
465

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 465–474, 2005.
© Springer-Verlag Berlin Heidelberg 2005

GRUBER: A Grid Resource Usage SLA Broker

Catalin L. Dumitrescu1 and Ian Foster1,2

1 Computer Science Department, The University of Chicago,
5801 S. Ellis Ave., Chicago, IL, 60637
cldumitr@cs.uchicago.edu

2 Mathematics and Computer Science Division, Argonne National Laboratory,
9700 S. Cass Ave., MCS/221, Argonne, IL, 60439

foster@mcs.anl.gov

Abstract. Resource sharing within grid collaborations usually implies specific
sharing mechanisms at participating sites. Challenging policy issues can arise in
such scenarios that integrate participants and resources spanning multiple
physical institutions. Resource owners may wish to grant to one or more virtual
organizations (VOs) the right to use certain resources subject to local usage
policies and service level agreements, and each VO may then wish to use those
resources subject to its usage policies. This paper describes GRUBER, an archi-
tecture and toolkit for resource usage service level agreement (SLA) specifica-
tion and enforcement in a grid environment, and a series of experiments on a
real grid, Grid3. The proposed mechanism allows resources at individual sites
to be shared among multiple user communities.

1 Introduction

Resource sharing issues arise at multiple levels when sharing resources. Resource
owners may want to grant to VOs the right to use certain amounts of their resources,
and thus want to express and enforce the usage policies under which these resources
are made available. We measure the impact of their introduction by means of average
resource utilization, average response time, average job completion, average job re-
planning, and workload completion time [1]. We distinguish here between “resource
usage policies” (or SLAs) and “resource access policies.” Resource access policies
typically enforce authorization rules. They specify the privileges of a specific user to
access a specific resource or resource class, such as submitting a job to a specific site,
running a particular application, or accessing a specific file. Resource access policies
are typically binary: they either grant or deny access. In contrast, resource usage
SLAs govern the sharing of specific resources among multiple groups of users. Once
a user is permitted to access a resource via an access policy, then the resource usage
service level agreement (SLA) steps in to govern how much of the resource the user is
permitted to consume.

GRUBER is an architecture and toolkit for resource usage SLA specification and
enforcement in a grid environment. The novelty of GRUBER consists in its capability
to provide a means for automated agents to select available resources from VO level
on down. It focuses on computing resources such as computers, storage, and net-
works; owners may be either individual scientists or sites; and VOs are collaborative
groups, such as scientific collaborations. A VO [2] is a group of participants who seek

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.2 Optimize For Fast Web View: Yes Embed Thumbnails: Yes Auto-Rotate Pages: No Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [1200 1200] dpi Paper Size: [439 666.2] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 900 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Cancel JobEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Convert All Colors to sRGB Intent: DefaultWorking Spaces: Grayscale ICC Profile: RGB ICC Profile: sRGB IEC61966-2.1 CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: Yes Transfer Functions: Apply Preserve Halftone Information: YesADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: Yes Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: No ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: NoOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [1200 1200]>> setpagedevice

466 Catalin L. Dumitrescu and Ian Foster

to share resources for some common purpose. From the perspective of a single site in
an environment such as Grid3 [3], a VO corresponds to either one or several users,
depending on local access policies. However, the problem is more complex than a
cluster fair-share allocation problem, because each VO has different allocations under
different scheduling policies at different sites and, in parallel, each VO might have
different task assignment policies. This heterogeneity makes the analogy untenable
when there are many sites and VOs.

We focus in this paper on the following questions: “How usage SLAs are handled
in grid environments?”, and “What is the gain for taking in account such usage
SLAs?”. We build on much previous work concerning the specification and enforce-
ment of local scheduling policies [1],[4],[5],[17], for negotiating SLAs with remote
resource sites [6],[7], and for expressing and managing VO policy [8]. We describe in
detail the usage SLA problem at several levels, introduce an infrastructure that allows
the management of such usage SLAs for virtual and real resources, and compare vari-
ous approaches for real scenarios encountered in the Grid3 context [3].

2 Motivating Scenario

In the context of grids comprising numerous participants from different administrative
domains, controlled resource sharing is important because each participant wants to
ensure that its goals are achieved. We have previously defined [1] three dimensions in
the usage policy space: resource providers (sites, VOs, groups), resource consumers
(VOs, groups, users), and time. Provider policies make resources available to con-
sumers for specified time periods. Policy makers who participate in such collabora-
tions define resource usage policies involving various levels in this space. We extend
here the work proposed in [1],[4] with usage policies at the level of virtual organiza-
tions and beyond.

Usage SLA specification, enforcement, negotiation, and verification mechanisms
are required at multiple levels within such environments. Owners want convenient
and flexible mechanisms for expressing the policies that determine how many re-
sources are allocated to different purposes, for enforcing those policies, and for gath-
ering information concerning resource usage. VOs want to monitor SLAs under which
resources are made available.

User and group jobs are the main interested parties in resources provided by sites
and resources. They use resources in accordance with allocations specified at different
level, in a hierarchic fashion and similar to LSF approach at a cluster level. Run-to-
completion is a usual mode of operation, because jobs tend to be large, making swap-
ping expensive. Also, workload preemption on several nodes is difficult in a coordi-
nated fashion and even more difficult when a distributed file system is used for data
management. Thus, we assume that jobs are preempted only when they violate certain
usage rules specified by each individual provider. We note also that site resource
managers such as LSF, PBS, and NQS typically only support run-to-completion poli-
cies [9].

Algorithms and policies capture how jobs are assigned to host machines [1],[4].
The question “Which is the best approach for different environment models?” is an
old-age question conditioned by many parameters that vary from case to case. Usually
what just appears to be an SLA “parameter” can have greater effect on the perform-

GRUBER: A Grid Resource Usage SLA Broker 467

ance users get from their computing resources than various metrics reported through a
monitoring system about resource availabilities.

The problem domain is expressed as follows: a grid consists of a set of resource
provider sites and a set of submit hosts; each site contains a number of processors and
some amount of disk space; a three-level hierarchy of users, groups, and VOs is de-
fined, such that each user is a member of exactly one group, and each group is mem-
ber to exactly one VO; users submit jobs for execution at submit hosts. A job is speci-
fied by four attributes: VO, Group, Required-Processor-Time, Required-Disk-space; a
site policy statement defines site usage SLAs by specifying the number of processors
and amount of disk space that sites make available to different VOs; and a VO policy
statement defines VO usage SLAs by specifying the fraction of the VO’s total proces-
sor and disk resources (i.e., the aggregate of contributions to that VO from all sites)
that the VO makes available to different groups.

Within this environment, the usage SLA-based resource sharing problem involves
deciding, at each submit host, which jobs to route to which sites, and at what time, for
execution, to both (a) satisfy site and VO usage SLAs and (b) optimize metrics such
as resource utilization and overall job and workload execution time. We note that this
model is one of resource sub-allocation: resources are owned by sites, which appor-
tion them to VOs. VOs in turn apportion their “virtual” resources to groups. Groups
could, conceptually, apportion their sub-allocation further, among specific users.
Without loss of generality, we simplify both this discussion and our implementation
by sub-allocating no further than from VOs to groups.

3 GRUBER Architecture

GRUBER is composed of four principal components, as we describe. The (a)
GRUBER engine implements various algorithms for detecting available resources and
maintains a generic view of resource utilization in the grid. Our implementation is an
OGSI service capable of serving multiple requests and based on all the features pro-
vided by the GT3 container (authentication, authorization, state or state-less interac-
tion, etc). The (b) GRUBER site monitoring component is one of the data providers
for the GRUBER engine. It is composed of a set of UNIX and Globus tools for col-
lecting grid status elements. (c) GRUBER site selectors are tools that communicate
with the GRUBER engine and provide answers to the question: “which is the best site
at which I can run this job?”. Site selectors can implement various task assignment
policies, such as round robin, least used, or last recently used task assignment poli-
cies. Finally, the (d) GRUBER queue manager is a complex GRUBER client that
must reside on a submitting host. It monitors VO policies and decides how many jobs
to start and when. The overall GRUBER architecture is presented in Fig. 1.

Planners, work-runners, or application infrastructures invoke GRUBER site selec-
tors to get site recommendation, while the GRUBER queue manager is responsible for
controlling job starting time. If the queue manager is not enabled, GRUBER becomes
only a site recommender, without the capacity to enforce any usage SLA expressed at
the VO level. The site level usage SLA is still enforced by limiting the choices a job
can have and by means of removing a site for an already over-quota VO user from the
list of available sites.

468 Catalin L. Dumitrescu and Ian Foster

Fig. 1. GRUBER Architecture

3.1 GRUBER Engine

GRUBER decides which sites are best for a job by implementing the following logic:

• If there are fewer waiting jobs at a site than available CPUs, then GRUBER
assumes the job will start right away if an extensible usage policy is in place [1].

• If there are more waiting jobs than available CPUs or if an extensible usage policy
is not in place, then GRUBER determines the VO’s allocation, the number of jobs
already scheduled, and the resource manager type. Based on this information:
o if the VO is under its allocation, GRUBER assumes that a new job can be

started (in a time that depends on the local resource manager type).
o if the VO is over its allocation, GRUBER assumes that a new job cannot be

started (the running time is unknown for the jobs already running).

More precisely, for any job placement CPU-based decision a list of available sites
is built and provided under the following algorithm to find those sites in the site set G
that are available for use for job J (J keeps place for job characteristics as well in the
following algorithm) from the VO number i.
fn get-avail-sites(sites G, VO i, job J)
1. for each site s in G do
2. # Case 1: site over-used by VOi
3. if EAi > EPi for VO I at site s
4. next
5. # Case 2: un-allocated site
6. else if k(BAk)at s < s.TOTAL - J &&

 (BAi + J < BPi || extensible BPi) then
7. add (s, S)
8. return S

with the following definitions:

S = Site Set ; k = index for any VO != VOi
EPi = Epoch Usage SLA for VOi ; BPi = Burst SLA for VOi
BAi = Burst Utilization for VOi ; EAi = Epoch Utilization
TOTAL = upper limit allocation on the site

The list of possible solutions is further provided as input to a task assignment pol-
icy algorithm that makes the actual submission decisions (e.g., round robin).

GRUBER: A Grid Resource Usage SLA Broker 469

3.2 GRUBER Queue Manager / Site Selectors

GRUBER queue manager is responsible for determining how many jobs per VO or
VO group can be scheduled at a certain moment in time and when to release them.
Usually a VO planner is composed of a job queue, a scheduler, and job assignment
and enforcement components. Here, the last two components are part of GRUBER
and have multiple functionalities. The site selector component answers: “Where is
best to run next?”, while the queue manager answers: “How many jobs should group
Gm of VOn V be allowed to run?” and “When to start these jobs?”

The queue manager is important for SLA enforcement at the VO level and beyond.
This mechanism also avoids site and resource overloading due to un-controlled sub-
missions. The GRUBER queue manager implements the following algorithm (with
the assumption that all jobs are held initially at the submission host):

1. while (true) do
2. if Q != empty
3. get j from Q
4. else
5. next
6. S = get-avail-sites(G, Vo(j), j)
7. if S != empty
8. s = schedule(j, S)
9. run(j,s)

with the following definitions:

j = Job Id ; Q = Job Queue ; S = Site Set ;
G = All Site Set ; Vo = Mapping Function jobId -> VO

3.3 Disk Space Considerations

Disk space management introduces additional complexities in comparison to job
management. If an entitled-to-resources job becomes available, it is usually possible
to delay scheduling other jobs, or to preempt them if they are already running. In
contrast, a file that has been staged to a site cannot be “delayed,” it can only be de-
leted. Yet deleting a file that has been staged for a job can result in livelock, if a job’s
files are repeatedly deleted before the job runs. As a consequence, a different ap-
proach has been devised. As a concrete example, a site can become heavily loaded
with a one VO jobs and because of which other jobs are either in the local queue in an
idle state waiting for their turn. But this does not stop the submission of more jobs.

So far, we have considered a UNIX quota-like approach. Usually, quotas just pre-
vent one user on a static basis from using more than his limit. There is no adaptation
to make efficient use of disk in the way a site CPU resource manager adapts to make
efficient use of CPU (by implementing more advanced disk space management tech-
niques). The set of disk-available site candidates is combined with the set of CPU-
available site candidates and the intersection of the two sets is used for further sched-
uling decisions.

470 Catalin L. Dumitrescu and Ian Foster

3.4 GRUBER Usage SLA Language

In the experiments described in this paper we use a usage SLA representation based
on Maui semantics and WS-Agreement syntax [4],[7],[11]. Allocations are made for
processor time, permanent storage, or network bandwidth resources, and there are at
least two-levels of resource assignments: to a VO, by a resource owner, and to a VO
user or group, by a VO. We started from the Maui’s semantics in providing support
for fair-share rule specification [12]. Each entity has a fair share type and fair share
percentage value, e.g., VO0 15.5, VO1 10.0+, VO2 5.0-. The sign after the percentage
indicates if the value is a target (no sign), upper limit (+), or lower limit (-).

We extend the semantics slightly by associating both a consumer and a provider
with each entry; extending the specification in a recursive way to VOs, groups; and
users, and allowing more complex sharing rules. In our approach, Site1 makes its CPU
resources available to consumer VO0 subject to two constraints: VO0 is entitled to
10% of the CPU power over one month; and with any burst usage up to 40% of the
CPU power for intervals smaller than one day. Not all parameters are required and in a
recursive fashion, a similar usage SLA is specified for VO entities.

4 Experimental Studies

We now present our experimental results. We first describe the metrics that we use to
evaluate alternative strategies, afterwards introduce our experimental environment,
and finally present and discuss our results.

4.1 Metrics

We use five metrics to evaluate the effectiveness of the different site selector strate-
gies implemented in GRUBER. Comp is the percentage of jobs that complete suc-
cessfully. Replan is the number of replanning operations performed. Time is the total
execution time for the workload. Util is average resource utilization, the ratio of the
per-job CPU resources consumed (ETi) to the total CPU resources available, ex-
pressed as a percentage:

Util = Σ i=1..N ETi / (#cpus * ∆t) * 100.00
Delay is average time per job (DTi) that elapses from when the job arrives in a re-

source provider queue until it starts:

Delay = Σi=1..N DTi / #jobs

4.2 Experiment Settings

We used a single job type in all our experiments, the sequence analysis program
BLAST. A single BLAST job has an execution time of about an hour (the exact dura-
tion depends on the CPU), reads about 10-33 kilobytes of input, and generates about
0.7-1.5 megabytes of output: i.e., an insignificant amount of I/O. We used this
BLAST job in two workload different configurations. In 1x1K, we have a single
workload of 1000 independent BLAST jobs, with no inter-job dependencies. This
workload is submitted once. Finally, in the 4x1K case, the 1x1K workload is run in

GRUBER: A Grid Resource Usage SLA Broker 471

parallel from four different hosts and under different VO groups. Also, each job can
be re-planed at most four times through the submission infrastructure.

We performed all experiments on Grid3 (December 2004), which comprises
around 30 sites across the U.S., of which we used 15. Each site is autonomous and
managed by different local resource managers, such as Condor, PBS, and LSF. Each
site enforces different usage policies which are collected by our site SLA observation
point and used in scheduling workloads. We submit all jobs within the iVDGL VO,
under a VO usage policy that allows a maximum of 600 CPUs. Furthermore, we sub-
mitted each individual workload under a separate iVDGL group, with the constraint
than any group can not get more than 25% of iVDGL CPUs, i.e., 150.

4.3 Results

Table 1 and Table 2 give results for the 1x1K and 4x1K cases, respectively. We see
considerable variation in the performance of the various site selectors.

Table 1. Performance of Four GRUBER Strategies for 1x1K

 G-RA G-RR G-LRU G-LU
Comp (%) 97 96.7 85.6 99.3

Replan 1396 1679 1440 1326
Util (%) 12.85 12.28 10.63 14.56

Delay (s) 49.07 53.75 54.69 50.50
Time (hr) 8.19 10.45 22.23 9.25

In the 1x1K case, G-LU does significantly better than the others in terms of jobs
completed and G-RA does significantly better than the others in execution time. G-
LRU is clearly inferior to the others in both respects. Note that as a single job runs for
about one hour, the minimum possible completion time is ~1000/150 ≈ 6.66 hours.
Thus the best execution time achieved is ~22% worse than the minimum, which is an
acceptable result. Note also the relatively high number of replanning events in each
case (a mean of ~1.5 per job), another factor that requires further investigation.

Table 2. Performance of Four GRUBER Strategies for 4x1K

 G-RA G-RR G-LRU G-LU
Comp (%) 98.2 98.7 87.9 91.7

Replan 1815 1789 1421 2409
Util (%) 13.51 14.02 11.05 11.52

Delay (s) 66.62 64.41 68.97 63.96
Time (hr) 11.21 10.5 13.51 13.49

In the 4x1K case, results are somewhat different. Each submitter is allocated a
limit of 25% of the VO’s total resource allocation of 600 CPUs. Thus, in principle, all
four submitters can run concurrently, but in practice we can expect greater contention
in site queues and when sites are overloaded with non-GRUBER work.

The results in Table 4 are the means across the four submitters. We see some inter-
esting differences from Table 3. G-LU’s completion rate drops precipitously, pre-
sumably for some reason relating to greater contention. Replanning events increase

472 Catalin L. Dumitrescu and Ian Foster

somewhat, as does scheduling delay. The total execution times for G-RA and G-LU
increase, although more runs will be performed to determine whether these results are
significant. Fig. 2 provides a more detailed picture of the job completion rates for the
experiments of Table 4. We see that the inferior performance of G-LRU and G-LU is
accentuated by the long time spent on a few final jobs.

Fig. 2. Job Completion Percentage vs. Time

4.4 Results Variance

In practice, we may expect to see considerable variation in results over different runs,
due to our lack of full control over the Grid3 environment. As a first step towards
quantifying this variation, we ran ten identical 1x1K runs with the random assignment
strategy (G-RA). Our results, in Table 3, show considerable variation for some quanti-
ties (Replan, Util, and Delay) and little variation for other quantities (Comp and
Time). However, the small variance in completion time and later studies not reported
here confirm our observations.

Table 3. 10 1x1K Runs with G-RA

Metric Average Std. Deviation Std. Dev. As %
Comp (%) 95.11 1.23 1.3

Replan 2000 308 15.4
Util (%) 18.77 3.10 16.5

Delay (s) 78.05 15.39 19.7
Time (hr) 7.97 0.33 4.1

4.5 Site Selector Variations and Comparisons

We compare GRUBER performance with that of two other methods. In the first of the
two methods, “GRUBER observant” or G-Obs, a site selector associates a further job
to a site each time a job previously submitted to that site has started. In effect, the site
selector fills up what a site provides by associating jobs until site’s limit is reached.
The second alternative, S-RA, associates each job to a site selected at random.

Table 4 shows the results obtained on Grid3 for the 1x1K workload. We find that
the best standard GRUBER site selector achieves a performance comparable to that of
the GRUBER observant (G-Obs) selector.

GRUBER: A Grid Resource Usage SLA Broker 473

Table 4. G-LU, G-Obs and S-RA Strategies: Performance for 1x1K

 G-LU G-Obs. S-RA
Comp (%) 99.3 97.3 60.2

Replan 1326 284 1501
Util (%) 14.56 12.59 0.57

Delay (s) 50.50 62.01 121.0
Time (h) 9.25 11.2 22.3

The results indicate that GRUBER’s automated mechanism for SLAs tuning (as
described in Section 3.2) makes its site selectors comparable in terms of job schedul-
ing performance. On the other hand, compared with GRUBER site selectors, the naive
random assignment site selector policy performs two to three times worse in terms of
our metrics. An important metric to observe is the number of re-planning operations.
While the observant site selector had around 300 operations, GRUBER performed
around 1300 re-scheduling operations and the naive site selector around 1500. The
difference comes from the fact that the simple round robin algorithm selects from all
the sites and not only from the candidates identified as available.

5 Related Work

Fair share scheduling strategies seek to control the distribution of resources to proc-
esses so as to allow greater predictability in process execution. These strategies were
first introduced in the early 1980s in the context of mainframe batch and timeshared
systems and were subsequently applied to Unix systems [13],[14].

Irwin et al. investigate the question of scheduling tasks according to a user-centric
value metric – called utility [6]. Sites sell the service of executing tasks instead of raw
resources. The entire framework is centered on selling and buying services, with users
paying more for better services and sites paying penalties when they fail to honor the
agreed commitments. The site policies are focused on finding winning bids and
schedule resource accordingly. This approach is different from our work here, as a
more abstract form of resources is committed under different SLAs.

In et al. describe a novel framework for policy based scheduling of grid-enabled
resource allocations [15]. The framework has several features. First, the scheduling
strategy can control the request assignment to grid resources by adjusting resource
usage accounts or request priorities. Second, efficient resource usage management is
achieved by assigning usage quotas to intended users. Third, the scheduling method
supports reservation based grid resource allocation. Fourth, Quality of Service (QoS)
feature allows special privileges to various classes of requests, users, groups, etc. The
difference with our approach consists in the fact that we do not assume a centralized
point of usage policy specification, but a more distributed approach of specification
and enforcements at the site level.

6 Conclusions

We have presented and evaluated an approach to representing and managing resource
allocation policies in a multi-site, multi-VO environment. We also introduced a grid
resource broker, called GRUBER, and the experiments we performed with several
approaches in task assignment policies. GRUBER is an architecture and toolkit for

474 Catalin L. Dumitrescu and Ian Foster

resource usage SLAs specification and enforcement in a grid-like environment. It is
the prototype of a VO policy enforcement point as described by Dumitrescu et al. [1].
While the results presented here are preliminary, they are encouraging and some of
the methods described here are pursued further in the Grid3 and OSG contexts.

There are still problems not fully explored in this article. For example, our analysis
did not consider the case of cluster administrators that over-subscribe local resources,
in the sense of a local policy that states that 40% of the local CPU power is available
to VO1 and 80% is available to VO2. A second issue not discussed in this report is the
hierarchic grouping and allocation of resources based on policy. Generally, VOs will
group their users under different schemes. While this is an important problem for our
context, we leave it as an open problem at the current stage.

References
1. Dumitrescu, C. and I. Foster. "Usage Policy-based CPU Sharing in Virtual Organizations".

in 5th International Workshop in Grid Computing. 2004.
2. Foster, I., C. Kesselman, and S. Tuecke, "The Anatomy of the Grid: Enabling Scalable Vir-

tual Organizations", in International Journal of Supercomputer Applications, 2001. 15(3):
p. 200-222.

3. Foster, I., et al., "The Grid2003 Production Grid: Principles and Practice", in 13th Interna-
tional Symposium on High Performance Distributed Computing. 2004.

4. Dan, A., C. Dumitrescu, and M. Ripeanu. "Connecting Client Objectives with Resource
Capabilities: An Essential Component for Grid Service Management Infrastructures", in
ACM International Conference on Service Oriented Computing (ICSOC'04). 2004. NY.

5. Altair Grid Technologies, LLC, A Batching Queuing System, Software Project, 2003.
6. Irwin, D., L. Grit, and J. Chase., "Balancing Risk and Reward in a Market-based Task Ser-

vice", in 13th International Symposium on High Performance Distributed Computing.
7. IBM, WSLA Language Specification, Version 1.0. 2003.
8. Pearlman, L., et al. "A Community Authorization Service for Group Collaboration", in

IEEE 3rd International Workshop on Policies for Distributed Systems and Networks. '02.
9. Schroeder, B. and M. Harchol-Balter. "Evaluation of Task Assignment Policies for Super

Computing Servers: The Case for Load Unbalancing and Fairness", in Cluster Computing.
10. Legrand, I.C., et al. "MonALISA: A Distributed Monitoring Service Architecture", in Com-

puting in High Energy Physics. 2003. La Jolla, CA.
11. Ludwig, H., A. Dan, and B. Kearney. "Cremona: An Architecture and Library for Creation

and Monitoring WS-Agreements", in ACM International Conference on Service Oriented
Computing (ICSOC'04). 2004. New York.

12. Cluster Resources, Inc., Maui Scheduler, Software Project, 2001-2005.
13. Henry, G.J., A Fair Share Scheduler. AT&T Bell Laboratory Technical Journal, 1984.
14. Kay, J. and P. Lauder, "A Fair Share Scheduler", University of Sydney, AT&T Bell Labs.
15. In, J., P. Avery, R. Cavanaugh, and S. Ranka, "Policy Based Scheduling for Simple Quality

of Service in Grid Computing", in International Parallel & Distributed Processing Sympo-
sium (IPDPS). April '04. Santa Fe, New Mexico.

16. Buyya, R., "GridBus: A Economy-based Grid Resource Broker", 2004, The University of
Melbourne: Melbourne.

17. Dumitrescu, C. and I. Foster, "GangSim: A Simulator for Grid Scheduling Studies", in
Cluster Computing and Grid (CCGrid), 2005, Cardiff, UK.

