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Abstract: Cognitive radio networks are vulnerable to numerous threats during spectrum sensing.
Different approaches can be used to lessen these attacks as the malicious users degrade the perfor-
mance of the network. The cutting-edge technologies of machine learning and deep learning step into
cognitive radio networks (CRN) to detect network problems. Several studies have been conducted
utilising various deep learning and machine learning methods. However, only a small number of
analyses have used gated recurrent units (GRU), and that too in software defined networks, but these
are seldom used in CRN. In this paper, we used GRU in CRN to train and test the dataset of spectrum
sensing results. One of the deep learning models with less complexity and more effectiveness for
small datasets is GRU, the lightest variant of the LSTM. The support vector machine (SVM) classifier
is employed in this study’s output layer to distinguish between authorised users and malicious users
in cognitive radio network. The novelty of this paper is the application of combined models of GRU
and SVM in cognitive radio networks. A high testing accuracy of 82.45%, training accuracy of 80.99%
and detection probability of 1 is achieved at 65 epochs in this proposed work.

Keywords: spectrum sensing; gated recurrent unit; cognitive radio network; support vector machine;
malicious users

1. Introduction

Intrusion attacks have been identified in software defined networks using deep learn-
ing models [1]. In [2], a deep recurrent neural network (RNN) was used to detect attacks in
sofware defined networks. Based on certain deep learning techniques, attackers attacking
the network have been identified and detected in [3]. Distributed denial of service attacks
were addressed in [4] using LSTM-GRU in software defined networks. Various malicious
users tend to attack the cognitive radio network [5] during cooperative spectrum sensing.

The authors of [6,7] explained spectrum sensing, which takes place in cognitive radio
networks [8]. In addition, they put forth recent advances and challenges that have 1occured
in CRN. Ref. [9] surveys the attacks [10] and their detective measures in the physical
layer of CRN. These attacks are mitigated using machine learning [11] and deep learning
algorithms [12,13], as mentioned in [14,15]. Both the fusion centre and the secondary users
have been trained with the typical activities of legitimate primary users in RNN during the
early stage of spectrum sensing [16]. The secondary users (SUs) analyse the behaviour of
the incoming primary signal using the training data when the licensed channel is shared
with the secondary users.

There are no malicious behaviours in any of the training data [17]. As a result, in a
real-world setting, the RNN cannot recognise and predict malevolent users. However, by
mapping the input series of length l to the label domain of length 2l , we may construct the
RNN to detect and anticipate the threat.

After mapping, we compared the anticipated likelihoods of each label with the actual
received series, then calculated the mean square error to determine the loss. However,
because of the problem of gradient vanishing, RNN cannot be employed for long-term
reliance. RNNs are prone to forgetting long-term data because of the gradient vanish-
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ing problem. Therefore, they are unable to utilise patterns that occur before the current
input series.

There have been suggestions from different recurrent network topologies to overcome
this drawback. The long short-term memory (LSTM), which swaps out the usual hidden
layer node for a memory cell and several gates, is one of the major RNN improvements.

In terms of classification accuracy, GRU [18,19] performs just as well as LSTM. Due
to the fact that it [20] uses fewer tensor operations than LSTM, training is discovered to
be faster in GRU [21,22]. 1D-CNN was employed by the authors in [23] to distinguish
between malicious and authorised users. The comparative performance of CNN, RNN,
LSTM, DNN, and GRU may be found in [24].

To reduce the overall service time of spectrum handoff to the ideal value, particle
swarm optimization is employed in [25]. According to numerical findings, the authors
made the method dramatically reduced to total service time when compared to other
spectrum handoff strategies.

A system of fuzzy logic-based spectrum handoff has been introduced in [26]. The
system comprises of a fuzzy logic controller (FLC) with inputs such as eNB load, received
power, arrival rate of primary users. The suggested method offers a strong framework for
preventing unwanted CRN handoffs in LTE-A systems [27].

In this paper, we used energy detection method for spectrum sensing and the results
of those sensing are used to train GRU and SVM classifier. We have added SVM classifier
in addition to the GRU for better classification and employed in CRN, which was not
discussed in any of the literature. The training phase is followed by testing to differentiate
and segregate the authenticated and malicious users in the cognitive radio network. The
novelty of this paper is to use the combined models of GRU and SVM in CRN.

The paper is sectioned as: Section 2—Related Work, Section 3—Key Terminolo-
gies and Techniques, Section 4—Proposed Methodology with System Model, Threat De-
tection and Dataset Preprocessing, Section 5—Analysis of Computational Complexity,
Section 6—Results and Discussion, and Section 7—Conclusions.

2. Related Work

Primary user emulation attack is detected and prevented in [28] using extreme machine
learning method and time–distance with the signal strength evaluation method. The former
method is used to give decisions on malicious attacks and the latter method identifies
the malicious users efficiently by bringing down overall sytem delay, increasing system
utilization and performance of the network.

In [29], a primary user emulation attack has been dealt in a cognitive radio network
using a genetic artificial bee colony and the detection probability has been enhanced.
The authors used two main thresholds predefined to indicate primary user presence and
primary user emulation attack presence. They considered four parameters of cognitive
radio.

Primary user emulation attack detection in CRN using multi layer LSTM model
achieves superior performance compared to single layer LSTM in [30]. In order to ensure
that recent forecasts are influenced by long-term data, LSTM is implemented using gates,
which control the rate of learning and forgetting.

In [31], a new iteration of the LSTM, the GRU with fewer gates and the ability to
preserve long-term reliance, has been introduced with SVM to detect the intrusion in the
data of network traffic. The authors compared GRU-SVM model and GRU–Softmax model
to prove that GRU performs well with SVM classifier in terms of training and testing
accuracy.

Distributed denial of service cyber attacks have been identified using GRU, Naive
Bayes, RNN and sequential minimal optimization models. The authors evaluated better
accuracy, recall, F1-score, and precision to prove its efficiency in [32].

In order to improve network performance by limiting attacks, a Hierarchical Cat and
Mouse Based Ensemble Extreme Learning Machine model has been suggested in [33] to
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analyse security concerns in CRN. Additionally, an attempt is made to determine whether
machine learning classification can successfully identify SSDF attacks in a binary reporting
CRN. The temporal properties of SU are acquired using the history of the sensing reports
accumulated at the FC, establishing the training and testing data-sets.

In [34], malicious signal identification using machine learning is applied to cognitive
radio networks. Riverbed simulation software simulates the design of cognitive radio users
and the network environment. Whether the received signal is a secure detecting signal or a
malicious signal, it is managed. For the purpose of classifying spectrum sensing signals as
malicious, suspicious, or secure signals, a fuzzy logic-based system is used. Fuzzy logic
parameters are extracted from the top three machine learning characteristics out of a total
of 49 features. When compared to other schemes in the literature, the security of primary
users is increased.

In full-duplex cognitive radio networks, the authors of [35] offer a robust cooperative
spectrum sensing framework based on ensemble machine learning (EML) that is accurate
and resilient against malicious interference and attacks. By enabling secondary users (SUs)
to sense and transmit simultaneously over the same frequency range, FD communication
increases their capacity for spectrum awareness. An EML framework has been created that
offers reliable and accurate fusion performance to lessen the impact of interference and
attacks.

The authors of [36] provide a framework with two layers for categorising Byzantine
attackers in a CRN. In the first layer, called Processing, the Hidden Markov Model is used
to obtain a probabilistic link between the states of the PU and the sensing reports of the
SUs. This creates the necessary dataset for the following layer. The second layer, the
Decision layer, divides the SUs into Byzantine attackers and typical SUs using a variety of
ML methods. The learning classifiers deliver good performance across a range of testing
parameters, according to extensive simulation findings. The method used in [36] is more
robust, especially when there are many malicious users present, according to a comparison
examination of it with an existing non-ML strategy.

In [37], the authors promote the application of reinforcement learning to obtain optimal
or nearly ideal security enhancement solutions by identifying different hostile nodes and
their attacks in CRNs. Reinforcement learning, an artificial intelligence approach, has the
capacity to both learn new assaults and recognise those that have already been learnt.

By examining the transmitter’s received power, [38] suggests an adaptive
learning-based assault detection in CRN for spotting and preventing PUEA. By sepa-
rating a low spectrum legal PU from an attacker, the learning process supports various
advantageous aspects. Cyclostationary feature analysis is used in the learning method to
identify adversaries and low power PU in CR communications.

Jamming attack and primary user emulation attack have been identified and detected
using one dimensional CNN [23] in cognitive radio networks and the results were validated
in terms of quality metrics and numerical simulation results.

3. Key Terminologies
3.1. Cognitive Radio Network

A cognitive radio is an intelligently programmed radio that uses the best channel
available to prevent interference and congestion. Primary or licensed users and secondary
or unlicensed users are the two different categories of network users. For the benefit of
radio spectrum users, secondary users take over available channels when they sense them
in order to enhance service quality. Due to the ineffective utilisation of licensed spectrum,
some frequency bands were overloaded while others were underutilised. This ineffective
spectrum use, which affects service quality, can be addressed through cognitive radio.

The use of cognitive radio networks has been increasing for quite an amount of
time due to some of its distinguishing characteristics such as self-organization ability
and cognitive flexibility and reconfigurability. These attributes have helped the CRN to
grow rapidly.
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3.2. Spectrum Sensing

One of the most important components of cognitive radio networks is spectrum
sensing. A cognitive radio can learn about its surroundings and spectrum availability
by spectrum sensing. Various types of spectrum sensing are distributed, centralized,
and hybrid.

3.3. Energy Detection

Energy detection is a sort of sensing that has cheap application costs and no prerequi-
site knowledge requirements for the primary user. To assess if the channel is open, each
secondary user’s detector compares the sensing threshold with the signal energy detected.
If the sensing threshold is greater than the measured energy, the hypothesis H0 is adopted.
If the sensing threshold is less than the energy being measured, hypothesis H1 is adopted.
If there are no active main users present in the channel, the cognitive user sends the fusion
centre a one-bit hard local decision of “0.” If the cognitive user detects an active main user,
it sets the local decision to “1” and sends it to the fusion centre.

The fusion centre formulates a collaborative global decision on the primary user’s
activities by obtaining precise local assessments from the cognitive users. It is also possible
to make soft decisions, but this requires a significant amount of processing complexity and
bandwidth. Thus, hard decisions are usually preferred.

3.4. Gated Recurrent Unit

The improved version of traditional recurrent neural network is GRU. The vanishing
gradient problem that bedevils a typical RNN is addressed by GRU using two gates, the
update gate and the reset gate. These two vectors essentially decide what information
should be transmitted to the output. GRUs are smart enough to keep hold of useful past
information and delete the unwanted information. It consists of two gates: (i) update gate
(ii) reset gate.

3.4.1. Update Gate

The update gate is similar to the output gate of LSTM. It is responsible for how much
old information should be retained and sent to the next stage.

3.4.2. Reset Gate

The reset gate is similar to the combined effect of the input gate and the forget gate of
LSTM. It is responsible for how much old information to forget.

3.5. Support Vector Machine

Support Vector Machine or SVM, is a technique that is utilised for tasks involving both
classification and regression problems. However, it is widely used to solve classification
problems. The support vector machine is more popular since it delivers remarkable ac-
curacy while consuming less processing power. The major goal of SVM is to classify the
datapoints in the N-dimensional space of a hyperplane.

SVM is highly useful when the data are not known very well. It can be applied to data
that are irregularly dispersed and whose distribution is unknown. It also supports high
dimensional data that it can be used in machine learning field. It can be used for image
data, text data, audio data, and much more. We may handle any complex problem by using
the related kernel function, which is a very helpful strategy offered by the SVM. Kernel
offers the option of selecting the function that is not always linear and that can take on
different forms depending on the kind of data it uses, making it a non-parametric function.

SVM often does not experience over fitting and performs well when there is strong
evidence of class separation. When the total number of samples is fewer than the number
of dimensions, SVM can be utilized and it performs well in terms of memory. It has good
performance in N-dimensional space.
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The SVM gives an effective and unique solution by optimizing the various solutions of
samples corresponding to each local minimum. It is robust even when the training sample
contains some bias. Support vector machine predicts faster with better accuracy and good
computational complexity.

4. Proposed Work

In this section, we introduce a system model and a proposed methodology.

4.1. System Model

A licensed user, S secondary users, and M malevolent users make up the proposed net-
work system, where M < S. In order to determine the signal status of the licensed user, all
S secondary users and M malevolent users engage in a spectrum sensing. The transmitted
licensed user signal is given by

L = Bv (1)

where v = [v1, v2, v3, · · · , vK]
T denotes the transmitted data vector, with K representing the

Kth sampling time, BK× K is a coefficient matrix with kij ; i = j = 1, 2, 3, · · · , K describing
the channel coefficients. The samples as mentioned as the elements of v are given by

vi(t) =
∞

∑
l=−∞

dl p(t− lTs)ej2π fct

where d denotes digitally modulated data symbols, p(t) denotes pulse shaping filter, fc
represents carrier frequency, and Ts denotes symbol duration.

The received signal at the sth secondary user is given by

gs(t) =

{
ns(t) H0

hsL(t) + ns(t) H1
(2)

where gs(t) denotes signal received at the sth secondary user, L(t) denotes transmitted
licensed user’s signal, ns(t) is the additive white gaussian noise and hs represents channel
gain between licensed user and secondary user. In addition, the hypotheses H0 and H1
in (2) represent the absence and presence of licensed user, respectively.

Each secondary user detects the primary user’s status and transmits local decisions to
the GRU model to separate the malicious user from the trustworthy users. Then, using the
“AND” rule, the fusion centre finalises the global decision by analysing just the authorized
local decisions. The proposed methodology uses the energy detection method to sense the
spectrum because it does not demand for any prior knowledge of the primary user. Energy
of the received signal is assumed to be the test statistics and the same is given by,

Es(i) =


ti+U−1

∑
t=ti

|ns(t)|2 : H0

ti+U−1
∑

t=ti

|hL(t) + ns(t)|2 : H1

(3)

In (3), U number of samples are considered. As number of samples in (3) are more, we
assume that Es in (3) follows gaussian density as given by,

Es ∼
{
N (U, 2U) : H0

N (U(γs + 1), 2U(γs + 1)) : H1
(4)

where N
(
µ, σ2) denotes normal density function with mean µ and variance σ2, and γs

represents signal-to-noise ratio between licensed user and sth secondary user.
Each secondary user detects the primary user’s status and transmits local decisions to

the GRU model to separate the malicious user from the trustworthy users. Then, using the
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AND rule, the fusion centre finalises the global decision by analysing just the authorized
local decisions.

Let x<t>
s denote the local decisions of user s at a time instant t. Then, the local decision

is given by

x<t>
s =

{
1 ; Es ≥ λs

0 ; Es < λs
(5)

4.2. GRU-SVM Based Threat Detection

Our suggested approach employs GRU to identify malevolent users who interfere
with the cognitive radio network. This model is one that holds promise for time-series data
because it takes old records on predictions into account. Figure 1 depicts the architecture of
a GRU.

Figure 1. GRU cell.

In the architecture shown in Figure 1, x<t> =


x<t>

1
x<t>

2
...

x<t>
s

 represents the stacked arrange-

ment of local decisions received from all secondary users at time t. The network shown in
Figure 1 is earlier trained using the training vector of similar characteristic.

Different neural networks are utilised as the gates in GRU, which determine whether
information is retained or forgotten. The update gate and reset gate are two separate
gates that are used to do this. Figure 2 depicts the update gate, which controls how much
historical data (memory) should be kept. Figure 3 depicts the reset gate, which determines
how much of the prior memory to erase. The output is normalised from 0 to 1 using the
sigmoid activation function, which is used by the update gate and reset gate. Therefore, if
any value is multiplied by “0”, the result is “zero”, and the information is lost. Any value
multiplied by “1” yields “one”, indicating that the information was maintained. x<t> is
the input data, h<t−1> is the hidden state at time ‘t− 1′, and h<t> is the hidden state at
the output at time ‘t’. Using the weight matrices Ur, Wr and bias vector br of the neural
network of the reset gate, the reset gate concatenates h<t−1> and x<t>. The resulting vector
is activated using a sigmoid function to produce r<t>, the normalised output between 0
and 1.

r<t> = σ
(

Wrx<t> + Urh<t−1> + br

)
(6)
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Figure 2. Update Gate.

Figure 3. Reset Gate.

The weight matrices Uz, Wz and bias vector bz of the neural network of the update
gate are used to combine h<t−1> and x<t>. The resulting vector is activated using the
sigmoid function to produce z<t>, normalised output between 0 and 1.

z<t> = σ
(

Wzx<t> + Uzh<t−1> + bz

)
(7)

In order to create the hidden state h<t> at the present time ‘t’ and the output y<t>,
z<t> and r<t> are used. Point-wise multiplication is performed between the previous
hidden state h<t−1> and the output of the reset gate, r<t>. It is combined with the input
vector x<t> to produce the output. In order to control neural network output and avoid
excessive or undersized data between iterations, the concatenated output is given to the
hyperbolic tangent activation function, or tanh, which normalises the output between −1
and 1. The output of this neural network h̃<t> is given by,

h̃<t>
= tanh

(
Whx<t> + Uh(r

<t> � h<t−1>) + bh

)
(8)

where the neural network’s weight matrix and bias vector, are Wh and bh, respectively. The
h̃<t> output of the neural network determines which data to discard and which new data
to add. By performing point-wise multiplication between 1− z<t> and h<t−1>, thrown
off is conducted. Multiplying z<t> and h̃<t> is the process of adding additional data. The
hidden state h<t>, is then produced by point-wise addition using these two functions of
adding new data and discarding data.

h<t> = z<t> � h̃<t>
+ (1− z<t>)� h<t−1> (9)

The above-described procedure pertains to a single GRU. To increase accuracy, we can
increase the number of GRU cells in the GRU layer. Figure 4 displays the proposed model’s
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neural network representation. The input layer (x1, x2, · · · xs) is the first layer, and s is the
number of local decisions taken from the spectrum sensing results. Then, it is transferred
to the GRU layer (G1, G2, · · ·Gn) with n number of neurons (cells), which is followed by
the drop-out layer with a 0.5 drop-out rate. This layer aids in addressing the overfitting
issue. The fully connected layer, which is the following layer, uses d number of neurons to
conduct global model classification. The SVM classifier then uses a single neuron C1 in the
final output layer to classify the trustworthy users and the malevolent users.

Figure 4. Neural network representation of proposed GRU-SVM model.

There are s inputs given to the proposed neural network model. Parameters are learnt
through Equations (6)– (9) of GRU gating mechanism. The parameters can also be learnt
by optimizing L2-SVM, which is more stable and differentiable, whose function is shown
below

min
1
2
‖q‖2

2 + C
d

∑
i=1

max
(

0, 1− δ
(

qTf + β
))2

(10)

where, f = [ f1 f2 · · · , fd]
T , q = [q1, q2 · · · , qd]

T is vector for linear combination in SVM and
β is constant. The softness of margin is determined by a parameter of the problem named
C. When C is a positive number, it is a hard SVM; if C is zero, the SVM will just choose
q = 0 and cares nothing for accuracy. In reality, a few C values are used to test how the
SVM should function.

For predicting the score vector of each class, g( f ) = sgn
(
qTf + β

)
decision function is

used. Predicted class label y of data x is obtained by using argmax function. The highest
score in the vector of predicted classes will be returned by Equation (11) as its index.

Predicted class = argmax
(

sgn(qTf + β)
)

(11)

The summarized flowchart of GRU-SVM model is given in Figure 5. Generally,
Softmax layer is used at the final layer for classification. In this paper, we are using SVM
as it has the following advantages over Softmax layer. The Softmax layer is suitable for
multinomial classification, while SVM goes well for binary classification. SVM simply
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needs its margins to be satisfied and is not concerned with the specific scores of the classes
it predicts. In contrast, by guaranteeing that the correct class has the higher/highest
probability and the erroneous classes have the lower chance. The Softmax function will
constantly find a method to enhance its predicted probability distribution. Although the
Softmax function’s behaviour is excellent, it is overkill for a binary classification issue.
As we know, GRU solves the problem of the vanishing gradient. However, as a result of
this, the Softmax layer, when it is added to the GRU model, misclassifies data. The GRU–
Softmax model’s aforementioned error actually works towards the GRU-SVM model’s
benefit. The practicality of selecting SVM over Softmax in this instance, however, is not
just based on a comparison of the demonstrated prediction accuracies of the two models.
The length of the testing and training periods was also taken into account. SVM outperforms
Softmax, as suggested by the computational complexity of each of them.

Figure 5. Flowchart for classification of malicious and legitimate users using GRU-SVM model.

4.3. Dataset Preprocessing

In our paper, we used 16.89 MB csv file dataset which is available at kaggle [39]. A total
of 80% of the dataset is used for training and 20% is used for testing.

The dataset is discretized after initially being normalised. Standardization performs
continuous data normalization. StandardScaler().fit_transform() function of Scikitlearn
for efficiency is used to perform data standardization. Indexing performs for categorical
data normalization. LabelEncoder().fit_transform() function of Scikit-learn is used for
mapping the categories to [0, n − 1]. The bin number is then assigned in accordance
with the indices after the continuous features are discretized using the quantile of the
features. The classification performance of the datasets is improved through discretization
or binning, which also lowers the processing cost. The features are then used to execute
one hot encoding.
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5. Analysis of Computational Complexity

In this section, we present the computational complexity of proposed method. It is
assumed that sensing is implemented after every 2 s, followed by local decision and GRU
implementation. Therefore, the computational complexity shown here is applicable once
after 2 s. As shown in Equation (3), energy detection requires 2U number of multiplications
and 2U − 1 number of additions. Therefore, the complexity of energy detection is given by
O(2U). Whereas when GRU is considered, as per Equations (6) and (7), the computational
complexity of update gate stage and reset gate stage isO(2S) additions and multiplications
and O(2S) additions and multiplications, respectively. Moreover, considering the two
sigmoid operations, it requiresrequire two additions, two divisions and two exponents. The
computational complexity of Equation (8) is O(3S) multiplications and O(S + 1) additions,
respectively. The computational complexity of Equation (9) is O(3S) multiplications and
O(S + 1) additions, respectively. Therefore, the total computation complexity of the
proposed method is O(2U + 4S + 1) number of additions and O(2U + 8S) number of
multiplications, which is linearly increasing as a function of U and S. Usually S and U are
of the order of not more than a few hundred. Therefore, the complexity of the algorithm is
very less.

6. Results and Discussion

The simulations were run on a 2nd generation Intel Xeon Scalable Processor with
up to 28 cores per processor, a Tesla 300 GPU, up to 16 × 2.5” SAS/SATA/SSD storage
with a maximum capacity of 122.88 TB, and 24 DDR4 DIMM slots for memory modules
(12NVDIMM or 12 DCPMM only). Using regular classification metrics such as accuracy,
precision, sensitivity (recall), F1 score and specificity, the effectiveness of the different
models, including DNN, CNN, LSTM, LR, and KNN was compared with the proposed
method. For the study, a DNN with three hidden layers—100, 40, and 10 neurons—was
built. The size of the kernel for CNN was 16, 8, and 3, respectively, with three layers of 64,
32, and 16 filters.

The implementation of the LSTM and GRU-SVM models uses the same number of
cells, n = 32. Three neighbours were used in the implementation of the KNN algorithm.
Finally, default Sklearn settings were applied to LR. The majority of the approaches were
tested across 100 epochs because they converge with relatively few iterations.

Different classification metrics are shown in Figure 6 specifically, accuracy, precision,
sensitivity, F1 score, and specificity when utilising our proposed model to train and evaluate
the data. Better precision, specificity, accuracy, and F1-measure were found through testing.
Table 1 lists the values of the assessment metrics that were determined after training and
testing the data.

Table 1. Evaluation metrics values.

Evaluation Metrics Training Testing

Accuracy 80.9929 82.4515

Precision 79.0306 89.3005

Sensitivity (Recall) 84.3726 78.5418

F1 Score 81.6142 83.5763

Specificity 77.6132 87.6022
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Figure 6. Evaluation metrics chart for training and testing data using GRU-SVM.

In Figure 7, the training accuracy of several approaches including CNN, DNN, LSTM,
GRU-SVM, LR, and KNN is plotted across various number of epochs. When training the
data, our suggested model excels in accuracy. Training accuracy of the proposed work
attains 80.99% which is comparatively higher than the compared methods. Additionally,
LSTM and CNN appear to be consistent with GRU-SVM’s.
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Figure 7. Training accuracy vs. Number of Epochs.

In Figure 8, the testing accuracy of different approaches is displayed throughout
the number of epochs, and the proposed model outperforms other strategies in terms
of testing data accuracy. Training accuracy of the proposed work is 82.45% which is
comparatively higher than the compared methods. LSTM performs quite similarly to
GRU-SVM, demonstrating the effectiveness of RNN variants for assessing time series
data. The probability of detection is plotted against the number of epochs in Figure 9.
The proposed model reaches probability 1 at 65 epochs whereas all the other compared
models reach detection probability after 75 epochs. Our suggested model excels at detection
across a range of epochs.
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Figure 8. Testingaccuracy vs. Number of Epochs.
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Figure 9. Probabilityof detection vs. Number of Epochs.

The probability of false alarm is plotted against the number of epochs in Figure 10,
where the proposed model performs well since it has the lowest false alarm probability across
all attempted epochs. At 97 epochs, the false alarm probability got reduced to 0 (reaches
minimum) compared to other compared methods, which shows better performance.
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Figure 10. Probability of false alarm vs. Number of Epochs.

The confusion matrix for the training phase and testing phase for the normal case and
under attack case is explained in Figures 11 and 12. The Confusion Matrix is a performance
measurement for two class classification. It is a table with four separate sets of actual and
predicted values. In our paper, we classify authorized and malicious ones.

Figure 11. Confusion matrix-training.
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Figure 12. Confusion matrix-validation.

The created Confusion Matrix in Figures 11 and 12 have four separate quadrants:
Top-Left Quadrant→ True Negative, Top-Right Quadrant→ False Positive, Bottom-Left
Quadrant → False Negative, Bottom-Right Quadrant → True Positive. False denotes a
mistake or incorrect prediction, while True denotes that the values were correctly predicted.

Let us calculate different measures to quantify the model quality.

• Precision:
Precision is the percentage of truely positives, of all the predicted positives.

Precision (training) =
True positive

True positive + False positive
= 79.0306%

Precision (testing) = 89.3005%

• Sensitivity (Recall):
The model’s sensitivity indicates how well it can predict positive outcomes. Sensitivity
is the percentage of predicted positives, of all the positive cases.

Sensitivity (training) =
True positive

True positive + False Negative
= 84.3726%

Sensitivity (testing) = 78.5418%

• Specificity:
The model’s specificity indicates how well it can predict negative outcomes.

Specificity (training) =
True Negative

False positive + True Negative
= 77.6132%

Specificity (testing) = 87.6022%

• F1-score:
The “harmonic mean” of sensitivity and precision is called the F1-score. It is suitable
for imbalanced datasets and takes into account both false positive and false negative
cases. The True Negative values are not considered in this score:

F1-score (training) =
2 ∗ (Precision ∗ Sensitivity)
(Precision + Sensitivity)

= 81.6142%
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F1-score (testing) = 83.5763%

• Accuracy:
The model’s accuracy indicates how frequently it is accurate.

Accuracy (training) =
True positive + True Negative

Total predictions
= 80.9929%

Accuracy (testing) = 82.4515%

The proposed model distinguishes malicious users from genuine users effectively,
outperforming all other deep learning and machine learning models in terms of metrics
parameters, as shown by the results.

7. Conclusions

In this study, we used GRU to identify malevolent users while sensing the spectrum.
Results show that this model is effective at classifying fraudulent users from legal ones
when combined with an SVM classifier, with testing accuracy of 82.45 percent and training
accuracy of 80.99 percent. The probability of detection achieves 1 at 65 epochs. Additionally,
we have contrasted our proposed model with other deep learning and machine learning
algorithms, such as CNN, LSTM, LR, DNN, and KNN. In terms of training accuracy, testing
accuracy, detection probability, and false alarm probability, GRU-SVM performs better than
traditional models.
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