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Abstract: The outbreak of coronavirus disease 19 (COVID-19), caused by the infection of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in an unprecedented amount
of infection cases and deaths, leading to the global health crisis. Despite many research efforts,
our understanding of COVID-19 remains elusive. Recent studies have suggested that cell surface
glucose-regulated protein 78 (GRP78) acts as a host co-receptor for SARS-CoV-2 infection and is
related to COVID-19 risks, such as older age, obesity, and diabetes. Given its significance in a wide
range of biological processes, such as protein homeostasis and cellular signaling, GRP78 might also
play an important role in various stages of the viral life cycle and pathology of SARS-CoV-2. In
this perspective, we explore the emerging and potential roles of GRP78 in SARS-CoV-2 infection.
Additionally, we discuss the association with COVID-19 risks and symptoms. We hope this review
article will be helpful to understand COVID-19 pathology and promote attention and study of
GRP78 from many clinical and basic research fields.

Keywords: SARS-CoV-2 infection; COVID-19; GRP78; spike protein; ACE2; host factor; viral chaper-
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the
pandemic of coronavirus disease 2019 (COVID-19), which has caused over 536 M cases
and more than 6.3 M deaths worldwide, leading to a global health crisis [1,2]. SARS-
CoV-2 can be detected from various specimens, such as nasal/pharyngeal swabs, saliva,
feces, and blood [3,4]. COVID-19 symptoms vary between patients roughly graded as
asymptomatic, mild, moderate, severe, and critical. The patient infected by SARS-CoV-2
shows various signs including fever, cough, breath shortness, fatigue, muscle pain, diarrhea,
dizziness, and loss of smell and taste. In the severe cases, the incidence of pneumonia,
acute respiratory distress syndrome (ARDS), sepsis, and multiple organ failure critically
contributes to serious progression and mortality of COVID-19 [1,2]. Cumulative data have
shown that patients with older age, obesity, diabetes, visceral adiposity, and some types of
cancers are more vulnerable to severe COVID-19 [5–9]. Despite the many advances made
in understanding the pathology of COVID-19, little is known about the molecular basis
and therapeutic targets.

Viruses such as SARS-CoV-2 cannot survive without the support of a host environment.
SARS-CoV-2 utilizes angiotensin-converting enzyme 2 (ACE2) as the major host receptor during
infection [10,11], but the low expression and limited cell distribution suggested the possible
involvement of other host factors [12]. Glucose-regulated protein 78 (GRP78) is an important
molecular chaperone that regulates protein homeostasis in the endoplasmic reticulum (ER).
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However, emerging studies have indicated that GRP78 is also identified on the cell surface and
involved in various biological processes beyond the function in the endoplasmic reticulum, such
as cell signaling, inflammation, apoptosis, and viral infection [13,14]. Recently, we and another
research group independently reported that glucose-regulated protein 78 (GRP78) functions as
a host co-receptor for SARS-CoV-2 infection [12,15], and cumulative protein interactome data
have shown that GRP78 can also interact with other viral proteins of SARS-CoV-2 (Figure 1) [16].
Given the physiological and pathological functions of GRP78 in the regulation of biological
processes, such as protein homeostasis, cellular signaling, and transcription activity [13,14,17–20],
it could possibly contribute to several stages of the viral life cycle and pathology of SARS-CoV-2.
Furthermore, the expression of GRP78 is significantly associated with the risk factors for severe
COVID-19 symptoms, such as older age, obesity, diabetes, and lung cancer [12,21–23]. Therefore,
the understanding of GRP78 roles from diverse perspectives will provide a better comprehension
of COVID-19 pathology and offer a novel viewpoint for the future therapeutic target.
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Figure 1. SARS-CoV-2 structure and protein interactions. SARS-CoV-2 is enveloped by a lipid bilayer
membrane and consists of several viral proteins [24–26]. Recently, we and another research group
independently reported that GRP78 functions as a host co-receptor for SARS-CoV-2 infection via
complex formation with SARS-CoV-2 spike protein and host receptor ACE2 [12,15]. Cumulative
protein interactome data have shown that GRP78 can also interact with other viral proteins of SARS-
CoV-2, such as the spike (S), envelope (E), nucleocapsid (N), NSP2, NSP4, NSP14, ORF7a, and
ORF8 [16], suggesting its possible involvement in other lifecycle stages and pathology of SARS-CoV-2.
The upper right illustration of SARS-CoV-2 was created at the Centers for Disease Control and
Prevention (CDC).
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2. Cell Surface GRP78 as a Co-Receptor for SARS-CoV-2 Infection

GRP78, also referred to as BiP/HSPA5, is well known as a molecular chaperone conven-
tionally residing in the endoplasmic reticulum (ER) and plays an important role in regulating
protein homeostasis, such as protein folding, assembly, stability, and degradation [13,14].
However, under stress conditions, GRP78 is overexpressed and detected on the cell surface,
where it serves as a binding partner for various ligands and contributes to the pathology of
many human diseases, such as infections and cancers [13,14]. The localization of GRP78 pro-
tein is attributed to its intrinsic and extrinsic properties [27–29]. GRP78 contains an N-terminal
signal peptide, which targets it into the ER during the process of protein translation [27]. The
C-terminal KDEL (Lys-Asp-Glu-Leu) sequence of GRP78 protein is recognized by the KDEL
receptor, which controls the retrograde transport of chaperone proteins from the Golgi to the
ER apparatus [28]. The overexpression of GRP78 protein in response to ER stress disrupts its
retention in the ER, which is associated with the saturation and dispersion of KDEL receptors,
causing the escape of GRP78 form the ER and relocation to the cell surface [30–32]. The
cell surface GRP78 (csGRP78) has binding affinity not only for many endogenous molecules
but also those of exogenous origin, including various viral proteins [13,14]. Two recently
published independent studies have shown that csGRP78 can act as a co-receptor for the
SARS-CoV-2 spike protein with the receptor ACE2 [12,15]; csGRP78 alone did not promote
the binding of SARS-CoV-2 spike protein on the cell surface, but in combination with ACE2
expression it could enhance the binding and accumulation of SARS-CoV-2 spike protein to
the cells [12]; the amount of SARS-CoV-2 spike protein on the cell surface was dependent on
the expression level of GRP78 [12], suggesting the significant role of csGRP78 as a co-receptor
with ACE2 for SARS-CoV-2 infection. Mechanistically, csGRP78 directly interacts with SARS-
CoV-2 spike protein and forms a protein complex with the host cell receptor ACE2 on the
cell surface, which facilitates the entry into the target cells [12,15]; the host factor efficacy of
csGRP78 for SARS-CoV-2 infection was associated with the stabilization of ACE2 protein
expression on the cell surface [15]. The role of csGRP78 as a host co-receptor has been reported
in other coronaviruses such as MERS-CoV and bCoV-HKU9; the binding with the spike pro-
teins promotes the attachment and entry of the viruses into the host cells [20]. Similarly, other
virus strains, such as dengue virus, coxsackievirus A9 (CAV-9), Japanese encephalitis virus
(JEV), and Tembusu virus (TMUV), likely utilize csGRP78 as the host cell receptor or binding
partner, facilitating the infection of target cells [33–37]. Hence, cell surface-expressed/localized
GRP78 may play an important role in SARS-CoV-2 infection as a co-receptor or binding
partner through direct interaction with the spike protein and viral receptor ACE2 (Figure 2).
Physiologically, GRP78 as a molecular chaperone controls the protein homeostasis of secretory
and membrane proteins, such as ACE2, and is important for their proper folding, assembly,
maturation, and stability [12–15]. GRP78 is also essential for regulation of the unfolded protein
response (UPR) under pathological stress conditions; it actively interacts with misfolded pro-
teins presumed to be harmful for the cells [13,14]. GRP78′s binding affinities—physiologically
for endogenous ACE2 and pathologically for exogenous viral proteins—likely intensify the
entry of SARS-CoV-2 on the cell surface of target cells.



Biomedicines 2022, 10, 1995 4 of 15
Biomedicines 2022, 10, x FOR PEER REVIEW 4 of 16 
 

 
Figure 2. Potential roles of GRP78 in the life cycle of SARS-CoV-2. Emerging evidence has shown 
that GRP78 directly binds with several viral proteins of SARS-CoV-2 [12,15,16,18]. Given the locali-
zations and biological roles, GRP78 could also contribute to various life-cycle stages of SARS-CoV-
2, not only the binding but also the endocytosis/entry, replication, translation, assembly, and exocy-
tosis/egress processes. 

3. GRP78 as a Viral Chaperone for SARS-CoV-2 
SARS-CoV-2 is a strain of coronavirus that is enveloped by a lipid bilayer membrane 

and consists of several viral proteins [24–26]: four structural proteins—the spike (S), en-
velope (E), membrane (M), and nucleocapsid (N) proteins; 16 non-structural proteins 
(NSP1–16), cleavage products of ORF1a and ORF1ab; and 11 accessory proteins: ORF3a, 
ORF3b, ORF3c, ORF3d, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c and ORF10. These 
viral proteins are important for maintaining the viral life cycle and infectivity of SARS-
CoV-2, but the synthesis and replication mechanisms are still largely unknown. Viruses 
cannot replicate on their own; thus, they need to exploit the host cell’s machinery to re-
produce the viral proteins [11,20,24,38,39]. Endoplasmic reticulum (ER) is the central place 
for the production, folding and assembly of membrane and secretory proteins [13–15]. 
GRP78 is an ER-located molecular chaperone and plays critical roles in protein folding, 
assembly, and homeostasis not just for endogenous proteins but also for those of exoge-
nous origin, such as viral proteins [13–15,17]. Viruses, including dengue virus, Japanese 
encephalitis virus, human cytomegalovirus, Ebola virus, and hepatitis B virus, abduct 
GRP78 and exploit its chaperone function for the proper synthesis of their viral proteins 
[35,40–44]. This viral trait also likely applies to the case of the SARS-CoV-2 virus; 

Figure 2. Potential roles of GRP78 in the life cycle of SARS-CoV-2. Emerging evidence has shown that
GRP78 directly binds with several viral proteins of SARS-CoV-2 [12,15,16,18]. Given the localizations
and biological roles, GRP78 could also contribute to various life-cycle stages of SARS-CoV-2, not
only the binding but also the endocytosis/entry, replication, translation, assembly, and exocyto-
sis/egress processes.

3. GRP78 as a Viral Chaperone for SARS-CoV-2

SARS-CoV-2 is a strain of coronavirus that is enveloped by a lipid bilayer membrane and
consists of several viral proteins [24–26]: four structural proteins—the spike (S), envelope (E),
membrane (M), and nucleocapsid (N) proteins; 16 non-structural proteins (NSP1–16), cleavage
products of ORF1a and ORF1ab; and 11 accessory proteins: ORF3a, ORF3b, ORF3c, ORF3d,
ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c and ORF10. These viral proteins are important
for maintaining the viral life cycle and infectivity of SARS-CoV-2, but the synthesis and
replication mechanisms are still largely unknown. Viruses cannot replicate on their own; thus,
they need to exploit the host cell’s machinery to reproduce the viral proteins [11,20,24,38,39].
Endoplasmic reticulum (ER) is the central place for the production, folding and assembly
of membrane and secretory proteins [13–15]. GRP78 is an ER-located molecular chaperone
and plays critical roles in protein folding, assembly, and homeostasis not just for endogenous
proteins but also for those of exogenous origin, such as viral proteins [13–15,17]. Viruses,
including dengue virus, Japanese encephalitis virus, human cytomegalovirus, Ebola virus, and
hepatitis B virus, abduct GRP78 and exploit its chaperone function for the proper synthesis
of their viral proteins [35,40–44]. This viral trait also likely applies to the case of the SARS-
CoV-2 virus; overexpressed spike protein of SARS-CoV-2 directly binds with the endogenous
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GRP78 in mammalian cells [12,15]. The depletion of GRP78 expression and activity by AR12,
a potent inhibitor of PDK1/AKT signaling and ATPase activity, decreased the production of
SARS-CoV-2 spike protein [19]. Since the outbreak of COVID-19 in December 2019, there have
been many efforts to improve our understanding of the protein properties and interactions of
SARS-CoV-2. The cumulative data on SARS-CoV-2 protein interactomes have indicated that
GRP78 may physiologically interact with several viral proteins of SARS-CoV-2, such as the
spike (S), envelope (E), nucleocapsid (N), NSP2, NSP4, NSP14, ORF7a, and ORF8 [16]; the S, E,
and N proteins that are commonly found in all coronavirus strains, and essential components
of the viral structure and infectivity. Thus, these viral proteins are usually targeted by anti-viral
therapeutic approaches [25,26]. NSP2, NSP4, and NSP14 along with other factors form a
replication–transcription complex (RTC) and are involved in genome replication and early
transcription regulation [26]. ORF7a suppresses the type I interferon response, increases the
immune and cytokine responses, and contributes to the replication of SARS-CoV-2 [45–47].
ORF8 is involved in the immune evasion and inflammatory response of SARS-CoV-2 [48–50].
Collectively, GRP78 might serve as a host viral chaperone for SARS-CoV-2 proteins, such as
S, E, N, NSPs, and ORFs, and facilitate the folding, assembly, and maturation of the viral
proteins contributing to the pathology of COVID-19. GRP78 can bind with a wide range of
endogenous and exogenous proteins accumulated in the ER—as a key regulator of unfolded
protein response (UPR)—especially under stress conditions [14]. The broad spectrum of
binding affinity for proteins likely works as an advantage for viruses; thus, they might have
evolved to utilize GRP78 as their viral chaperone, facilitating viral replication, assembly, and
egress (Figure 2).

4. GRP78 as a Mediator of Cellular Signaling for SARS-CoV-2

GRP78 has long been considered as a chaperone protein responsible for protein home-
ostasis and stress regulation in ER, but accumulated studies have shown that it can also serve
as a signaling mediator on the cell surface and is involved in many pathological processes
such as cellular inflammation, apoptosis, survival, and proliferation [13,51–55]. The inter-
action of csGRP78 with other membrane proteins and ligands transduces various cellular
signaling and transcriptional activity. The interaction of csGRP78 with α2-Macroglobulin
(α2M*) activates MAPK- and AKT-dependent signaling and the NF-κB pathway, promoting
cellular proliferation with reduced apoptotic response [51,56]; the binding also regulates PDK1
signaling and c-MYC activity associated with cell proliferation [57]. csGRP78 also controls
transcriptional coactivators YAP and TAZ—integral components of the Hippo signaling path-
way that controls cellular mechanical and cytoskeletal cues—to regulate the mobility and
invasiveness of tumor cells [54]. The complex formation of GRP78 with Cripto on the cell
surface is important for the downstream cellular events, such as MAPK/PI3K signaling and
the SMAD2/3 pathway, decreasing cell adhesion and proliferation [53]. The interaction acti-
vates the JAK/STAT pathway in association with cell survival and proliferative properties [58].
These csGRP78-associated cellular signaling and transcriptional pathways play an important
role in the development of various pathologies. NF-κB and JAK/STAT3 are well known
for their proinflammatory and apoptotic responses [13,51,52]. SMAD2/3 is well established
for its role in fibrosis formation [13,53]. The PI3K/AKT/MAPK and YAP/TAZ pathways
are crucial for cell survival and proliferative processes [13,53–55]. Of note, the SARS-CoV
binding to ACE2 receptor induces inflammatory responses and cytokine release in part via
the RAS/RAF/MAPK pathway [59]. In addition, the SARS-CoV-2 spike protein activates
cell surface signaling molecules—integrins—via the direct binding, which is involved in the
infection of SARS-CoV-2 [60]. Therefore, the activation of cell surface GRP78 via the direct
binding with SARS-CoV-2 or the indirect stimuli linked with other signaling molecules, such
as integrins, might change these signaling and transcriptional pathways affecting COVID-
19 pathology (Figure 3). Further experimental assessments are needed to understand the
signaling and transcriptional impacts of csGRP78 in SARS-CoV-2 infection and its contribution
to the development of COVID-19 pathogenesis, such as the inflammation, cytokine storm, cell
death and fibrosis responses.
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Figure 3. Potential roles of GRP78 in the cellular signaling and transcription of COVID-19. GRP78 is
associated with various cellular signaling and transcription activities involved in inflammation, cy-
tokine release, fibrosis, and cell survival/death [13,51–55]. Thus, the direct and/or indirect activation
of GRP78 with ACE2 and other signaling molecules (integrin, Cripto, α2-Macroglobulin, isthmin,
etc.) might be associated with the pathology of COVID-19 via the linked intracellular signaling
(PI3K, MAPK, ATK, JAK, JNK, etc.) and transcription control (NF-kB, STAT, SMAD2/3, YAP/TAZ,
etc.) [51,53,56,58–60].

5. Soluble GRP78 as a Possible Binding Partner for SARS-CoV-2 in Circulation

GRP78 is found not only in cellular regions—the ER compartment and cell surface—but
also in circulation as a soluble form of GRP78 [21,22,61,62]. The soluble GRP78 level increases
with SARS-CoV-2 infection, which is more evident in patients with pneumonia [62]. The
circulating level of GRP78 is significantly associated with metabolic disorders, such as obesity
and diabetes [61]. The expression level of circulating GRP78 is also elevated in patients with
lung cancers [21,23]. These pathological and disease conditions are well known to increase the
risk of COVID-19 severity and mortality [63]. Our recent study showed that the treatment of
soluble GRP78 with ACE2-expressing human lung epithelial cells, a mimetic of the circulating
GRP78 in vitro, facilitated the cellular binding and accumulation of SARS-CoV-2 spike protein
in the target cells [12], suggesting the possible impact of soluble GRP78 on SARS-CoV-2
infection. It has been suggested that GRP78 enhances the stability and expression of the
binding proteins; cell surface GRP78 can stabilize ACE2 or ADMA17 protein on the cell
surface and is associated with virus infectivity [15,64]. GRP78 was also reported to promote
the entry of binding substances into the cells via the endocytosis pathway [65,66]; the binding
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of isthmin with GRP78 on the cell surface facilitates the internalization of the complex through
clathrin-dependent endocytosis and triggers cellular apoptosis [65]; the interaction of dentin
matrix protein 1 (DMP1) with GRP78 at the plasma membrane induces endocytic trafficking,
which contributes to the osteogenic differentiation of human stem cells [66]. β-coronaviruses,
such as SARS-CoV-2, are co-localized and-released with GRP78 during infection by the
virus [18], suggesting potential roles in the exocytosis/egress of SARS-CoV-2. Collectively, it
can be speculated that soluble GRP78 may surround SARS-CoV-2 via direct binding with the
spike protein in circulation. The complex formation of soluble GRP78 with viral particles in
circulation or at plasma membrane might enhance the stability of the virus and facilitate its
attachment to and endocytosis by the target cells (Figure 2. These properties could also lead
to SARS-CoV-2 tropism and multi-organ infection beyond the respiratory tract, such as the
kidneys, heart, liver, adipose tissues, brain, and pancreas [67–70]; the enhancement of stability
and tropism might also contribute to prolonged symptoms after SARS-CoV-2 infection and
recovery, termed long COVID [71–73]. Further experimental and clinical studies need to be
performed to verify these points.

6. Other Pathological Traits of GRP78 for SARS-CoV-2

There are many other pathological aspects of GRP78 associated with the SARS-CoV-
2 life cycle and development of COVID-19 symptoms. GRP78 is induced when the ER
is under stress conditions such as the excessive overload of protein synthesis [13,14].
The induction of GRP78 in association with UPR response under stress can inhibit cell
apoptosis and promotes pro-survival processes in the cells [13,14,17]. Overexpression
of GRP78 is also observed in many viral infection cases [17,40,44], which might support
the long-lasting residence of SARS-CoV-2 with massive production of viral proteins in
the host. Of note, the overexpression of GRP78 is also found in the case of SARS-CoV-2
infection, which might be associated with ER stress by excessive production of the viral
proteins; high expression of GRP78 was detected in pneumocytes, macrophages, and the
circulation [62,74]. The expression of GRP78 is highly relevant to apoptotic, immune,
and fibrotic responses in the lung [75,76]; Grp78 heterozygosity (Grp78+/− mice were
strongly protected from bleomycin-induced fibrosis and exhibited better lung function [75];
inactivation of GRP78 attenuated endothelial inflammation and permeability against acute
lung injury [76], suggesting its possible involvement in lung pathology and function of
COVID-19 patients. GRP78 can stabilize ADAM17 on the cell surface, which was reported
to enhance the previous strain of coronavirus, SARS-CoV, by promoting the shedding of
the viral receptor ACE2 [64]. GRP78 also likely plays a role in the cell surface expression
of ACE2 protein, presumably via direct binding and stabilization [15]. After the infection,
GRP78 is released together with the replicated SARS-CoV-2 viruses from the host cells via
the lysosomal exocytic pathway, suggesting its involvement in the replication, egress and
stabilization of the virus [18]. GRP78 can interact with the major histocompatibility class
one (MHC-I) molecule on the cell surface [77], which might contribute to the ability of
antigen presentation and subsequent immune response in SARS-CoV-2 infection. Serious
co-infections and secondary infections by several bacteria and fungi have been reported
in COVID-19 patients, which contribute to the severity of COVID-19 as well as poorer
outcomes [78–80]. GRP78 acts as a host receptor for fungal pathogen Rhizopus oryzae, the
most common etiologic species of Mucorales, and mediates the invasion and damage of
human endothelial cells [81]; GRP78 binds with Pneumocystis carinii on the cell surface
of lung epithelial cells, mediating the attachment [82]; these studies suggest that GRP78
might be involved in cases of co-infection and secondary infection in COVID-19 patients.
GRP78 is well conserved and presented from bacteria (Dna K: bacterial GRP78 homology)
to humans (GRP78/BiP/HSPA5) [83]. The bacterial GRP78 is essentially required for
proper bacterial growth and mRNA/protein [84], and is a therapeutic target for both
bacterial and viral infection [85]. Of note, SARS-CoV-2 is detected alive in feces specimens
from COVID-19 patients [3,4]; SARS-CoV-2 has bacteriophage-like behavior, replicating
in bacteria [86]; SARS-CoV-2 infection impairs gastrointestinal (GI) microbiota, which is
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associated with COVID-19 severity [87]. These data suggest that the interaction of GRP78
with SARS-CoV-2 could contribute to replication/transmission by GI/fecal bacteria, impair
the microbiota, and affect the severity of COVID-19. Altogether, these biological features
of GRP78 potentially support the long-lasting life cycle and pathological development
of SARS-CoV-2 in the host. The pathological roles of GRP78, such as pro-survival and
inflammatory and/or apoptotic responses [13,14,17,32,65,88], may be dependent on the
binding partner/properties or the duration, progress, and levels of SARS-CoV-2 infection.

7. The Association of GRP78 with COVID-19 Risks

SARS-CoV-2 infection does not cause severe and serious symptoms in all patients, but
patients with older age, obesity, diabetes, lung cancer, and some other metabolic abnormalities
are more vulnerable [5–9]. Recently, we showed that the expression of GRP78 is abundant
in adipose tissues, especially in the visceral regions, and augmented by the conditions of
older age, obesity, and diabetes; the overexpression of GRP78 in adipocytes was attributed
to hyperinsulinemia, which is usually found in older age and obese and diabetic conditions,
and is significantly associated with the stress-responsive transcription factor XBP-1s; glucose
levels had little impact on the regulation of GRP78 in adipocytes, suggesting that insulin
resistance is a major cause of GRP78 overexpression in adipose tissue [12]. ATF6 activation is
also associated with the elevated expression of Grp78 [89,90]. The circulating level of GRP78
is also significantly correlated with obesity, diabetes, and other metabolic syndromes [22,61].
GRP78 is also well known for its high expression in many types of cancers, especially in
lung cancers; the circulating levels markedly increase in association with the progression and
severity [21,23]. These pathophysiological human health and disease conditions—older age,
obesity, diabetes, some types of cancer—likely create environments for the induction and
activation of GRP78 in intracellular, extracellular, and circulation areas, which potentially
makes patients more vulnerable to COVID-19 (Figure 4).
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Figure 4. The regulation and metabolic association/implication of GRP78 in COVID-19. Older age, obesity,
diabetes, and some types of lung cancer are known to be significant risk factors for COVID-19 severity
and mortality [5–9]. Theses pathological conditions increase the expression of GRP78 [21–23,61]. SARS-
CoV-2 infection is also associated with the overexpression of GRP78 in the lung and circulation [62,74].
The excessive protein production and UPR response in the ER compartment is attributed to GRP78
overexpression via ATF6/XBP1 transcription activity [12,89,90], which triggers the translocation of GRP78
to the cell surface and the circulation [30–32]. The excessive expression of GRP78 contributes to metabolic
diseases, such as hyperglycemia, hyperinsulinemia, liver steatosis, abnormal lipid control, inflammation,
insulin resistance, and diabetes [91–93]. Therefore, the infection- and stress-induced GRP78 expression
might in part account for the metabolic abnormalities of COVID-19.

8. Metabolic Implications of GRP78 in COVID-19

In recent years, it has become apparent that SARS-CoV-2 infection can have harmful ef-
fects far beyond the lungs; COVID-19 is well known for causing respiratory disease but can
also trigger metabolic abnormalities [63,70]. However, the molecular mechanisms remain
largely elusive. SARS-CoV-2 infection is associated with the elevated expression of GRP78
in the lung and circulation [62,74], and presumably other infected organs and cells such
as liver, adipose tissue and immune cells might exhibit similar overexpression of GRP78
through the virus-induced ER stress and unfolded protein response. The pathological im-
plication of GRP78 overexpression in metabolic diseases has been well established in many
previous studies; the expression of GRP78 is significantly increased in the adipose tissue of
patients with obesity and diabetes [12]; the circulating level of GRP78 is a molecular marker
of several metabolic diseases, including obesity, diabetes, and atherosclerosis [22,61]; the
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heterozygosity of the Grp78 gene increases energy expenditure and is protective against
high-fat diet (HFD)-induced hyperinsulinemia, hyperglycemia, liver steatosis, and adipose
inflammation with adaptive UPR [89]. Macrophage-selective ablation of the Grp78 gene
improves insulin sensitivity and glucose metabolism in muscle and reduces inflammation
in adipose tissue [91]; covalent inhibition of GRP78 by celastrol inhibits lipid accumulation
in liver and adipose tissue with reduced ER stress and inflammation [92]. Overexpression
of Vaspin, an endogenous antagonist of cell surface GRP78/MTJ-1 complex, ameliorates
diet-induced obesity, glucose intolerance, and/or hepatic steatosis with improved ER
stress [93]. These research findings have suggested that infection- and stress-induced
GRP78 expression might contribute to the metabolic abnormalities of COVID-19 (Figure 4);
thus, the detailed relationships should be investigated in future studies.

9. Therapeutic Strategies Targeting GRP78

Given the importance of GRP78 in various biological processes, the interaction with
SARS-CoV-2 protein, and the association with COVID-19 pathological risks, targeting either
the activity or the expression of GRP78 could be an efficient therapeutic/preventative strat-
egy to dampen the multiple stages of the SARS-CoV-2 life cycle including the binding, entry,
replication, egress, and stability. In fact, blocking or depleting cell surface GRP78 by specific
antibodies reduced the infectivity of related viruses including SARS-CoV-2 [15,17,20,34].
The ablation of GRP78 expression by siRNA decreased not only the entry of several viruses
but also the production of viral proteins in the host cells [17,20,37]. Other inhibitory
molecules related to the expression and/or activity of GRP78, such as subtilase cytotoxin
(SubAB), AR12 and epigallocatechin gallate (EGCG), similarly abrogated the entry and/or
replication process of viruses in the host cells [17,19,35,42]. Reducing metabolic stress by
pharmacological and lifestyle interventions effectively lowers the expression of GRP78
and may be helpful for improving COVID-19 symptom; Anti-diabetic drugs, such as met-
formin and SGLT2 inhibitor, or lifestyle changes, such as calorie restriction and exercise,
reduced the expressions of GRP78 in adipose tissues [12]; appropriate control of metabolic
abnormalities by diabetic drugs may improve the severe outcomes of COVID-19 [12,94].
There are also in silico/virtual analyses of GRP78 protein that suggest some putative in-
hibitory peptides and molecules [95,96] and potential interaction changes between GRP78
and SARS-CoV-2 strains, which might be helpful for screening the therapeutic targets of
COVID-19 [97]. Targeting GRP78 under stress conditions could be a promising therapeu-
tic approach to preventing or inhibiting the infection/lifecycle of SARS-CoV-2 and the
development of COVD-19 pathology.

10. Conclusions

In conclusion, we suggest that GRP78 may be a multi-functional host factor involved in
various steps of the SARS-CoV-2 life cycle as co-receptor, chaperone, protein stabilizer, and
mediator of cellular signaling and transcription (Figure 5). These emerging and potential
roles of GRP78 possibly contribute to the pathology of COVID-19, such as not only the
infection, but also inflammation, fibrosis, egress, organ tropism, long COVID, co-/2nd-
infection, and metabolic abnormalities. Its expression is highly relevant to the risk factors
for severe symptoms and outcomes in COVID-19 patients, such as aging, obesity, diabetes,
and lung cancer. Thus, targeting GRP78 could be an efficient preventative and therapeutic
strategy for COVID-19 pathology. We hope that this review promotes further attention to
and study of GRP78 from many clinical and basic science fields. Sophisticated and detailed
research should be performed to assess the potential roles of GRP78 and its associations
with COVID-19 pathology, risk, and metabolic impact.
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