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INTRODUCTION

The Grüneisen parameter is an important quantity in geo-
physics as it often occurs in equations which describe the
thermoelastic behavior of materials at high pressures and tem-
peratures. The value for γ is used to place constraints on geo-
physically important parameters such as the pressure and
temperature dependence of the thermal properties of the mantle
and core, the adiabatic temperature gradient and the geophysi-
cal interpretation of Hugoniot data.

The Grüneisen parameter has considerable appeal to geo-
physicists because it is an approximately constant, dimension-
less parameter that varies slowly as a function of pressure and
temperature. It has both a microscopic and macroscopic defi-
nition, the former relating it to the vibrational frequencies of
atoms in a material, and the latter relating it to familiar ther-
modynamic properties such as heat capacity and thermal ex-
pansion. Unfortunately, the experimental determination of γ,
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ABSTRACT

The Grüneisen parameter (γ) is of considerable importance to Earth scientists because it sets
limitations on the thermoelastic properties of the lower mantle and core. However, there are several
formulations of the Grüneisen parameter in frequent use which not only give different values for γ
at ambient pressure but also predict a varying dependence of γ as a function of compression. The
Grüneisen parameter is directly related to the equation of state (EOS), yet it is often the case that
both the form of γ and the EOS are chosen independently of each other and somewhat arbitrarily. In
this paper we have assessed some of the more common definitions of the Grüneisen parameter and
the EOS, and have applied them to a test material. Of the EOS considered, when compared against
ab initio compressional data for hcp-Fe as our exemplar, we find that the fourth order logarithmic
and Vinet relations describe the material with the highest accuracy. Of the expressions for γ consid-
ered, it has been suggested, on theoretical grounds, that the modified free-volume formulation should
be expected to give the most realistic description of the thermoelastic behavior of a material. How-
ever, when we use the fourth order logarithmic EOS to obtain the compressional behavior of the
various Grüneisen parameters, we find that there is, in fact, poor agreement between the modified-
free-volume formulation and the Mie-Grüneisen parameter obtained directly from ab initio free
energy calculations on hcp-Fe. We conclude that none of the analytical forms of gamma are suffi-
ciently sophisticated to describe the thermoelastic behavior of real materials with great accuracy,
and care must therefore be taken when attempting to model the thermoelastic behavior of solids to
ensure that the appropriate γ (ideally obtained from experiments or ab initio calculations) and equa-
tions of state are used.

defined in either way, is extremely difficult; the microscopic
definition requires a detailed knowledge of the phonon disper-
sion spectrum of a material, whereas the macroscopic defini-
tion requires experimental measurements of thermodynamic
properties at high pressures and temperatures. As a result of
the difficulty associated with obtaining experimentally an ac-
curate value for γ, a number of more approximate expressions
have been suggested (see Poirier 1991 for a review). Many of
these expressions relate γ at atmospheric pressure (P = 0) to
the first derivative of the bulk modulus with respect to pres-
sure (K 'T), via γ = 1/2K 'T –x, where x is a constant. These rela-
tions may be expanded to take into account the variation of γ
with pressure. In these more general cases, γ(P) is a function
of the equation of state. Despite the intrinsic relationship be-
tween γ and the EOS (see, for example, Irvine and Stacey 1975),
it is frequently the case that the choice of the functional form
of both the Grüneisen parameter and the equation of state to
which it should be related are made independently of each other
and somewhat arbitrarily; this has resulted in a literature in
which there is a wide range of values of γ for many geologi-
cally relevant materials.*E-mail: l.vocadlo@ucl.ac.uk
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It is, therefore, important to investigate more carefully how
the value of γ and its compressional behavior are affected by
(1) the choice of the formulation of γ and (2) the use of differ-
ent equations of state. This paper serves to address this prob-
lem and is set out as follows: we shall firstly review the various
formulations of γ, stating how they may be obtained directly
from the equations of state; we then review a variety of some
of the more commonly used EOS including, for comparison, a
simple Born-Mie function. This paper differs from previous
analytical approaches (e.g., see Irvine and Stacey 1975; Stacey
1995), in that we then test the ability of the various EOS to
describe how the density of a material varies as a function of
pressure, using pressure-volume data obtained from ab initio
calculations on hcp-Fe as an example; using the most appro-
priate EOS, we then evaluate the various analytical γ; finally,
we compare these values of γ with the more fundamental Mie-
Grüneisen parameter derived independently from ab initio free
energy calculations.

THE GRÜNEISEN PARAMETERS

The microscopic definition of the Grüneisen parameter
(Grüneisen 1912) is written in terms of the volume dependence
of the ith mode of vibration of the lattice (ωi) and is given by:

i
i  =   

V
γ ω− ∂

∂
ln

ln
(1)

However, evaluation of all γi throughout the Brillouin zone is
impossible without some lattice dynamical model or high pres-
sure inelastic neutron scattering data.

It can be shown (e.g., Barron 1957) that the sum of all γi

throughout the first Brillouin zone leads to a macroscopic or
thermodynamic definition of γ which may be written as:
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where α is the thermal expansion, V is the volume, KT is the
isothermal bulk modulus and CV is the heat capacity at con-
stant volume. Evaluation of γth is also very difficult, however,
because it requires experimental measurements of α, KT, etc. at
extreme conditions of pressure and temperature which are not
readily attainable.

Integrating Equation 2 with respect to temperature at con-
stant volume leads to the Mie-Grüneisen expression for γ (see,
e.g., Poirier 1991):

γ  =   P V

E
th

th

(3)

where Pth is the thermal pressure and Eth is the thermal energy.
This too is difficult to determine because the thermal energy is
not readily obtained experimentally. However, it is possible, in
principle, to obtain Pth and Eth from ab initio free energy calcu-
lations (e.g., Vocˇadlo et al. 1999) which therefore gives us the
opportunity of using this approach to obtain the true thermo-
dynamic γ of a material.

In the past, however, when ab initio approaches were less
routinely available, more approximate forms of γ were devel-
oped, all of which are based upon a number of assumptions
(see e.g., Poirier 1991). Traditionally, among the various gam-

mas, three have often been used: the Slater gamma, γS (Slater
1939), the Dugdale-MacDonald gamma, γDM (Dugdale and
MacDonald 1953), and the Vaschenko-Zubarev or free-volume
gamma, γVZ (Vaschenko-Zubarev 1963). More recently, a cor-
rection has been applied to the latter, resulting in a modified
free-volume gamma, γmfv, (Barton and Stacey 1985; Stacey
1995). At atmospheric pressure (taken as P = 0) they all de-
pend solely on K0' (dK/dP at P = 0) and are given by:
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It appears that in the past, the use of one or other of these expres-
sions has been a matter of personal choice, yet all are based upon
a number of assumptions, so in deciding upon an appropriate
form of gamma, it seems sensible to assess the approximations
made in their derivation. One of the most favoured Grüneisen
parameters used in the past has been the Slater formulation, γs;
however, this definition is only valid if there is no volume de-
pendence of Poisson’s ratio. It also relies on the validity of the
Debye approximation upon which it is based, in which all the
lattice vibrations are described in terms of a single Debye mode.
At the time, the adoption of the Debye approximation by Slater
(1939) was acceptable; however, more recently, much more de-
tailed analysis of lattice dynamics and its affect on γ has shown
that the Debye approximation gives a poor description of com-
plex real materials. Similarly, the Dugdale-MacDonald formu-
lation, γDM, is derived from a simplification of lattice dynamics
in which the material is modeled by a one-dimensional lattice
undergoing one-dimensional harmonic oscillations (see Irvine
and Stacey 1975); it is also apparent that this too is a gross ap-
proximation as it can only include longitudinal acoustic vibra-
tions and cannot, therefore, describe accurately the three-
dimensional compressional behavior of even the simplest mate-
rial. The Vaschenko-Zubarev formulation, γVZ, is based upon free-
volume theory which describes interatomic interactions in a
three-dimensional lattice by anharmonic central pairwise poten-
tials between nearest neighbor atoms. This model, therefore,
automatically incorporates the volume dependence of Poisson’s
ratio lacking in the Slater formulation, and overcomes some of
the shortcomings of the γDM associated with its one-dimensional
treatment. More recently, however, the modified free-volume
gamma has been proposed (Barton and Stacey 1985; Stacey 1995)
which takes into account the correlated motion of atoms, which
were not considered in the original development of the free-vol-
ume gamma.

The above formulations of γ may all be derived from a more
general expression for γ which takes into account how γ varies
as a function of pressure (see e.g., Poirier 1991):
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where x = 0,1,2, ~2.35 for γs, γDM, γVZ, and γmfv respe:klively. It
can be? ;en from this equation that not only will the various γ
behave differently under compression through the parameter
x, but also that the Grüneisen parameter is a direct function of
the chosen equation of state, which defines P as a function of
V. We also note that Equation 8 implicitly defines the function-
ality of the parameter q (=∂lnγ/∂lnV), which is also widely, but
arbitrarily, used in the geophysical literature.

From the arguments mentioned earlier it would appear rea-
sonable that of the approximate definition of gamma described
above, the most appropriate would be the modified free-vol-
ume formulation. Such a choice is made all the more credible
when it is compared with the γ of Barron (1955) and Vovadlo
et al. (1994), who have shown that a full lattice dynamics treat-
ment gives a P = 0 relation for gamma of:

LDγ   =   .  K   . .T

1

2
0 02 0 9 0 02

0
( ) ( )'± − ± (9)

Although the high pressure formulism for γ LD has not been
calculated, it is reasonable to expect that it will be closer to
γ mfv than to any of the other definitions mentioned earlier.

In order to confirm, or otherwise, that the modified-free-
volume formulation is more likely to describe the behavior of
a real material than the other forms considered here, we wish
to compare the various gamma and EOS, via Equation 8, against
recent highly accurate ab initio data for our example material
of hcp-Fe.

EQUATIONS OF STATE

There are many proposed equations of state available in the
literature (see, e.g., Poirier 1991), but we shall confine our study
to some of those more commonly adopted: the second-order
Birch-Murnaghan EOS (Birch 1938, 1947), the third order
Birch-Murnaghan EOS, the third order logarithmic EOS (Poirier
and Tarantola 1998), the fourth order logarithmic EOS and the
Vinet EOS (Vinet et al. 1987, 1989, derived from Rydberg
1932). As an interesting comparison, we shall also consider
the EOS derived directly from a Born-Mie interatomic poten-
tial of the form:
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a

V
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b
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The Born-Mie function gives an analytical value for pressure
P(V), the bulk modulus at atmospheric pressure, KT0, and its
pressure derivative, KT0', for a given a, b, m, and n via:
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and
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T0

6
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where V is the volume, V0, the equilibrium volume at zero pres-
sure, and m and n, respectively, embody the range of the attrac-
tive and repulsive part of the effective potential.

The other equations of state considered may be expressed
as a function of density, via c = ρ/ρ0, as follows:
the second order Birch-Murnaghan EOS;
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K
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the third order Birch-Murnaghan EOS;
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the third order logarithmic EOS;
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the fourth order logarithmic EOS;
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the Vinet EOS;
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The functional form and sensitivity of the free-volume γVZ to
this selection of EOS and reasonable values of K' are exempli-
fied in Figures 1 and 2. The diverse behavior of γ as a function
of EOS and also of K' illustrates the necessity to examine these
equations of state in more detail in order to ascertain which
one best describes the behavior of a material under compres-
sion. In the following section, we compare the ability of the
EOS in Equation 11 and Equations 14–18 to accurately de-
scribe compressional behavior of a real material, using as our
exemplar P(V) data for hcp-Fe as determined by ab initio cal-
culations. The advantage of ab initio data is that they are pre-
cise (as well as giving a relatively accurate description of a
real material) and can also be calculated to virtually arbitrary
limits in pressure.

FITTING  THE EQUATIONS OF STATE TO
AB INITIO  PV DATA

In order to provide a pressure-volume data set against which
to test these different EOS, ab initio electronic structure
pseudopotential calculations were performed on the hexago-
nal close-packed phase of iron at a number of fixed volumes.
For details of the methodology, see Vocˇadlo et al. (1997, 1999).
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These ab initio calculations are not only invaluable in provid-
ing a test data set, but also enable us to calculate the internal
energy of our system, and therefore provide an independent
means of calculating γ through the Mie-Grüneisen relation (Eq.
3). Each of the EOS (Eqs. 11 and 14–18) were fitted to our
calculated PV data set in order to determine the parameters V0,
K, and in some cases, K', K"; the statistics relating to the good-
ness of fit are shown in Table 1.

In deriving these results it was found that it was extremely
difficult to effectively fit the parameters of the Born-Mie equa-
tion because there is a very shallow minimum in fitting-pa-
rameter space; this results in a very high correlation between
the parameters a, b, m, and n in Equation 10 (Table 2) which
are, as a result, very poorly determined. It should be noted,

however, that despite the excessively large standard errors, the
K and K’ derived were essentially identical over the entire range
of fitted values (varying by <1 GPa in K and < 0.02 in K’).

Figure 3 shows that, superficially, all EOS seem to fit the
data reasonably well; however, on closer inspection (Fig. 4) it
can be seen that the second order Birch-Murnaghan and the
third order logarithmic EOS give relatively poor fits. Indeed,
only the Vinet and fourth order logarithmic EOS fit the data
very well. This is reflected in the statistics associated with the
fitting of Equations 10–14 (Table 1), where the excellent fit of
the fourth order logarithmic and Vinet EOS is demonstrated by
their low standard errors and low χ2 values, whereas the con-
verse is the case for second order Birch-Murnaghan and third
order logarithmic EOS.

It would appear, therefore, that (at least for the example
chosen) the fourth order logarithmic and Vinet EOS give a far
better representation of compressional behavior than other EOS
which are frequently found in the literature.

DETERMINATION  OF γ USING THE FOURTH ORDER
LOGARITHMIC  EQUATION  OF STATE

Using Equation 8 and the fourth order logarithmic EOS
defined by the parameters in Table 1, it is possible to obtain
γ(c) for each of the approximate formulations of gamma dis-
cussed earlier. The results are shown in Figure 5. For compari-
son we have also plotted the thermodynamic γ(T = 2000)
obtained directly from first principles free energy calculations
using the Mie-Grüneisen relation in Equation 3 (Alfe et al. in
preparation). These are highly accurate calculations which give
a γ 0 of ~1.6 ([compared with that derived from experimental
data of ~1.7 (see Anderson 1988)] decreasing to ~1.4 at core
volumes [compared with a core value of ~1.3 ± 0.1 (see Ander-
son 1988; Stacey 1995)]. Using the fourth order logarithmic
EOS to calculate the various analytical gamma, it would seem,
from inspection of Figure 5, that the ab initio data are best rep-
resented by a Dugdale-MacDonald Grüneisen parameter in the
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FIGURE 1. The functional form of the free-volume Grüneisen
parameter as a function of compression using a truncated third order
logarithmic EOS (Poirier and Tarantola 1998); the curves are for a KT'0
of 3, 4, and 5 respectively.
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FIGURE 2. The variation of the free-volume Grüneisen parameter
as a function of compression, for KT'0 = 4, using a Birch-Murnaghan,
third order logarithmic and Vinet EOS.

TABLE  1. Fitted parameters to the various equations of state

V0 (Å3) K (GPa) K' K" (1/GPa2) χ2*

Born-Mie† 10.25 194 (1057) 4.4 (700) 21
BM2 10.39 (6) 308 (8) 443
BM3 10.32 (2) 287 (3) 4.37 (4) 37
Log3 10.15 (5) 326 (7) 4.89 (12) 250
Log4 10.26 (1) 293 (7) 4.69 (1) –0.02(1) 1
Vinet 10.24 (1) 297 (1) 4.73 (2) 5

* χ2 = Σiwi[Yi(obs.) − Yi(calc.)]2/(N − P + C).
† V0 parameter was chosen as the minimum energy volume as obtained
from the ab initio calculations; K and K′ derived from values for m and n
- equations 12 and 13; χ2 value refers to the fitting of a, b, m, and n in
Equation 10.

TABLE  2. Correlation coefficients (%)

V0–K V0–K ' K–K' V0–K" K–K" K '–K"

BM2 93
BM3 55 28 61
Log3 70 31 40
Log4 73 59 21 59 58 84
Vinet 57 25 61

a-b a-m a-n b-m b-n m-n
Born-Mie 100 99.997 99.995 99.997 99.995 99.985
Note: a, b, m, n from Equation 10.
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which the thermodynamic γ is based include higher anharmonic
effects (Alfè et al. in preparation). However, the effect of this
temperature dependence is not expected to be significant be-
cause it is thought that ∂ γ /∂T is such that the error in γ would
only be ~10% at 4000 K and P = 0 (and therefore less at lower
T); this error would also decrease significantly with increasing
pressure (Stacey 1995). (2) None of the various formulations
of the analytical gamma include the electronic effects present
in the ab initio calculations. However, at low temperatures
(<2000 K) the contribution to γ from the thermal excitations of
the electrons is negligible (Alfè et al. in preparation) and there-
fore provided that T is above the Debye temperature and below
~2000 K, γ can be determined entirely from the harmonic
phonon spectrum. (3) All of the analytical formulations of γ,
excepting the modified free-volume γ, are derived from a model
whereby a solid is described in terms of independently vibrat-
ing harmonic oscillators interacting via pairwise central forces;
this is not a realistic description. (4) Although the modified
free-volume theory does take into account the correlated mo-
tions of atoms, it effectively reduces the entire force constant
matrix of a material to a single effective force constant; this,
too, is not a realistic description of a material.

Our conclusion, therefore, is that although the Dugdale-
MacDonald Grüneisen parameter appears to lie closest to that
determined directly from ab initio calculations, this is likely to
be merely fortuitous, because all analytical γ are based on ap-
proximations that rely upon a number of unjustified assump-
tions. In the past, such an approach was the only way forward,
but these analytical methods are now being superceded by ab
initio techniques. We believe, therefore, that, in the absence of
reliable high P-high T experimental data, thermoelastic param-
eters, such as the Grüneisen parameter, cannot be reliably ob-
tained from approximate descriptions, rather they should now
be derived from rigorous, highly accurate, quantum mechani-
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FIGURE 3. The second and third-order Birch-Murnaghan, third and
fourth order logarithmic, Vinet and Born-Mie equations of state fitted
to ab initio pseudopotential calculations for hcp-Fe; superficially, all
the EOS fit the data reasonably well.
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FIGURE 4. An enlargement of Figure 3; on this scale it becomes
clear that the fourth order logarithmic and Vinet EOS give excellent
fits to the calculated data.

FIGURE 5. The variation of the various Grüneisen parameter as a
function of compression using the fourth order logarithmic EOS and
Equation 8 and also that obtained directly from ab initio calculations
using the Mie-Grüneisen relation (T = 2000 K).

1.0 1.1 1.2 1.3 1.4
V0/V

1.0

1.2

1.4

1.6

1.8

2.0

2.2

g
am

m
a

Slater
DM
VZ
mfv
AI (Alfe 1999)

density range 1.1 < c > 1.4. As we discuss below, we do not
believe, however, that this should be interpreted as a valida-
tion of the Dugdale-MacDonald approximation, but is, rather,
a fortuitous result. Figure 5 also shows that the formulation of
the analytical Grüneisen parameter which has previously been
suggested to be the most rigorous, γmfv, in fact agrees poorly
with that derived from first principles.

DISCUSSION AND CONCLUSION

There are a number of points that require some discussion
before a conclusion can be reached: (1) There is no explicit
temperature dependence in the various analytical forms of
gamma as they are intended to describe behavior at the classi-
cal limit (CV → 3R), whereas the ab initio calculations upon
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cal free-energy calculations. Finally, we also note that from
the analysis of our example data set (hcp-Fe), of the EOS con-
sidered, both the fourth order logarithmic and the Vinet EOS
should be the formulations of choice.
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