causal inference. This division is most apparent between the first two
and last two papers. However, setting this distinction aside, there are many
other aspects binding these four papers together, some of which were men-
tioned in the introduction. Common to all papers is that they deal with
infectious diseases. Paper 1, Paper 3 and Paper 4 are all applied in a
HIV/AIDS setting, while Paper 2 is applied to influenza data. Studies of
infectious disease are closely linked with understanding mechanisms. State-
ments therefore tend to be more causal than in studies of chronic diseases.
For example, when estimating the effect of some countermeasure that modi-
fies the transmission rates in a multi-stage model such as the one in Paper 1,
the goal is in fact to estimate the causal effect of that countermeasure, similar
to the causal effect of treatment estimated in Paper 3. Even in Paper 2,
when using the influenza level in one week to model the number of deaths a
week later, the fact that one event precedes the other indicates that a certain
mechanism is assumed. The similar way of thinking about mechanisms in
infectious diseases and in causality is also evident through the use of com-
partment or network models in infectious disease modelling and path models
and graphs in causal inference. Consider for example the compartment model
in Paper 1 and the dynamic path models in Paper 4.

The main contribution of Paper 1 is the summary of the different growth
rates and reproduction numbers for describing epidemic growth, and the
study of how these growth rates behave and relate to each other. Another
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contribution is the model for HIV/AIDS disease progression, as a generalized
SIR model and an extension of previously used Markov models. Possible
future extensions of this work would be to adjust the model to the situation
now being seen after the introduction of HAART treatment. Early attempts
on this can be seen in Aalen et al. [14], but that was just three years after
HAART was introduced. Also, in connection to causal inference, a future
extension could be to study the use of this kind of transition models in
estimating treatment effects.

As for Paper 2, the main contribution is the estimates of influenza-
related excess mortality in Norway between 1975 and 2004, both overall
and within age groups. Estimates of such numbers are of interest to public
health representatives, such as the Norwegian Institute of Public Health,
and to others working with decision-making and in related areas. Another
contribution in this paper is the estimation of growth rates and reproduction
numbers for the same data, as few estimates from seasonal influenza are
available in the literature. Possible extensions to the work in this paper
would be to compare the methods used with other methods for estimating
excess mortality, and to make more detailed models based on geographical
data, which could make it easier to include other relevant covariates such
as temperature. Data for the years between 2004 and 2010 are also now
available to be studied.

The main contribution of Paper 3 is the introduction of a new approach
for estimating causal effects of treatment from observational studies, com-
bining the ideas of mimicking randomized trials and composite likelihood
inference. Using data from the Swiss HIV Cohort Study, we show results
similar to the ones using a MSM, and that the method can be implemented
using existing methods when a manipulated version of the original dataset
is created. Possible extensions to this work would be to study the method
more systematically, for example using simulation studies.

In Paper 4, the main contribution is the extension of dynamic path
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analysis, introducing both weighting and composite analysis, to analyze the
same type of observational data as used in the previous paper. Possible future
work would be to study how and when models with more complex covariate
dependencies can be used, and also to address the remaining challenges in
formalizing the method of dynamic path analysis in general.
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SUMMARY

Influenza can be a serious, sometimes deadly, disease, especially for people in high-risk groups

such as the elderly and patients with underlying, severe disease. In this paper we estimated the

influenza-related excess mortality in Norway for 1975–2004, comparing it with dominant virus

types and estimates of the reproduction number. Analysis was done using Poisson regression,

explaining the weekly all-cause mortality by rates of reported influenza-like illness, together with

markers for seasonal and year-to-year variation. The estimated excess mortality was the

difference between the observed and predicted mortality, removing the influenza contribution

from the prediction. We estimated the overall influenza-related excess mortality as 910 deaths per

season, or 2.08% of the overall deaths. Age-grouped analyses indicated that the major part of the

excess mortality occurred in the o65 years age group, but that there was also a significant

contribution to mortality in the 0–4 years age group. Estimates of the reproduction number R,

ranged from about 1 to 1.69.

Key words : Excess mortality, influenza (seasonal), reproduction numbers.

INTRODUCTION

Influenza is an infection of the respiratory tract

caused by the influenza viruses ; RNA viruses be-

longing to the family Orthomyxoviridae [1]. The dis-

ease is characterized by acute-onset fever, headache,

myalgia, prostration, coryza, and a dry cough, and is

usually self-limiting with recovery in 2–7 days [2, 3].

Primary viral, or secondary bacterial pneumonias are

common complications of influenza. Most influenza

patients recover without sequelae. Mortality is highest

in the elderly and in patient groups with certain

underlying, severe diseases [1–3]. For these risk

groups annual influenza immunization is rec-

ommended in many countries.

In the northern hemisphere the virus usually

causes annual outbreaks of varying length and

severity during the winter seasons. When a new virus

variant emerges to which no one is immune, larger

epidemics – know as pandemics – may ensue. Last

century three worldwide pandemics occurred; in

1918–1919 (Spanish flu), 1957–1958 (Asian flu), and

1968–1970 (Hong Kong flu) [2, 4].

Most developed countries have some sort of sur-

veillance system for influenza measuring the number

of patients seeking healthcare, virologically confirmed

cases or some other marker for influenza-like illness

(ILI) such as absence from school or work. No
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country has routine surveillance of influenza-related

deaths.

It is difficult to discern if the cause of death is

from influenza in patients with several other serious

underlying illnesses. Influenza is rarely recorded as

the cause of death on death certificates in Norway.

Internationally many studies have been performed

to estimate the mortality due to influenza [5–15],

in Norway this has only been done for influenza

pandemics [16].

The aim of this work was to estimate the excess

mortality due to influenza in Norway by studying the

relationship between the number of reported deaths

and clinical influenza activity ; and to compare these

results with information on predominant influenza

viruses and estimates of the reproduction number, R,

for the different seasons.

METHODS

Data material

Information on clinical ILI was derived from

The Norwegian Notification System for Infectious

Diseases (MSIS). For the period 1975–1998 all gen-

eral practices in primary healthcare and outpatient

emergency clinics were obliged to report ILI along

with other clinical diagnoses on a weekly basis to the

Norwegian Institute of Public Health (NIPH). The

average reporting coverage was about 60% of around

2000 practices. Rates of ILI were calculated as a

proportion of the total population, without adjusting

for the reporting coverage.

From autumn 1998 NIPH designated 201 sentinel

reporting units based on geographical location,

population size and previous reporting frequencies

from the 2000 practices mentioned above. These

formed about 10% of the practices but about 25% of

the reported volume of ILI. The sentinels reported

weekly, from week 40 in autumn to week 20 in spring,

the number of ILI [using the case definition of ‘R80

Influenza’ from the International Classification of

Primary Care (ICPC)]. The number of consultations

and, from 2004–2005 when the information was

available, the number of patients on the patient list of

general practitioners, were used as denominators.

The weekly recording period was from Friday to

Thursday, after which the report card was completed

and sent to NIPH by post and entered into a database

in EpiInfo 6.04d (CDC, USA). Quality checks for in-

consistencies and improbable figures were performed.

Data on all-cause mortality per week by age group

were derived from the Cause of Death Register at

NIPH. The week number was obtained by defining

week 1 as starting on 1 January each year, week 2 on

8 January and so on. Hence there may be a small

discrepancy between the week numbering of ILI and

deaths.

Information about dominant virus types and

variants for each season was obtained from the vi-

rological influenza surveillance records in the Depart-

ment of Virology, NIPH.

Estimating excess mortality

The number of overall deaths per week was modelled

using a Poisson regression model, where the mortality

rate was explained by the reported number of ILI

cases, the week number and the season. For the ILI

covariate, we considered different lagging, before

choosing the type of lag which gave the best model fit

(i.e. explained the most variability). The week number

covariate, a factor numbered between 1 and 52,

modelled the seasonality in the data, while the season

covariate was a substitute for calendar year. Season

was used instead of calendar year because a normal

influenza season goes from autumn of one year to

spring of the next.

To account for change in population size, the

Norwegian population size at the beginning of each

calendar year was used as an offset. The model is

written as:

D̂Dj, k= exp ( log (Populationj, k)+b0+bILI

rILIj, k+bweekj+bseasonk),

where D̂j,k is the predicted number of overall deaths

in week number j and season k, js{1, 2, …, 52}, and

ks{spring 1975, 1975/1976, 1976/1977, …, 2003/

2004, autumn 2004}. Populationj,k is the total popu-

lation size of Norway on 1 January for the year

containing week j in season k, b0 is the intercept co-

efficient, bILI the coefficient to the ILI contribution

(ILIj,k being the reported number of ILI cases in week

j in season k), bweekj the coefficient for the factor

variable week at week j, and finally bseasonk , the co-

efficient associated with season k. To account for any

extra Poisson variation, a dispersion parameter was

added, making the model a quasi-Poisson model. The

analysis used the GLM package in the open source

statistical software R version 2.7.0 [17].

The model was fitted separately for the two data-

sets, one going from 1975 to 1998, the other from 1998
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to 2004. The only weeks included in the analysis were

the observed weeks and weeks where the ILI levels

with the chosen lag were available. For the data from

1998 to 2004, no ILI figures were collected off-season,

i.e. between week 20 and week 40.

The excess mortality was estimated by first con-

sidering the overall mortality once the influenza

contribution had been removed. Rather than setting

the influenza contribution to zero in this estimation,

leaving the other parameters and covariates as they

were, the influenza contribution was set to some

threshold value accounting for the ever-present base-

line of ILI cases, also observed off-season. As pre-

viously mentioned, off-season ILI numbers were not

collected in the new reporting system, and one would

expect these weeks (if measured) to represent the

lowest ILI counts. We therefore removed the corre-

sponding number of high ILI values, and then most of

the outbreaks, to find this threshold. In other words,

the threshold value was set to the mean of the re-

maining ILI values, excluding the 20 lowest and 20

highest values for each season. We expected this to

give a conservative estimate of the off-season ILI

level. The estimated excess mortality related to ILI

was then calculated as the difference between the ob-

served mortality and the predicted mortality leaving

out the influenza contribution above this threshold.

Estimating the reproduction number

The reproduction number R, also known as the

effective reproduction number, denotes the number of

secondary infections caused on average by one in-

fected individual being introduced into a population.

R relates to R0, the reproduction number for an

individual introduced into a population of only

susceptibles. R0 serves as a threshold value for epi-

demic growth, where R0=1 is the threshold deciding

whether an epidemic is possible or not [18, 19]. When

a fraction p of a population is protected from infec-

tion, the relationship between R and R0 is given by

R=(1xp)R0 [20, 21].

The reproduction number can be estimated through

the initial growth rate of an epidemic r [18, 19, 21],

which describes the growth of the epidemic in its

initial phase, rather than the individual reproduction

as with R.

When the initial growth of an epidemic is assumed

to be exponential, r can be estimated by fitting a

straight line to the natural logarithm of the number of

infected individuals at each time point in the initial

phase. The slope of this line is then the estimated

initial growth rate r.

To determine the initial phase of an epidemic is a

challenge, but one method is to consider the goodness

of fit [20, 22]. We determined the initial phase by

finding the starting point and the endpoint separately.

The starting point was found by looking for structural

change when modelling the natural logarithm of the

number of infected individuals with linear regression,

using data from the start of each season until the time

of the influenza peak. If there was an influenza out-

break during this period, a breakpoint on the log scale

of the ILI curve should exist. The breakpoint was

found using the methods described in Zeileis et al. [23]

(implemented in the R package STRUCCHANGE). These

methods test the null hypothesis of no change in

regression parameters before and after each possible

time point, and then choose the time point giving the

lowest P value as the breakpoint, if this is significant.

The endpoint, restricted to be at least three points

later than the start point and no later than the peak,

was chosen by the best goodness of fit in terms of R2.

Using the estimate of r we were able, by assuming a

simple multistage model for the disease spread, to

derive an expression for the reproduction number R

[21, 24, 25]. Assuming a SEIR model (susceptible,

exposed, infectious, recovered) for the spread of

influenza, we obtained

R=1+
r2+(k+c)r

kc
,

where kx1 is the incubation time and cx1 the infec-

tious period [24]. When calculating the R estimates for

seasonal influenza we assumed a 2-day incubation

time and a 4-day infectious period [20, 26]. A 95%

confidence interval (CI) for the estimate of R was

found using the lower and upper confidence limits for

the estimate of r (derived from the linear regression

model), and the formula for R above.

RESULTS

In the Poisson regression analysis, applying a lag of 1

week to the ILI variable gave the best model fit, when

also adjusting for week and season variables. Figure 1

shows an overview of the data on ILI and all-cause

mortality as used in the analysis.

The estimated excess mortality for season 1975/

1976 to season 2003/2004 varied from 217 deaths

(5.31/100 000 population or 0.53% of all deaths) in

the 1976/1977 season, to 1802 deaths (41.45/100 000
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population or 3.89% of all deaths) in the 1993/1994

season: this gave a mean estimated excess mortality of

910 deaths per season (21.25/100 000 population or

2.08% of all deaths), ignoring the two incomplete

seasons of spring 1975 and autumn 2004.

Figure 2 shows the observed, overall deaths

per week, the overall deaths per week modelled

by Poisson regression, and the predicted mortality

leaving the influenza contribution fixed at the defined

threshold value, under both the old and new reporting

systems. The threshold value was found to be 45.91/

100 000 population in the data from the old reporting

system, and 0.54/100 consultations for the data from

the new reporting system. The agreement between

the observed mortality and the predicted mortality

suggests a good model fit. The estimated dispersion

parameters in the analysis of the two datasets were

1.85 and 2.23, respectively. In Figure 2 the estimated

excess mortality is the area between the line of the

predicted mortality, where the influenza contribution

is limited to the threshold value, and the line of the

observed mortality (this is most visible in the lower

panel).

The estimated excess mortality for each influenza

season from 1975/1976 to 2003/2004 is listed in

Table 1. This table also gives the total number of ILI

cases/100 000 population for the old dataset, the mean

number of ILI cases/100 consultations for the new

dataset, estimates of R with 95% CIs and dominant

virus type for each season. The R estimates range

from close to 1, implying no outbreak, to 1.69 in the

1999/2000 season.

In Figure 3 we plotted the estimated excess mor-

tality against estimates of R for each season, marked

by groups of dominant virus type. It can be seen that

influenza B seasons tended to have lower estimated

excess mortality and R estimates than H3N2 seasons.

For the other seasons, it can be seen that the two

H1N1 seasons both had low estimates of excess mor-

tality and R. Seasons with more than one dominant

virus had varying estimates of excess mortality and R,

while seasons with no dominant virus had low esti-

mates. The mean estimated excess mortality in H3N2

seasons was 1169 deaths per season, compared to a

mean estimated excess mortality of 781 deaths per

season in B seasons. The mean estimated excess mor-

tality in H1N1 seasons was 425 deaths per season, but

there were only two seasons with H1N1 as the single

dominant virus type. When testing the mean differ-

ence between estimated excess mortality in H3N2 and

B seasons, using a standard two-sample t test, we

found that the difference was significant at a 5% level

(P value=0.01). When we did a similar test on the

mean difference between estimated R in H3N2 and

B seasons, again we found a significant difference

(P value=0.00002).

Table 2 shows estimates of bILI together with esti-

mated excess mortality, for overall and age-grouped

analyses. For the dataset going from 1975 to 1998 the

level of ILI had a significant effect on the overall
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Fig. 1. Overall deaths per week (grey line) and reported number of influenza-like illness (ILI) cases the week before (black
line), from the old (upper panel) and new (lower panel) reporting system.
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deaths in all ages except 5–14 years (using a 5% level

of significance). It can also be seen that the highest

(significant) effect is in the o65 years age group, fol-

lowed by the 0–4 and 15–64 years age groups. Most of

the estimated excess mortality was found in the o65

years age group. Considering the data going from

1998 to 2004 we saw the same patterns, but here the

level of ILI had no significant effect on the overall

mortality in either the 5–14 or 15–64 years age groups.

The effect was higher in the 0–4 years group than in

the o65 years group, but almost all the excess mor-

tality was in the oldest group. Note that the estimated

bILI values for 1975–1998 and 1998–2004 cannot be

compared to each other because of the different units

for ILI level in the two periods.

DISCUSSION

Our model seems to give a good description of the

observed mortality, capturing both the season-to-

season change in the number of ILI cases, and the

severity. This is also reflected when investigating esti-

mates of the reproduction number R and dominant

virus types for the different seasons. The H3N2

seasons had a significantly higher excess mortality and

R estimates than the influenza B seasons. For the

other strains, there were not many seasons in each

group, but the trend was as expected. Seasons with

H1N1 and no dominant virus had low impact in terms

of excess mortality and R estimates, and the impact

varied when there was more than one dominant virus.

ILI data divided into age groups were only avail-

able from the 2001 season and onwards, and have not

been used in the analysis. Hiwever, age-grouped data

for overall deaths were available for all years from

1975 to 2004. The analysis of these data showed that

the effect of the influenza outbreaks on overall mor-

tality was highest in the two lowest age groups, and in

the o65 years group. Most of the excess mortality

was attributed to the o65 years group.

Estimation of influenza-related excess mortality has

been done in other countries using similar Poisson
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regression-based methods; for example on data from

1976 to 1999 in the USA [8], 1990–1999 in Canada [5],

and 1996–1999 in Hong Kong [9]. The US study

estimated that on average the number of influenza-

related deaths formed 2.2% of all deaths, while in the

Canadian study the corresponding estimate was 1.9%,

compared to our estimate of 2.1%. In the Hong Kong

study, the estimate of influenza-related excess mor-

tality was 16.4 deaths/100 000 population, compared

to our estimate of 21.3/100 000 in the Norwegian

population. These findings are not dissimilar from

European studies using different methods to estimate

the excess mortality: a German study for 1985–2001

[10, 11] estimated the excess mortality as 16.1 and 17.4

deaths/100 000 population for two study periods, and

a Czech study for 1982–2000 [15] estimated the excess

mortality as 2.2% of all deaths. Our estimates

for excess mortality in the o65 years group of 140

and 158 deaths/100 000 are comparable with studies

from Canada (108.8/100 000 population) [5], USA

(132.5/100 000 population) [8], and Hong Kong

(136.1/100 000 population) [9].

Most previous estimates of the reproduction

number R have been made for pandemic influenza,

but results from some studies are comparable to our

estimates. Using a model based on the Asian 1957–

1958 influenza A(H2N2) pandemic in the USA, R0

was estimated as 1.68 [26], while other studies esti-

mated R for inter-pandemic years as 1.39 [27], or in

the range between 1.2 and 1.8 [28]. These estimates

Table 1. Estimated excess mortality for each influenza season, together with numbers of reported ILI cases,

estimated reproduction number R and dominant virus type

Season

Est. excess

mortality

Total ILI

per 100 000 R̂ (95% CI) Dominant virus

1975/1976 1251 22 076 1.30 (1.17–1.43) A/Victoria/3/75 (H3N2)
1976/1977 347 22 367 1.35 (0.55–2.46) A/Victoria/3/75 (H3N2)
1977/1978 651 20 061 1.32 (1.05–1.62) A/USSR/90/77 (H1N1) and A/Texas/1/77 (H3N2)

1978/1979 912 18 022 1.22 (1.00–1–46) B/Singapore/222/79
1979/1980 217 23 087 1.02* (1.00–1.04) No dominant virus
1980/1981 1036 18 696 1.36 (1.25–1.47) A/Bangkok/1/79 (H3N2)

1981/1982 573 24 174 1.00* (0.06–2.71) B/Singapore/222/79
1982/1983 422 21 532 1.20 (1.13–1.26) Sporadic outbreaks of H3N2 and H1N1
1983/1984 831 19 721 1.09 (1.05–1.12) B/USSR/100/83

1984/1985 1605 18 798 1.31 (1.00–1.65) A/Victoria/6/84 (H3N2)
1985/1986 1016 17 359 1.08 (1.04–1.11) B/Ann Arbor/1/86
1986/1987 510 18 089 1.20 (1.09–1.31) A/Singapore/6/86 (H1N1)
1987/1988 666 22 040 1.07 (1.01–1.13) B/Victoria/2/87

1988/1989 909 18 616 1.31 (1.10–1.54) A/Sichuan/2/87 (H3N2)
1989/1990 1291 17 969 1.21 (0.97–1.47) A/Sichuan/2/87 (H3N2) and B/Victoria/2/87
1990/1991 1044 15 956 1.10 (1.05–1.14) B/Yamagata/16/88

1991/1992 1303 19 829 1.35 (1.03–1.71) A/England/261/91 (H3N2)
1992/1993 589 19 914 1.06 (1.02–1.09) B/Panama/45/90
1993/1994 1802 15 230 1.42 (1.22–1.63) A/Hong Kong/23/92 (H3N2)

1994/1995 621 18 734 1.15 (1.14–1.17) B/Beijing/184/93
1995/1996 1077 16 012 1.36 (1.22–1.50) A/Johannesburg/33/94 (H3N2)
1996/1997 1426 15 746 1.51 (0.91–2.24) A/Wuhan/359/95 (H3N2) and B/Beijing/184/93
1997/1998 859 14 073 1.45 (1.30–1.60) A/Wuhan/359/95 (H3N2) and A/Sydney/5/97 (H3N2)

Season

Est. excess

mortality

Mean ILI

per 100 R̂ (95% CI) Dominant virus

1998/1999 1403 1.93 1.29 (1.21–1.37) A/Sydney/5/97 (H3N2)
1999/2000 1526 1.91 1.69 (1.07–2.45) A/Moscow/10/99 (H3N2)

2000/2001 339 0.89 1.11 (1.07–1.15) A/New Caledonia/20/99 (H1N1)
2001/2002 746 1.32 1.13 (1.11–1.15) A/Panama/2007/99 (H3N2)
2002/2003 392 0.96 1.11 (0.96–1.26) No dominant virus

2003/2004 1025 1.55 1.43 (1.08–1.83) A/Fujian/411/2002 (H3N2)

ILI, Influenza-like illness ; CI, confidence interval.
* Estimated breakpoint not significant (no outbreak).
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correspond well to our estimates, which ranged from

about 1 in seasons with no obvious influenza outbreak

to a maximum of 1.69.

The Poisson regression-based models proved suit-

able, adjusting for available markfor influenza ac-

tivity and seasonality in week-to-week data. In classic

epidemic-threshold models, the excess mortality is

defined as all deaths exceeding a seasonal baseline

threshold, based on years with low influenza activity

[5]. This baseline can be found for instance by cyclic

regression [10, 12–14]. Although seemingly robust,

these models do not utilize available influenza data as

well as Poisson regression-based models [11]. The

differences in the Poisson regression-based models are

mostly due to the type of surveillance measurements

available for influenza, the types of seasonal marker,

and the resolution of the data. The Norwegian data

differ from the other Poisson-regression based studies

mentioned by using the rate of ILI consultations

from general practitioners as the marker for influenza
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Fig. 3. Estimated excess mortality against R for each influenza season, marked by dominant virus type.

Table 2. Regression results and estimated excess mortality for separate analyses on age groups, and for the overall

analysis

Dataset Age group bILI S.E. P value

Mean est.

excess mortality

Rate per

100 000

1975–1998 0–4 0.00051 0.00019 0.0065 8 2.9
5–14 0.00072 0.00039 0.066 3 0.6

15–64 0.00024 0.000054 <0.0001 56 2.1
o65 0.00076 0.000029 <0.0001 834 138.1
All 0.00068 0.000027 <0.0001 911 21.7

1998–2004 0–4 0.046 0.020 0.020 8 2.6
5–14 0.053 0.042 0.21 3 0.4

15–64 0.0032 0.0046 0.49 13 0.4
o65 0.038 0.0029 <0.0001 879 136.0
All 0.033 0.0027 <0.0001 905 20.4
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activity, instead of virological laboratory confir-

mations [8, 9] or influenza-certified deaths [5]. We

found that the rate of ILI consultations, together with

seasonal and year-to-year markers, modelled overall

mortality satisfactorily.

In Poisson regression-based methods one can

adjust for several variables in addition to different

markers for influenza activity, e.g. other variables

which influence mortality, and seasonal and year-to-

year markers. Other possible explanatory variables

include : dominant virus type, temperature, human

respiratory syncytial virus (RSV) and other sub-

categories of overall death. Models with such ad-

ditional explanatory variables and factor groups were

explored.

Information about dominant virus types was better

used as a supplement rather than including it in the

model because viruses co-dominate and vary in mag-

nitude between seasons. This leaves the year-to-year

variability to be covered by the season variable.

Temperature is often mentioned as an explanatory

factor for overall death [29], but is unfeasible to use in

Norway due to geographical and meteorological

variability. Using the weekly average temperature in

Oslo as a covariate gave a very small but significant

impact ; the reduction in over-dispersion was minimal

and the results were broadly unchanged. For RSV

infections, there are no consistent national data

available, and RSV outbreaks rarely coincide with

influenza outbreaks.

For our data a lag of 1 week between ILI activity

and mortality gave the best model fit. A 1-week lag

was also used in other similar analysis [5]. Using

months instead of weeks to control for seasonality has

been done in other studies [5], but in our case this

weakened model fit.

Clinical surveillance data on ILI were collected

from all general practices in primary care for 1975–

1998 and from selected sentinels for the period 1998

onwards. Completeness of data may pose a problem

for the first period for which we did not collect any

denominator data. However, coverage has been esti-

mated to be constant over the years with about 60%

of the practices reporting every week. For the second

period we did collect denominator data, and varia-

bility in completeness was not affected as much.

Clinically reported ILI, rather than laboratory

confirmations, was chosen as a proxy for influenza

activity. Laboratory diagnostics and their use have

been developing over the study period and extensive

data on laboratory confirmations in Norway are only

available from 1999 onwards. These data show that

the trends in the number of virus confirmations

matched the ILI numbers well in seasons with obvious

outbreaks, but in seasons with low influenza activity

the fit is less good. In these seasons laboratory detec-

tions of influenza reflect not only influenza activity,

but also laboratory testing activity due to outbreaks

of other respiratory pathogens. As long as sampling in

a population is representative, data on laboratory

confirmations may serve well in some countries, but in

Norway this information comes from a limited num-

ber of laboratories, and the testing practice and sen-

sitivity varies widely from season to season and in the

different laboratories. The ILI data are more robust

for other factors, and the good agreement detected

between ILI and mortality was not detected using

laboratory data, as seen by a worse model fit when

explaining mortality using laboratory data in the

available period with a Poisson model. Although ILI

consultation rates do not reflect the true rates of

influenza in absolute numbers, they do reflect the

epidemic curve. This is supported by the coincidence

of peaks of ILI and excess mortality during seasons

with large influenza outbreaks, as well as the agree-

ment between peaks of ILI and the numbers of

laboratory confirmations in such seasons, where data

are available. The clinical definition of influenza has

not changed in Norway over the years and is the

same nationwide. Consequently regional and tem-

poral biases are not expected. However, during each

seasonal outbreak clinicians may be more inclined to

use the R80 Influenza diagnosis when they know

influenza virus is circulating, thereby enlarging the

size of the peak, but the time period for the peak will

not shift. Altered health-seeking behaviour over the

years may affect the total number of ILI cases per

season but would probably not change sufficiently

quickly during a single season to alter the shape of the

outbreak curve. Hence, we do not believe it would

affect the relationship with mortality.

The ‘epidemiological week’ of the ILI surveillance

was recorded from Friday to Thursday, 3 days earlier

than the calendar week (in Norway: Monday–

Sunday). As we tried different lag times between ILI

and death, and found that 1 week gave the best fit, this

should not influence the result.

The agreement of ILI and mortality in terms of

peak and initial rise, and of ILI and laboratory data in

seasons with obvious influenza outbreaks, suggests

that ILI is also a suitable variable for estimating re-

production numbers. The Norwegian laboratory data
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are not sufficiently robust for such an estimation, and,

where available, will tend towards overestimation

(especially for seasons with low activity). However,

the R estimates based on ILI data have some potential

sources of bias. Unexpected decrease in ILI activity

was found around Christmas and New Year in some

seasons, probably due to lower registration in the

holidays. These artefacts would be covered by the

week-to-week markers when estimating excess mor-

tality, but could cause some underestimation of R

in seasons where the ILI peak is around New Year.

There is a potential for overestimation due to clin-

icians being more inclined to use the influenza diag-

nosis during certain periods. Estimating R from the

initial growth of the outbreak would not be as

vulnerable for such bias as methods using the entire

epidemic curve in the estimation. Asynchronous

influenza epidemics across Norway would also be a

source of bias, but surveillance data suggests that, for

most seasons, epidemics are concurrent. At worst,

epidemics may be displaced by 1–2 weeks for parts of

the outbreak between the most distant regions. The

assumptions of an incubation and infectious period

also represent some uncertainty, while the uncertainty

from the regression estimating the initial growth rate

is quantified through 95% CIs for R. However,

reproduction numbers are important quantities for

measuring the impact of and comparing outbreaks,

and they are central in modelling the impact of

counter-measures. Few estimates for seasonal influ-

enza are available in the literature, and the estimates

from the Norwegian data serve as a useful addition.

Our results fit well with existing estimates, which is an

interesting finding in itself, and further proves that it

is possible to estimate reproduction numbers using

clinically reported ILI data.

In conclusion, the Poisson regression-based

methods proved useful in explaining the number

of overall deaths per week by reported ILI cases.

Reproduction numbers R, estimated using reported

ILI cases, ranged up to about 1.7, supporting results

found by studies using different methods. Overall,

influenza was estimated to contribute to more than

2% of all deaths in Norway.
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Abstract

When applying survival analysis, such as Cox regression, to data from
major clinical trials or other studies, often only baseline covariates are used.
This is typically the case even if updated covariates are available throughout
the observation period, which leaves large amounts of information unused.
The main reason for this is that such time-dependent covariates often are
internal to the disease process, as they are influenced by treatment, and
therefore lead to confounded estimates of the treatment effect. There are,
however, methods to exploit such covariate information in a useful way.
In this paper we study the method of dynamic path analysis applied to
data from the Swiss HIV Cohort Study. To adjust for time-dependent con-
founding between treatment and the outcome ‘AIDS or death’, the analysis
is done on a sequence of mimicked randomized trials constructed from the
original cohort data. To analyse these trials together, regular dynamic path
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analysis is extended to a composite analysis of weighted dynamic path mod-
els. Results using a simple path model, with one indirect effect mediated
through current RNA level, show that most, or all, of the total effect go
through RNA for the first four years after treatment start. A similar model,
but with CD4 level as the mediating variable, show a weaker indirect effect,
but the results are i the same direction. There are many reasons to be
cautious about making to conclusive statements about estimates of direct
and indirect effects, such as the ones from dynamic path analyses. Dynamic
path analysis is however a useful tool to explore underlying processes which
are ignored in regular analyses. Such analyses of direct and indirect effects
also usually have a more provisional status, and may not require the same
level of certainty.

1 Introduction

Survival analysis has established itself as a major tool in clinical research. Re-
cently, it was demonstrated to be the most commonly used of the more advanced
statistical methods in the New England Journal of Medicine [1]. However, a sur-
prising aspect of survival analysis as practiced in medical applications and other
fields is the lack of attention to covariate information collected between the start-
ing point and the event. Commonly, one sees major clinical trials and other studies
where the main analysis is a Cox regression using only baseline covariates; this in
spite of the fact that many of these covariates are updated repeatedly throughout
the period of observation. Clearly, large amounts of useful information are not
being used.

It is not hard to understand the reasons behind this situation. Typically,
these covariates will be internal to the disease process; they will be influenced by
a possible treatment effect, and therefore they will, so to speak, ‘steal’ treatment
effect from the event analysis. Thus, when a time-dependent Cox model is run the
treatment effect will typically be underestimated. This is a very well known prob-
lem and one is thoroughly warned against it in the survival analysis literature, see
e.g. [2]. Nevertheless, it is a waste of information to ignore time-dependent covari-
ates and there exist procedures for exploiting this information, see e.g. dynamic
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path analysis as described in [3, 4].
More fundamentally, the skeptical attitude to detailed analysis of time-dependent

covariates is that this pertains to the issue of how the treatment effect is medi-
ated towards its final goal of (possibly) prolonging survival. More, precisely, in a
dynamic path analysis we attempt to estimate indirect effects of treatment medi-
ated through one or more markers, or time-dependent covariates. Such mediation
problems are vulnerable to unmeasured confounders, and are in general depen-
dent on some prior mechanistic understanding. Nevertheless, such analysis could
contribute in a valuable way to understanding the mechanisms behind treatment
effects.

It is important to realize that in biomedical research, mechanistic understand-
ing is typically limited. A new medication, for example, may be suggested because
the mechanistic knowledge suggests that it should have a positive effect. However,
one can never be sure that it lives up to expectations. There are numerous exam-
ples of treatments that have reached even the level of phase III clinical trials, but
do not yield the expected results. See, for example, Rossebø et al. [5] where ex-
tensive cholesterol reduction does not achieve the aim of limiting the progression
of aortic stenosis. One reason for such a negative result is that biological path-
ways are very complex. Medical interventions, such as taking a medication, may
typically have the effect of blocking certain receptors, that is, of blocking certain
paths in the pathway system. However, the effect of such interventions will tend
to have many types of effects, following many pathways and the net result may
not be as expected.

The uncertainty within mechanistic understanding of biological systems means
that one should use all statistical information available to throw more light on
mechanistic issues. This includes, for example, using repeated measurements
taken during the study in clinical survival studies. This may contribute to under-
standing, even though the causal issues may not be clarified.

In the present paper we consider a situation more complex than standard sur-
vival analysis. Analysing HIV cohort data, we are faced with the fact that treat-
ment start is dependent on the state of the patient; treatment is rarely started
unless the infection has shown progression by effecting the immune system, mea-
sured for example by the CD4 cell count. This creates time-dependent confound-
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ing between treatment and CD4 count. We use a method for resolving this issue,
based on mimicking a series of randomized trials from the original cohort data,
proposed in Gran et al. [6]. We then study how dynamic path analysis can be
used together with these ideas, to gain more insight into how the treatment effect
is mediated.

Dynamic path analysis is an extension of classical path analysis, where the vari-
ables can be time-dependent. The final outcome is a stochastic process, typically
a counting process in a survival or event history setting. Dynamic path analysis
can be used to describe how the effect of a fixed covariate, such as treatment,
works directly and partly indirectly, through time-dependent covariates. The aim
is to decompose the total effect of treatment into a sum of indirect effects, which
are mediated through time-dependent covariates, as well as the direct effect.

Note, as stated in [7], that there exists no unique definition of the concepts of
direct, indirect and total effects, and that unmeasured confounders could cause
problems to the interpretation of such concepts. Nevertheless, dynamic path
analysis is a useful tool for understanding how the treatment effect on a time to
event endpoint is mediated through time-dependent covariates.

When analysing many mimicked randomized trials, composite likelihood in-
ference [8–10] serve as a simple and efficient method for combining the different
analyses, and giving overall effect estimates. The parameters based on such infer-
ence would also keep their interpretation, given certain assumptions.

In Section 2 we describe the dataset from the Swiss HIV Cohort study, while
the approach for constructing mimicked randomized trials is described in Section
3. The dynamic path model and path effects are presented in Section 4, while the
estimators for these path effects follow in Section 5. In section 6 we apply our
methods to the Swiss cohort data, with a discussion following in Section 7.

2 The Swiss HIV cohort dataset

The methods in this paper are applied to data from the Swiss HIV Cohort
Study [13], which is an ongoing multi-center research project following up HIV
infected adults aged 16 or older. The data begins in January 1996, when Highly
active antiretroviral treatment (HAART) became available in Switzerland, and
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run until September 2003. The time scale used is months since the start of follow
up, with baseline being the time of the first visit after January 1996. Patients who
died or refused further participation before 1996, who were on HAART or in in
clinical stage C at baseline, or whose treatment history before joining the cohort
was uncertain were excluded. Time between visits varies, but scheduled clinical
follow-up is every sixth month, with additional laboratory measures taken every
third month. On months without visits, the last observation is carried forward.
The variables measured include CD4 count, HIV-1 RNA and haemoglobin levels,
together with indicator variables describing whether the individuals have been
treated with mono therapy, dual therapy or HAART, or experienced a CDC stage
B event (a disease associated with HIV but less severe than an AIDS defining dis-
ease). When individuals first start treatment they are considered as on treatment
from that time and until the end of the study.

The dataset consists of data from 2161 individuals, who were observed over
a maximum of 92 months. The total number of person-months of observation is
77 838. Two hundred and two of the individuals progressed to AIDS or death,
while 717 were never treated with HAART. The dataset used is the same as was
analyzed in Sterne et al. [14] and in Gran et al. [6].

3 Mimicking randomized trials

3.1 Constructing a proper pseudo dataset

When analysing the Swiss HIV Cohort data we handle the problem of time-
dependent confounding, represented by variables such as the HIV-1 RNA and
CD4 cell count, by analysing a sequence of mimicked randomized trials, as was
done in Gran et al. [6].

Each mimicked trial is constructed based on individuals starting treatment
in a certain time interval or, as in our situation, in a certain month since start
of follow-up. Individuals starting treatment in that particular month serve as
the treatment group, while the individuals not yet on treatment serve as the
control group. To avoid confounding due to treatment, individuals in the control
group are artificially censored at the time of later treatment start. Only baseline
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covariates and covariates at the start of each mimicked trial are controlled for in
the analysis of each such subset of the real data. Dependent censoring, which
might be introduced when constructing the pseudo datasets, as well as other
dependent censoring, is adjusted for using inverse probability of censoring (IPC)
weights.

The purpose of the weighting procedure is to produce a weighted dataset which
reflects most of the mechanisms of the unweighted dataset, but for which the
censoring can now be considered as independent.

Let A be an indicator for initiating treatment at the start of the mimicked trial
(valued 1 if treated and 0 otherwise), C(t) an indicator for the combined event
‘censoring or artificial censoring’ at time t (1 if censored and 0 otherwise), Z a
vector of time-independent baseline covariates, L(t) a vector of time-dependent
covariates at time t, and L̄(t) the time-dependent covariate history up to time
t. The IPC weight wi(t) for individual i at time t, weighting for both regular
censoring and the artificial censoring done when creating the pseudo dataset, can
be constructed as the IPC weights in Robins et al. [11] and Hernan et al. [12],
using

wi(t) =
t∑

k=0

P (C(k) = 0|C̄(k − 1) = 0, A = ai, Z = zi)
P (C(k) = 0|C̄(k − 1) = 0, A = ai, L̄(k − 1) = l̄i(k − 1))

, (1)

where by definition C̄a(−1) = 0.
Let μi(s) be the censoring intensity for individual i, conditioned on its full co-

variate history. If the covariates and events are observed in discrete time intervals,
where tk is the end time of the kth interval, we can approximate the denominator
in (1) by

P (C(k) = 0|C̄(k − 1) = 0, A = ai, L̄(k − 1) = l̄i(k − 1)) ≈ exp(−
∫ tk

tk−1
μi(s)ds).

Correspondingly, given that μ̃i(s) is the censoring intensity for individual i con-
ditioning on its marginal covariate history, we can approximate the numerator in
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(1) by

P (Ca(k) = 0|C̄a(k − 1) = 0, A = ai, Z = zi) ≈ exp(−
∫ tk

tk−1
μ̃i(s)ds).

In other words, we can use that

wi(t) ≈ exp(−
∫ t

o
μi(s) − μ̃i(s)ds),

where μi(s) and μ̃i(s) can be estimated using Aalen’s additive regression model [4].

3.2 Interpretation of the censoring weights

Imagine that the unweighted data for a mimicked randomized trial is distributed
according to some probability measure P . As mentioned in Section 3.1, the cen-
soring done to create this dataset could be dependent, leading to biased estimates.
We adjust for such bias using the weights wi(t). It is natural to interpret these
weights as a likelihood ratio process.

More precisely, we consider a new probability measure Q that is absolutely
continuous with respect to P . Q differs from P in that the censoring is inde-
pendent, but the behavior of the remaining processes is left unchanged. The
likelihood ratio between the measure P and Q, over the history before time t,
gives the weight at time t. It is interesting to note that our approximation of
the weights suggested by Robins et al. [11] coincide asymptotically with a special
case of the well known Jacod formula for likelihood ratios. These aspects of data
re-weighting are discussed in [15].

4 Dynamic path model and path effects

If the censoring is independent, then the mimicked randomized trials in Section
3.1 can be analysed using dynamic path analysis as it was proposed by Fosen et
al. [3]. Let us start with the analysis of one such mimicked trial.

We will consider a simple dynamic path model, a model with one direct and
one indirect path going from treatment to the main event ‘AIDS or death’. The
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indirect path is mediated through a time-dependent continuous covariate. We will
in two separate analyses consider models with both the RNA and CD4 level as the
mediating variable. The RNA variable gives a measure of the amount of HIV-1
RNA in the blood of the HIV infected individual, while the CD4 variable measure
the number of CD4 immune cells.

Let Ai be the treatment indicator for individual i, Li(t) the level of the medi-
ating variable (either the RNA or CD4 level) for individual i at time t, Zi a vector
of relevant baseline covariates for individual i, and Di(t) an indicator function, 1
if individual i dies or is diagnosed with AIDS at time t, and 0 otherwise. We have
n independent observations Ai, Li(t), Zi, and Di(t), of A, L(t), Z = (Z1, ..., Zp),
and D(t), where p is the number of baseline covariates. The model is illustrated
by the dynamic path diagram [3] in Figure 1.

Figure 1: Path diagram for the dynamic model with a direct path from treatment A
to the increment of the event process dD(t) (AIDS or death) and an indirect
path from A to dD(t) through a mediating variable L(t), being either the
HIV-1 RNA level or the CD4 cell count. α2(t), β2(t) and β3(t) are regression
coefficients.

Considering the path diagram, we observe two paths going from treatment A

to the event increment dD(t); one direct path, and one indirect path through the
time-dependent covariate L(t). As in [3], the aim is to analyse the effect of the
covariate processes on the infinitesimal changes of the event process D(t), dD(t).
The dynamic path analysis is carried out using recursive least squares regression,
as in regular path analysis. Each node in the diagram is regressed onto its parent,
for each time t when data is potentially collected. As previously mentioned, if
data for a time-dependent covariate is not available, the last observation is carried
forward, as in [14]. In contrast to regular path analysis, the regression of the event
D(t) onto its parents is done using the additive regression model. Direct and
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indirect effects can now be calculated, preserving the additivity of classical path
analysis, allowing total effects to be decomposed into direct and indirect effects.
An indirect effect is simply defined as the product of the regression functions
(ordinary linear or additive) along its path.

The model in Figure 1 is formally given by

L(t) = α1(t) + α2(t)A + α3(t)Z + M1(t) (2)

for all t ∈ {1, 2, ..., 92}, and

D(t) =
∫ t

0
Y (s)

(
β1(s) + β2(s)A + β3(s)L(s−) + β4(s)Z

)
ds + M2(t), (3)

where Y (t) is the at risk indicator at time t (valued 1 if at risk and 0 otherwise),
Mh(t) are martingales corresponding to the residuals, αj(t) for j ∈ {1, 2, 3} are
regression coefficients at time t, and βk(t) for k ∈ {1, 2, 3, 4} are regression func-
tions. See for example Diggle et al. [17] for other models for longitudinal data
formulated using martingale residuals.

The parameters α(t) = (α1(t), α2(t), α3(t)) in model (2) can be estimated
using ordinary linear regression at each time t ∈ {1, 2, ..., 92}, and the parameters
β(t) = (β1(t), β2(t), β3(t), β4(t)) in model (3) using additive hazard regression.
We define the two cumulative path effects

A → D :
∫ t

0
β2(s)ds (4)

and
A → L → D :

∫ t

0
α2(s)β3(s)ds (5)

as the direct effect of treatment on the outcome, (A → D), and the indirect
effect of treatment going through the variable L, (A → L → D). In other words,
direct and indirect effects along paths such as the ones in Figure 1 are found by
multiplying the regression coefficients along that path. In Fosen et al. [3], it is
shown that these path effects add up to the marginal (only baseline adjusted)
effect.
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5 Estimators for the path effects

5.1 Weighted dynamic path analysis

If it was not for the censoring, we could proceed as in [3] to introduce estimators for
the path effects analysing one mimicked randomized trial alone. We will, however,
do a weighted analysis to adjust for any dependent censoring, which corresponds
to using data distributed according to P to do inference for Q (remembering the
notation of Section 3.2).

Let us first introduce some more notation. Let Nk(t) be a vector where the
ith element Nk,i(t) is the number of events (indicated by Di(t) = 1) up until time
t for individual i in trial k. Xk(t) is a matrix where the ith element, Xk,i(t) =
(1, Ak,i, LT

k,i(t−), ZT
k,i), is a vector with all covariate values at time t for individual

i in trial k and Yk(t) is a vector where the ith element, Yk,i(t), is the ‘at-risk’
indicator at time t for individual i in trial k.

Consider the additive hazard regression model from Equation 3 with respect to
Q. We have a left continuous function B(t) = (

∫ t
o β1(s)ds,

∫ t
0 β2(s), β3(s), β4(s)),

such that
Mk(t) = Nk(t) −

∫ t

0
Yk(s)Xk(s)dB(s)

is a Q-martingale with respect to the history of the individuals in trial k.
Let Wk(t) be a diagonal matrix where the ith element along the diagonal

Wk,i(t) is the censoring weight at time t for individual i in trial k, and recall the
discussion in 3.2. Since Wk(t) is the likelihood ratio process, we obtain from the
integration-by-parts formula for stochastic integrals that

∫ t

0
Wk(s−)dNk(s) −

∫ t

0
Wk(s−)Yk(s)Xk(s)dB(s)

defines a P -martingale. This suggests that some reasonable estimator for B(t),
say B̂(t), is given by each of the estimating equations

Xk(t)T Wk(t−)dNk(t) − Xk(t)T Wk(t−)Yk(t)Xk(t)dB̂(t) = 0 (6)

for every t.
For each trial k and every jump time t of Lk, and for the mediating covariate
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processes Lk(t), we have the linear model

Lk(t) = Xk(t)α(t) + εk(t),

where εk(t) has zero mean and its components are uncorrelated with respect to
Q.

Now,
Wk(t)

(
Lk(t) − Xk(t)β(t) + εk(t)

)
has zero mean and its components are uncorrelated with respect to Q.

The corresponding weighted normal equation is

Xk(t)T Wk(t)Lk(t) − Xk(t)T Wk(t)Xk(t)β̂(t) = 0. (7)

Estimates of α(t) and B(t), α̂(t) and B̂(t), inserted into equation (4) and (5)
suggests the estimators

A → D : B̂2(t) (8)

and
A → L → D :

∫ t

0
α̂2(s)dB̂3(s) (9)

for the cumulative path effects at time t. B̂l(t) is the lth entry of B̂(t).

5.2 Estimating composite treatment effects combining all
mimicked trials

Until now we have considered the dynamic path analysis of one mimicked ran-
domized trial, where in the last section we extended the dynamic path analysis
from [3] by introducing censor weights. However, aiming to analyse the full cohort
dataset, we construct many mimicked randomized trials; one for each possible time
of treatment start. We therefore seek to combine many such weighted dynamic
path analyses, in a similar way as was done with the Cox regressions in [6], by
using composite likelihood inference.
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Composite additive hazard regressions

Let us first combine the additive regressions done for each mimicked trial. In
order to combine all the mimicked trials to get an overall estimate, we aggregate
over the estimating equations (6), resulting in the the estimating equation

∑
k

Xk(s)T Wk(s−)dNk(s) − ∑
k

Xk(s)T Wk(s−)Xk(s)dB̂(s) = 0.

A short matrix computation shows that the corresponding aggregated estimator
is

B̂(t) =
∑

k

∫ t

0

( ∑
l

Xl(s)T Wl(s−)Xl(s)
)−1

Xk(s)T Wk(s−)dNk(s). (10)

Composite linear regressions

Correspondingly, we must aggregate the weighted normal equations (7) for all
observed time points in each mimicked trial. This gives the aggregated estimation
equation ∑

k

X(t)T
k Wk(t)L(t)k − X(t)T

k Wk(t)X(t)kβ̂(t) = 0,

and the estimator

β̂(t−) =
∑

k

( ∑
l

X(t)T
l Wl(t−)X(t)l

)−1

X(t)T
k Wk(t−)L(t)k. (11)

Estimating cumulative path effects

The estimators (10) and (11) can now be used in (8) and (9), giving estimators
for the aggregated path effects. Confidence intervals, or more precisely percentile
intervals, are calculated using bootstrap re-sampling methods [18], re-sampling at
an individual level on all the data used in the composite analysis.
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6 Results

6.1 Mimicked randomized trials constructed from the Swiss
HIV Cohort data

Using the data from the Swiss HIV Cohort Study we construct 92 mimicked
randomized controlled trials, as in [6]. Figure 2 show the mean levels of RNA and
CD4, together with individual trajectories, for the treatment and control group in
the first mimicked trial. The choice of trial is arbitrary, and other trials generally
show a similar trend.

Figure 2 illustrates how the RNA levels quickly decrease for individuals re-
ceiving treatment, before stabilizing. The CD4 level for individuals on treatment
increases, but does not stabilize as fast as the RNA level. In the control group,
the RNA and CD4 levels are quite stable. Note that the RNA and CD4 variables
used in the following analyses take the same form as in Figure 2. The RNA level
is measured as the logarithm of HIV-1 RNA copies per millilitre and the CD4
level is the square root of CD4 cells per microlitre.

6.2 Results using a model with an indirect treatment ef-
fect through the RNA level

Let us first consider the model in Section 4 with RNA level at time t as the
mediating variable, and perform a composite weighted dynamic path analysis of
all the mimicked randomized trials. We now seek to estimate the indirect effect
of treatment through RNA, together with the remaining direct effect, using the
estimators from Section 5.2. As noted earlier, the indirect and direct effect add up
to the total effect. The baseline covariates used, corresponding to the vector Z in
the equations, include sex, risk group, age at baseline and the following covariates
at inclusion, at the start of the mimicked trial and lagged values at the start
of the mimicked trial: CD4 group (grouped into 0-49, 50-99, 100-199, 200-349,
350-499, 500-749, ≥ 750 cells per μL), RNA group (grouped into <400, 400-
1000, 1001-10 000, 10 001-100 000, >000 000 copies per mL), haemoglobin group
(grouped into fifths), CDC B event and previously experienced CDC B event.
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Figure 2: RNA and CD4 levels for individuals starting treatment and the controls in
the first mimicked randomized controlled trial. The black line is the mean
RNA or CD4 level at a certain time point, while gray lines indicate individual
trajectories.

Lagged values are values three months before, corresponding to the scheduled
time between visits [14]. All programming was done in the statistical package R,
version 2.10.1 [19]. Estimated cumulative effects, and the corresponding regression
functions (not cumulative), are plotted in Figure 3.

The first three panels of the figure, with plots of the total effect and the two
path effects, show that there is a fairly constant indirect effect of treatment going
through RNA for the first 4 years after treatment start. After that, the effect
decreases. The direct effect of treatment is close to zero for the first 3-4 years,
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Figure 3: Estimated cumulative direct and indirect effects, and regression functions,
from the composite weighted dynamic path analysis using the model in Fig-
ure 1. Grey lines represent 95% percentile intervals based on 100 bootstrap
replications. Note that the last two panels are regression functions, which
are not cumulative, corresponding to the parameters α2(t) and β3(t) respec-
tively.

before there is a corresponding shift towards an increasing direct effect. We see
that the uncertainty, represented by the 95% percentile intervals, grows larger to
the right as fewer people are left observed.

In the two last panels of Figure 3 we see the regression functions for the
treatment effect on RNA and the RNA effect on the event ‘AIDS or death’, or
α2(t) and β3(t) from the equations in Section 4 and in Figure 1. We see that
the effect of treatment on RNA appears to be immediate, and then it remains
constant, or possibly slowly decreases. The RNA effect on the event ‘AIDS or
death’ on the other hand, is fairly constant. The regression functions in the two
last panels are cut after 80 months, to remove the noise from the uncertainty at
the end to better see the development in the first 80 months.
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6.3 Results using a model with an indirect treatment ef-
fect through the CD4 level

Let us then consider the same model as in the previous section, but with CD4 level
as the mediating variable instead of RNA. The results from a composite weighted
dynamic path analysis is presented in Figure 4. As in the previous figure, the three
top panels show the cumulative total, direct and indirect effect, while the bottom
two panels show the regression functions α2(t) and β3(t) from the equations in
Section 4.
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Figure 4: Estimated cumulative direct and indirect effects, and regression functions,
from the composite weighted dynamic path analysis using the model in Fig-
ure 1. Grey lines represent 95% percentile intervals based on 100 bootstrap
replications. Note that the last two panels are regression functions, which
are not cumulative, corresponding to the parameters α2(t) and β3(t) respec-
tively.

At first glance, the results from Figure 4 are very similar to the results using
RNA as the intermediate variable. We see, however, that the indirect effect of
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treatment going through the CD4 level is smaller than the indirect effect through
RNA shown in Section 6.2. We also see that the regression functions for HAART
on CD4 and CD4 on the final outcome ‘AIDS or death’ behave differently than
for the corresponding regression functions using RNA in the previous section.
An obvious difference between RNA and CD4 is that CD4 levels will decrease
while RNA levels will increase with worsened disease progression, but there is also
differences in how these levels behave. The treatment effect on CD4 from Figure
4 seems to be working slower than the effect on the RNA level and stabilizing
much later. The regression functions in the two last panels are again cut after 80
months.

7 Discussion

From the results analysing the Swiss HIV Cohort data in Section 6, we see that
using HIV-1 RNA level as the mediating variable in our dynamic path model
captures more of the total effect than using the CD4 cell count. The direct
effect plotted in Figure 3 actually suggests that most, or all, of the treatment
effect can be explained by the RNA level for the first three or four years after
starting treatment. After that, the indirect effect of RNA levels off, and the direct
effect increases. One interpretation of this would be that the treatment effect is
explained by the RNA level for the first three or four years after treatment start,
while after that other factors become more important. An explanation to why
the effect decreases after three or four years could be that patients on treatment
are more closely clinically monitored, and also more likely to receive prophylaxis
against opportunistic infections if indicated. Also, patients not (yet) on treatment
may have special characteristics with poorer outcomes (e.g. injecting drug use and
presumed poor treatment adherence). However, HAART, and especially protease
inhibitors, appear to have a number of effects that are not necessarily mediated
through the effect on viral replication [20–22], so it is not obvious that all effects
are mediated through viral load.

The estimated direct and indirect effect using CD4 level as the mediating
variable, found in Figure 4, point in the same direction as for the estimates using
RNA, but the effect going through CD4 is smaller. From the plots of the regression
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functions in Figure 3 and Figure 4 of HAART effect on RNA and CD4, we see
that treatment affects the RNA level much more rapidly than the CD4 level.
Both levels stabilize a certain time after treatment start, but RNA stabilizes much
faster. This could be part of the explanation as to why the indirect effect through
RNA is greater than the one through CD4. The same propensity to faster change
in RNA levels is also seen in the descriptive plots in Figure 2.

Note that when interpreting plots like the ones in Figure 3 and Figure 4, i.e.,
both time-dependent effect estimates and estimated regression functions, the un-
certainty will increase towards the right because fewer observations are available.
This is reflected in wider confidence intervals. In other words, the most reliable
information is found to the left in these figures.

There are reasons to be cautious about making conclusive statements about
estimates of direct and indirect effects, such as those estimated using dynamic
path analysis. The most important reason could be that any possible confounding
between the mediator and the final outcome will affect the estimates. When
estimating total effects, one needs to assume no unmeasured confounding between
exposure and the outcome; and when estimating direct and indirect effects, there
should also be no unmeasured confounding between mediator and outcome [23].
These assumptions will therefore be harder to satisfy, and the problem will increase
with the number of mediators. As when estimating total effects, assumptions of
no unmeasured confounders are generally not testable when estimating direct and
indirect effects. See [24], where additional assumptions for effect decomposition,
beyond the absence of confounders, are discussed. Note also that measurement
error in mediating variables often will cause indirect effects to be underestimated
[25]. Another important point is that the estimated indirect and direct effects are
based on a specified model, modelling how the variables affect each other, and
will therefore depend on whether this model is a correct description of the actual
system of variables. This will also include how the variables are represented, for
example if they should be parameterized or dichotomized to be appropriate in a
linear model. As for the method of dynamic path analysis, one should note that
this still is a rather novel approach and that there remains a need to formalize
certain aspects of its use [7].

The main purpose of this paper is to explore methodological possibilities of
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dynamic path analysis. The present study is based on a rather limited number
of endpoint from the early years of antiretroviral treatment, suggesting that it
is premature to draw solid biological and clinical conclusions. However, despite
the reservations, there are still much insight to gain from dynamic path analyses
of direct and indirect effects, including insight on processes which are ignored in
analyses of total effects. One could argue that studies about direct and indirect
effects usually have a more provisional status, and should not require the same
level of certainty as for studies of total effects.

The dynamic path models used to analyse the data in this paper are simple
models including only one intermediate variable included at a time, namely the
level of RNA copies or CD4 cells. One would expect that antiretroviral treatment
would lower the RNA level, and have a positive effect on the outcome ‘AIDS or
death’. Similarly, one would expect to see similar effect if the RNA level was re-
placed with CD4 level, which is the most commonly used marker for HIV disease
progression. Biologically, one would expect that the effect of antiretroviral treat-
ment on clinical progression is channeled via a path going through the RNA level
and then CD4 level. This would suggest more complex models, with both RNA
and CD4 included at the same time and with several possible indirect paths going
from treatment to the outcome. However, models with such paths would demand
more from the data to capture necessary details. Effect estimates for such com-
plex paths will, for example, be more easily subject to confounding and harder to
interpret. The fact that laboratory measures are taken every third month at best
may weaken attempts to model the interaction between variables, such as RNA
and CD4 levels. We therefore chose to focus on two simple dynamic path models
in this paper, to demonstrate how the idea of mimicking randomized trials and
doing composite analyses in [6] can be used to extend the method of dynamic
path analysis and explore datasets such as the Swiss HIV Cohort data. We have
shown that even the most simple dynamic path models can be used to gain more
insight about underlying processes in such datasets.
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