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GROWTH SERIES OF SOME WREATH PRODUCTS

WALTER PARRY

Abstract. The growth series of certain finitely generated groups which are

wreath products are investigated. These growth series are intimately related to

the traveling salesman problem on certain graphs. A large class of these growth

series is shown to consist of irrational algebraic functions.

0. Introduction

Let r be a group with a finite generating set S. Define the S'-length \\g\\s

of an element g in Y to be the least nonnegative integer n such that g can

be expressed as a product of n elements from S U S~l. For every nonnega-

tive integer n let a„ be the number of elements in Y with S'-length n. In

particular, a0 = 1 (the identity element), and ax is the number of nonidentity

elements in S U S~ ' . The growth series of the pair (Y, S) is by definition

oo

Mx) = zZ anX" •
n=0

Since only one generating set will be associated with each group below, the

generating set associated with fr(x) will be obvious.

Let H be a group with a finite generating set Sh ■ These will be fixed for

the rest of the paper. The Cayley graph of the pair (H, Sh) is, as usual, the

directed graph whose vertices are the elements of H and there is an edge from

a vertex hx Xoa vertex h2 if and only if h2 = hxh for some h in SH US^1. In
particular, the edge from hx to h2 has an opposite edge from h2 to hx . Let C

be the graph gotten from the Cayley graph of (H, Sh) simply by identifying
opposite edges. In other words, C might be called the undirected Cayley graph

of (H,SH).
hex K also be a group with a finite generating set Sk ■ These will also be

fixed for the rest of the paper. It is possible to form what might be called a

restricted direct product group P, which consists of all functions p from the

vertices of C to K such that there are only finitely many vertices v in C with

p(v) t¿ 1. This is a subgroup of the direct product group whose elements consist

of all functions from the vertex set of C to K. The group P admits H as

a group of automorphisms by means of the action of H on C. The resulting

semidirect product P x H is the restricted wreath product K\H.
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Set G = K\H. It is possible to identify H and P with subgroups of G in

a natural way. Suppose that the identity element of H projects to the vertex

Vo in C. Identify K with the subgroup of P consisting of those functions p

such that p(v) = 1 if v ^ v0 . Having done this, SH and SK He in G. Set

Sg — Sh^Sk- This set generates G.
In § 1 it will be shown that the problem of determining the S^-lengths of the

elements of C7 is intimately related to the traveling salesman problem in C.

The precise result is in Theorem 1.2. It is for this reason that Jim Cannon calls

these groups lamplighter groups. (Brief explanation: a lamplighter lives in a

town whose street map is C and walks about the town lighting various lamps

(elements of K, especially when K ~ Z/2Z).)
After §1 it will be assumed that C is a tree. In §3.3 of [6] it is shown that

this together with the assumption that H acts without inversions implies that

H is a free group. However, the elements of H are allowed to act by inversion

here. It follows that H is a free product of groups isomorphic to either Z or

Z/2Z. The valence of the vertices of C will be denoted by m (which can be

any nonnegative integer).

Section 2 is devoted to obtaining an interesting expression for /g(x) in terms

of fn(x) and a generating function Fc(x, y) of two variables which is associ-

ated to certain finite subtrees of C. This result is in Theorem 2.6. I know very

little about generalizing Theorem 2.6 to the case in which C is not a tree. In

particular, what about the case in which H — I? and Sh is the standard basis?

Section 3 investigates to what extent /g(x) is a rational function. Lemma 3.1

shows that Fq(x , y) is algebraic over the field generated over Q by x and y .

Corollary 3.2 shows that the power series F(x) in Theorem 2.6 is algebraic over

the field generated over Q by x and ffc(x). It is easy to see that the equation

in Corollary 3.2 can be used to compute the coefficients of F(x) recursively.
Thus to compute /g(x) for m > 1 given fx(x), one can use the equation

in Corollary 3.2 to compute F(x) and then Theorem 2.6 to compute fg(x).

Moreover if m < 2, then Corollary 3.3 gives /g(x) as a rational function of x

and ffc(x). Thus in this case ./g(x) is a rational function if fx(x) is a rational

function. However, if m > 2 and K / 1 , then although fa(x) is algebraic

over the field generated over Q by x and /jt(x), it is not contained in this

field by Theorem 3.7. Thus if m > 2, K / 1 and ftc(x) is rational, then
Ag(x) is an irrational algebraic function. As far as I know the only examples

of groups with irrational growth series previously known are finitely presented

groups with unsolvable word problems [2] and the examples presented in [4].

None of these power series is algebraic.

Line (0.1) will be needed later, and so it seems appropriate to now return

to the setting of the first paragraph and discuss the radius of convergence of

fr(x). For every nonnegative integer n let bn be the number of elements

in T with S-length at most n.  Clearly, b„ = ¿^"=0 a,.   The remark which

begins on p. 1 of [5] shows that the limit lim^oo b„/n exists. It is not dif-

ficult to see that lim„_^oo b„ = lim„^oo a„ if Y is an infinite group, and

so in this case lim,,-..^bn — \/R, where R is the radius of convergence of

fr(x). The aforementioned remark in [5] contains for each fixed t the inequal-

ity lim sup7(5)'^ < y(t)l/l. This can be rewritten in the present notation as

1//? < b„    , hence bnR" > 1 . This easily proves the following statement.
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If R is the radius of convergence of the growth series of a

(0.1 )        group with respect to a finite generating set, then the values of

the growth series approach oo as the variable increases to R.

Section 4 deals with the radius of convergence of fcj(x). Corollary 3.3 easily

shows for m - 0, 1 that the radius of convergence of fo(x) equals the radius

of convergence of fa(x) . Thus in §4 it will be assumed that m > 2. Theorem

4.1 describes the radius of convergence of fc(x) for m > 2.

The paper concludes with §5 in which some examples are discussed.

It is a pleasure for me to acknowledge here the friendly assistance of Jim

Cannon and Bill Floyd in the course of writing this paper.

1. Walks in C

It is appropriate at this point to explicitly describe the conjugation action of

H on P. If p lies in P and h lies in //, then the value of hph~x at hv is

the value of p at v for every vertex d of C.

Now suppose given an element g in G, and consider the problem of de-

termining ||£||sc. Suppose that g is given as a product of ||g||sc elements

in Sg = Sh U Sk ■ Such a product will be called a minimal representation of

g. Let the elements ho, ... ,hq in H (allowing for ho — 1 or hq = 1) be

maximal subproducts of elements in Sh and let the elements k{, ... ,kq in K

be maximal subproducts of elements in Sk for some q > 0, so that the given

minimal representation of g is a refinement of

g = hokxhxk2h2- ■ ■ kq_xhq-Xkqhq .

In particular,

\\8\\sG = ÍZ\\hi\\sH+ÍZ\\ki\\sK.
i=0 i'=l

Express g as follows.

g = (hokxh^)(hohxk2h~xhQx)(hohxh2k3h2xh^h^)

■■■(h0---hq-Xkqh~\ ■ ■ ■ hñx)hohxh2---hq.

This expression for g can be viewed as taking a walk in C which stops at

certain vertices along the way to construct elements of K . More precisely, begin

at v0 and walk a geodesic path to hoV0. The distance travelled is ||/zo||s„ ■

At hoVo use H^iH^ elements of Sk to construct kx . From hoVo walk a

geodesic path to hohxVo. The distance travelled is ||Ai||s„- At hohxVo use

\\k2\\sK elements of Sk to construct k2. Continue walking in this way until

finally stopping at h0hxh2 ■■ ■ hqVo . In this interpretation, ||g||sc is the total

distance travelled plus the total number of elements from Sk used along the

way. For the present purposes the term walk will not only include the notion

of moving among the vertices, but also the notion of stopping at vertices and

constructing elements of K. Define a minimal walk for g to be one which

corresponds to a minimal representation of g as above.

It will now be shown that there is no advantage to stopping at a vertex more

than once. Suppose that there are integers r, t such that ho---hr — ho---ht

with 0 < r < t < q and ho ■ ■ ■ hr / ho ■ ■ ■ hs for every integer s with r < s <
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/. Since ho-- ■ htktht ' • • • h0 ' commutes with ho--- hskshs ' • ■ • h0 ' for every

such s, g is unchanged by deleting ho---htk,h¡~1 ■■-h^ from line (1.1) and
replacing kr by krkt. This changes the walk in two ways. First, instead of

constructing kr at ho--- hrvo , krk, is constructed. This does not increase the

value of £f=, \\ki\\sK because H^/lls* < \\kr\\sK + \\kt\\sK . Second, instead of

walking from ho-- -ht-Xvo to ho---htvo and then to ho---ht+xvo, the walk

proceeds directly from ho---h,^.xvo to ho---ht+xvo- The triangle inequality

also shows that this does not increase the value of YH=o \\ni\\sH ■ ̂  *s now easy

to see that for every element in G there is a minimal walk which stops at every

vertex of C at most once.

Now express a given element g in G as g = ph for some p in P and h

in H. It is clear that every minimal walk for g must pass through every vertex

v of C such that p(v) ^ 1 and it must end at hvo . Consequently, the above

proves the following theorem.

Theorem 1.2. Let g = ph be an element in G with p in P and h in H.

One minimal walk for g is gotten as follows. Take a shortest possible walk in

C starting at v0, ending at hvo and passing through all vertices v of C for

which p(v) t¿ 1. Stop at the latter vertices v just once and represent p(v) there

minimally in terms of Sk ■

It will be convenient to say that the value of a minimal walk for g as in

Theorem 1.2 at a vertex v of C is p(v).

2. Description of /g(x) when C is a tree

Henceforth it will be assumed that C is a tree. The valence of every vertex

of C is the cardinality of S h U S^ ' . Let m denote this valence.

A finite subtree of C can be associated to every finite walk in C, namely,
the subtree of those vertices and edges traversed in the walk. Call this finite

subtree the support of the walk. Define the extreme vertices of a finite tree to

be its vertices with valence 1 or 0 (in the case of a tree with just one vertex).

Choose a vertex vx adjacent to v0, and let 3~ be the set of finite subtrees of

C which contain vq but contain no vertex adjacent to Vq other than vx . Then

Vo is an extreme vertex of such a subtree. Call it the trivial extreme vertex. Let

Fc(x, y) be the generating function which results from counting the elements

of 3~ according to the numbers of their nonextreme vertices and nontrivial

extreme vertices:
oo

(2.1) Fc(x,y)= Y, auxly',
i,j=0

where

a¡j — | {T £ 3~ : T has / nonextreme vertices and

j nontrivial extreme vertices} |.

This depends only on C, not vq or vx .

Now choose T in 3" and consider the contribution made to fo(x) by those

elements in G whose minimal walks end at vo , which have value 1 at Vo and

which have support T. Set f(x) - fK(x). Recall Theorem 1.2. Suppose that

T has i nonextreme vertices and j nontrivial extreme vertices. The value of
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such a walk at every nonextreme vertex of T can be any element of K. Thus

f(x)1 is a factor of the power series in question. The value of such a walk

at every nontrivial extreme vertex of T can be any nontrivial element of K.

Thus (f(x) - l)J is also a factor of the power series in question. Because the

Euler characteristic of T is 1, T has / + j edges. Thus the length of such

a walk is 2(i + j), and so x2(,+7) is also a factor. Therefore the contribution

made to /g(x) by those elements in G whose minimal walks end at vq , which

have value 1 at vo and which have support T is (x2/(x))'(x2(/(x) - 1));.

It follows that the contribution made to /g(x) by those elements in G whose

minimal walks end at Vo, which have value 1 at vq and which have support in

y is Fc(x2f(x), x2(/(x) - 1)). Set F(x) = Fc(x2f(x), x2(f(x) - 1)).
Now choose a vertex v ^ Vo in C, and consider the contribution made to

Ag(x) by those elements in G whose minimal walks end at v . Such a walk

begins at vo , and the following may be assumed.

(2.2)
It first goes a certain amount in the m - 1 directions away from

v .

Then it goes toward v . At each interior vertex of the geodesic

(2.3)        from Vq to v it goes a certain amount in the m-2 directions

away from the geodesic.

(2.4)
After reaching v it goes a certain amount in the m - 1 direc-

tions away from vq . It finally stops at v .

The parts of these walks described in (2.2) contribute a factor of F(x) to the

power series in question for each of the m - 1 directions away from v . They

also contribute a factor of f(x) which arises from the values of the walks

at Vo. Thus the parts of these walks described in (2.2) contribute a factor of

f(x)F(x)m~l to the power series in question. In the same way the parts of these

walks described in (2.3) contribute a factor of (f(x)F(x)m~2)d^v°'v^~[, where

d is the standard metric on C. Just as for (2.2), the factor corresponding to

(2.4) is f(x)F(x)m~i . Finally, the distance travelled along the geodesic from

Vo to v is taken into account by the factor xd{-v°'v^. Thus the contribution

made to /g(x) by those elements in G whose minimal walks end at v is

f(x)F(x)m(xf(x)F(x)m-2)d(v°'v).

The above is also correct if v = Vq , and so

fG(x)=     £    /(x)F(x)m(x/(x)F(x)'"-2)^''')

))6vert(C)

= f(x)F(x)mfH(xf(x)F(x)m-2).

Because C is a tree every vertex of which has valance m , it is not difficult to

see that

(2.5) fH(x) = -
(m — l)x

This proves the following theorem.
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Theorem 2.6. Suppose that C is a tree every vertex of which has valence m . Let

f{x) = fK(x), and let F(x) = Fc(x2/(x), x2(/(x) - 1)), where Fc(x, y) is
defined in line (2.1). Then

f(x)F(x)m(\+xf(x)F(x)m-2)
JG\X) - \-(m-l)xf(x)F(x)m-2     '

3. Rationality of fc(x)

The assumptions and notation of §2 remain in force.

Lemma 3.1. The power series Fc(x, y) satisfies the following equation for

m>\.

Fc(x,y) = l+y-x + xFc(x,y)m-1.

Proof. Recall the definition of Fc(x, y) from line (2.1). The tree T0 in 3~
consisting of just the vertex v0 gives the constant term 1 in Fc(x, y). The

tree Tx in 3~ consisting of the vertices Vo, vx and the edge between them

contributes y to Fc(x, y). Now let 3~' be the set of subtrees of C gotten by

deleting v0 and the edge between v0 and vx from the trees in 3~ - {T0}.

Then 3~' is the set of all finite subtrees of C which contain vx but not

vo. It is easy to see that the generating function analogous to Fc(x, y) for
3r' is Fc(x,y)m~l . Thus 3~ -{7b, 7Ï} contributes x(Fc(x, y)m~l - 1) to

Fc(x, y) ■ Combining the above proves the lemma.   D

Corollary 3.2. The power series F(x) satisfies the following equation for m>\.

F(x) = 1 - x2 + x2f(x)F(x)m~{.

Proof. This is easy to verify using Lemma 3.1.   D

When m — 1, 2 this result can be used to express F(x) as a rational function

in x and f(x), which together with Theorem 2.6 proves the following.

Corollary 3.3.

'/(*), m = 0,

fG(x) = \ (l+x)f(x)(\-x + xf(x)),       m = l,

f(x)(l-x2)2(l+xf(x)) ?
^ {l-x*Ax))Hl-xf\x)) ' m- a.

In particular, if f(x) is rational in these cases, then so is Ag(x) .

Corollary 3.4. Suppose that m>\, and assume the hypotheses of Theorem 2.6.

Then
f (x) = f(x)F(xY"(l+xf(x)F(xr-2)
JG[  ' \-(m-\)xf(x)F(x)m-2     '

where

F(x) =\-x2 + x2f(x)F(x)m~x .

Proof. This merely combines Theorem 2.6 and Corollary 3.2.   G

A straightforward computation shows that this result transforms into the

following one by means of the substitution E(x) = (1 - x2)/F(x).
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Corollary 3.5. Suppose that m > 1, and assume the hypotheses of Theorem 2.6.

Then
(I - x2)2(E(x) - l)(E(x) - x - I)

JG{  '     x2E(x)2((m-l)E(x) + x+l-m)'

where
E(x)m~l - E(x)m-2 + x2(l- x2)m~2f(x) = 0.

The rest of this section deals with the case m > 2 .

Lemma 3.6. Suppose that m > 2 and that K ^ 1, namely, f(x) ^ 1. Then
F(x) is not in the field generated over Q by x and f(x).

Proof. It is clear that f(x) and F(x) are power series in x with nonnegative

integer coefficients.
Let Rx be the radius of convergence of F(x), and let R2 be the radius

of convergence of f(x). Since F(x) has infinitely many nonzero coefficients,

Rx < 1. (Since the coefficients of F(x) are dominated by the coefficients

of Ag(x) and the radius of convergence of fa(x) is positive, Rx > 0.) The

definition of F(x) easily shows that Rx < R2.
It will now be shown that if the nonnegative real number r increases to Rx,

then F(r) increases to a finite limit. Indeed, the above shows that F(r) and

f(r) are positive increasing functions of the real number r for 0 < r < Rx .

If F(r) increases to oo as r increases to Rx, then Corollary 3.2 shows that

F(r) increases to oo with at least the order of magnitude of F(r)m~l. This is

impossible. Thus F(r) increases to a finite limit as r increases to Rx.

This combined with line (0.1) and Corollary 3.2 implies that Rx < R2.
Therefore if F(x) is in the field generated over Q by x and f(x), then Rx

is a pole of F(x), contrary to the fact that F(r) increases to a finite limit as r

increases to Rx . This proves Lemma 3.6.   D

The next result is the analog of Corollary 3.3 for the case in which m > 2 .

Theorem 3.7. Suppose that m > 2 and K ^ 1. Then fc(x) is algebraic over

the field generated over Q by x and f(x), but it is not contained in this field.

Proof. Let L be the field generated over Q by x and f(x). Corollary 3.5

shows that Ag(x) is algebraic over L. Thus what must be shown is that Ag(x) is

not contained in L. The following paragraph of commutative algebra prepares

for this.
Corollary 3.5 shows that E(x) is algebraic over L, and Lemma 3.6 shows

that E(x) is not contained in L. Let M be the splitting field of the irreducible

polynomial of E(x) over L. Let A be the subring of L consisting of those

elements in L which are holomorphic at 0. Let B be the integral closure of A

in M. The evaluation map xhO induces a ring homomorphism cp: A —> C.

In particular, cp restricted to Q is the identity map, cp(x) — 0 and cp(f(x)) —

1 . A standard result in commutative algebra (see Chapter V, §2.1, Corollary 4

of [1]) states that cp can be extended to a ring homomorphism, still denoted by
cp, from 5 to C. Let Ex(x), ... , En(x) denote the algebraic conjugates of

E(x) over L. They lie in B because Corollary 3.5 shows that they are roots

of the monic polynomial

P(y)=ym-i -ym-2+X2(\-X2)m-2f(x)
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which lies in the polynomial ring A[y]. There is a unique further extension of

<p to a ring homomorphism tp : B[y] -» C[y] which maps y to y. Clearly,

<p(P(y)) = ym~x -ym~\

and this is divisible by

<p (fl(y - Ei(x))) =f[(y-cp(El(x))).
\i=\ I        1=1

Thus at most one of the values cp(Ei(x)), ... , <p(E„(x)) is 1, and the others

are 0. The Galois group of M over L acts on the set {Ex(x), ... , En(x)}

transitively. By composing <p with a field automorphism of M over L, it may

therefore be assumed that cp(E(x)) - 0.

Now consider cp and fc(x). The value of cp at the numerator of the right

side of the first equation in Corollary 3.5 is 1, and the value of cp at this

denominator is 0. Thus Ag(x) is not in B, hence it is not in A and so it is

not in L. This proves Theorem 3.7.   D

Corollary 3.8. If m > 2 and K / 1, then /g(x) is not a rational function.

4. Radius of convergence of fc(x)

In addition to the assumptions and notation of §2, in this section it will be

assumed that m>2. Here is the main result of this section.

Theorem 4.1. If m > 2, then the radius of convergence of fc(x) is the smallest

positive zero of

(1-^l)m     -(«-D^(l-x2)'"-2/(x).

Proof. Let R be the radius of convergence of fo(x). As in the second para-

graph of the proof of Lemma 3.6, the radius of convergence of f(x) is at least

the radius of convergence of F(x) and R is at most the radius of convergence

of F(x). Since f(r) and F(r) are positive increasing functions of r, line (0.1)

and the first equation in Corollary 3.4 show that R is the smallest positive zero

of 1 - (m - \)xf(x)F(x)m~2 . Using the second equation in Corollary 3.4 and

the fact that E(x) — (1 - x2)/F(x), it is then a routine matter to see that R is

the smallest positive solution of the equation E(x) = 1 - x/(m - 1).

This and the second equation in Corollary 3.5 lead to the polynomial

P(y)=ym~l -y">-2 + ti

where t is a real number. Let ax(t), ... , am_x(t) be generically distinct roots

of P(y) which vary continuously with /. Assume that ax(0) = 1, and so

Q2(0) = ---=aw_,(0) = 0.

Because the zeros of P'(y) lie in the set {0, (m-2)/(m- 1)} , it is not difficult

to prove the following. If i is an integer with 1 < / < m — 1 and / is a real

number such that a¡(t) lies in the open interval ((m - 2)/(m - 1), 1), then

i = 1. Furthermore, if a¡(t) - (m-2)/(m - I), then ax(t) = (m -2)/(m - 1 ).

Now combine the previous two paragraphs. Since 1 - r/(m - 1) varies from

1  to  (m - 2)/(m - 1)  as r varies from 0 to 1, it follows that E(R) lies in
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the interval [(m-2)/(m-\), 1). Thus the previous paragraph and the second

equation in Corollary 3.5 imply that R is the smallest positive zero of

('-^r'-i'-^r)""2"2"-^""2^»-
Factoring (1 -x/(m- l))m~2 from the first two terms of this expression allows it

to be slightly simplified to give the desired result. This proves Theorem 4.1.   D

5. Examples

Example 5.1. Take m = 2 . By Corollary 3.3

_ /(x)(l-x2)2(l+x/(x))

JG(X)     {i_x2fix))2{l_xf{x)y

and by Theorem 4.1 the radius of convergence of fa(x) is the smallest positive

zero of 1 - x/(x).

It is clear that the largest radius of convergence for fa(x) with nontrivial K

occurs for K = Z/2Z. In this case f(x) = 1 + x , from which it easily follows

that the radius of convergence of fdx) is (V5- l)/2 . Line (2.5) easily implies

that this is the largest radius of convergence for all pairs (G, SG) with m > 2

and K ¿ 1 if m = 2.

Taking // = Z and K = I? gives the "super-group" from Chapter 4 of

Grayson's thesis [3]. More generally, taking H = Z and K = II gives a group

G which maps onto all torus bundle groups Z'xZ of rank r.

Example 5.2. Take m = 3 and K = Z/2Z, so that f(x) = 1 + x. Corollary
3.4 and Theorem 3.7 show that /g(x) is a root of an irreducible quadratic

polynomial over the rational function field Q(x). Theorem 4.1 shows that

the radius of convergence of fdx) is the smallest positive root of 1 - x/2 -

2x(l - x2)(l + x). This radius of convergence is approximately .3485 . This

polynomial is in fact irreducible over Q. It easily follows that the reciprocal of

this radius of convergence is an algebraic number but not an algebraic integer,

further evidence that fo(x) is irrational.
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