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Abstract

Background: Gene set analysis (in a form of functionally related genes or pathways) has become the method of

choice for analyzing omics data in general and gene expression data in particular. There are many statistical methods

that either summarize gene-level statistics for a gene set or apply a multivariate statistic that accounts for intergene

correlations. Most available methods detect complex departures from the null hypothesis but lack the ability to identify

the specific alternative hypothesis that rejects the null.

Results: GSAR (Gene Set Analysis in R) is an open-source R/Bioconductor software package for gene set analysis (GSA).

It implements self-contained multivariate non-parametric statistical methods testing a complex null hypothesis against

specific alternatives, such as differences in mean (shift), variance (scale), or net correlation structure. The package also

provides a graphical visualization tool, based on the union of two minimum spanning trees, for correlation networks to

examine the change in the correlation structures of a gene set between two conditions and highlight influential genes

(hubs).

Conclusions: Package GSAR provides a set of multivariate non-parametric statistical methods that test a complex null

hypothesis against specific alternatives. The methods in package GSAR are applicable to any type of omics data that

can be represented in a matrix format. The package, with detailed instructions and examples, is freely available under

the GPL (> = 2) license from the Bioconductor web site.
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Background
The idea of considering functional units (e.g., molecular

pathways) instead of individual components (e.g., genes)

in studying omics data was first employed by Mootha

and colleagues [1], in analyzing microarray gene expres-

sion data of diabetic subjects against healthy controls.

While analysis of individual gene expressions did not de-

tect any significant changes, the pathway level approach

named Gene Set Enrichment Analysis (GSEA) indicated

that the group of genes involved in oxidative phosphor-

ylation was overall under-expressed in diabetics although

individual genes were on average only 20% under-

expressed in diabetics [1]. Since that time, many meth-

odologies for finding differentially expressed gene sets

have been suggested and are collectively named Gene

Set Analysis (GSA) approaches [2, 3]. The benefits of

pathways analysis can be summarized as follows. First,

pathway level analysis incorporates accumulated bio-

logical knowledge into the results and conveys more ex-

planatory power than a long list of seemingly unrelated

differentially expressed genes [3]. Second, pathway ana-

lysis accounts for intergene correlations and facilitates

the detection of small or moderate changes in genes ex-

pression that could be overlooked by univariate tests.

Third, by arranging genes in pathways (gene sets) the

number of simultaneously tested hypotheses is reduced,

increasing the detection power after applying correction

for multiple testing. These benefits made pathway ana-

lysis the method of choice in analyzing omics data in

general and gene expression data in particular.

GSA approaches can be either competitive or self-

contained. Competitive approaches compare a gene set

in two conditions against its complement that consists

of all the genes in the dataset excluding the genes in

the set itself, and self-contained approaches test if a

gene set is differentially expressed between two
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experimental conditions. Some competitive approaches

can be influenced by data filtering and the size of the

dataset [4] while others can be influenced by the pro-

portion of up-regulated and down-regulated genes in a

gene set between two experimental conditions [5].

While competitive approaches test the same alternative

hypothesis against null hypothesis, self-contained ap-

proaches provide the flexibility of testing different al-

ternative hypotheses that may correspond to different

biological phenomena thus increasing the biological in-

terpretability of experimental results. We distinguish

the three major alternative hypotheses that can be tested by

GSA approaches: (1) differential expression (DE); (2) differ-

ential variability (DV); and (3) differential co-expression or

correlation (DC) of gene sets between two conditions.

Package GSAR (Gene Set Analysis in R) provides a set of

self-contained non-parametric multivariate GSA methods

that test each of these three different hypotheses.

The majority of GSA methods were developed to iden-

tify gene sets with differences in mean gene expressions

between two conditions for microarray or RNA-seq data.

Some DE tests were true multivariate methods (e.g.,

ROAST [6]) while others aggregate the outcome of gene-

level univariate tests (e.g., SAM-GS [7]). N-statistic [8]

tests more general alternative hypothesis whether two

multivariate distributions are different. Detailed discussion

and comparative power analysis for selected methods is

presented in [5, 9]. Package GSAR implements one multi-

variate method (WWtest) to identify differences in distri-

butions between two conditions and two non-parametric

multivariate methods to identify differences in mean ex-

pressions (KStest and MDtest) using sample ranking based

on the minimum spanning trees (MSTs) [10]. The analysis

of DV for individual genes identifies genes with significant

changes in expression variance between two conditions

[11–15]. The DV analysis frequently complements or

provides more relevant explanations for biological phe-

nomena than simple difference in mean expressions.

For example, a theoretical model for evolutionary fitness

suggested that increased gene expression variability is a

defining characteristic of cancer [16]. This suggestion was

further supported by the observation of increased variabil-

ity in DNA methylation of specific genes across five differ-

ent cancer types [17]. Moreover, some genes were found

to show consistently hyper-variability in tumors of differ-

ent origins as compared to normal samples [18] and such

genes can serve as a robust molecular signature for mul-

tiple cancer types [18, 19]. Although software packages for

univariate methods testing DV are available, to the best of

our knowledge multivariate methods for gene set DV ana-

lysis are non-existing. Package GSAR implements two

non-parametric DV approaches: (1) an approach that uses

the aggregation of P-values from univariate F-tests as a

test statistic and sample permutations to estimate the null

distribution of the statistic; and (2) a multivariate

approach that tests the hypothesis of differential p-

dimensional sample variability between two conditions

using MST-based sample ranking with two different

statistics [10].

In addition to tests of differential mean and variance,

GSAR implements the Gene Set Net Correlation Ana-

lysis (GSNCA) method that tests a multivariate null hy-

pothesis that there is no change in the net correlation

structure of a gene set between two conditions [20]. It

examines how the regulatory relationships and concord-

ance between gene expressions vary between phenotypes.

GSA approaches for identifying the differential gene set

co-expression (correlation) have been also described in lit-

erature. For example, Gene Sets Co-expression Analysis

(GSCA) aggregates the pairwise correlation differences

between two conditions [21], while other methods such

as the differentially Co-expressed gene Sets (dCoxS) ag-

gregates differences in relative entropy [22]. Other ap-

proaches for the differential co-expression analysis of

gene sets account for changes in aggregated measures

of pairwise correlations [23, 24]. Yet another category

of methods such as the Co-expression Graph Analysis

(CoGA) identifies co-expressed gene sets by testing the

equality of spectral distributions [25]. For each experi-

mental condition CoGA constructs a full network from

pairwise correlations and compares the structural prop-

erties of the two networks by applying Jensen-Shannon

divergence as a distance measure between the graph

spectrum distributions [25, 26]. Package GSAR imple-

ments the GSNCA method [20] that assesses multivari-

ate changes in the gene co-expression network between

two conditions but does not require network inference

step. Net correlation changes are estimated by introdu-

cing for each gene a weight factor that characterizes its

cross-correlations in the co-expression networks. Weight

vectors in both conditions are found as eigenvectors of

correlation matrices with zero diagonal elements. GSNCA

tests the hypothesis that for a gene set there is no dif-

ference in the gene weight vectors between two condi-

tions [20]. Package GSAR pairs the GSNCA method

with a graphical visualization that uses MSTs of the

correlation networks to examine the change in the cor-

relation structures of a gene set between two conditions

and highlight the most influential (hub) genes. This

visualization facilitates interpretation of changes in a

gene set.

In what follows we provide detailed description of the

methods implemented in package GSAR, which is avail-

able from the Bioconductor project [27], and illustrate

its potential applications. The similarity and differences

between GSAR and other methods, implementing GSA

approaches (mostly available as Bioconductor packages)

are summarized in Additional file 1: Table S1.
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Implementation
Package GSAR has been implemented in R [27] and em-

ploys the igraph class in package igraph [28] to handle

and manipulate graph objects. Some of its implemented

methods were developed and tested in [10, 20] and

others are novel. Some of the methods in package GSAR

are based on the multivariate generalizations of the

Wald-Wolfowitz (WW) and Kolmogorov-Smirnov (KS)

tests presented in [29]. All the statistical tests imple-

mented are non-parametric in a sense that significance

is estimated using sample permutations. A schematic

overview of package GSAR is shown in Fig. 1. The mini-

mum required input to any GSAR function that tests a

single gene set consists of: (1) a gene expression matrix

with p genes (rows) and N = n1 + n2 samples (columns);

and (2) sample labels indicating to which phenotype

each sample belongs in a form of integer numbers 1 and

2. All statistical methods return results as a list including

P-values, test statistics for observed samples, and test

statistics for permuted samples.

Hypothesis testing

Consider two different biological phenotypes (conditions),

with n1 samples of measurements for the first and n2
samples of the same measurements for the second. Let

X ¼ xij
� �

pxn1
and Y ¼ yij

n o

pxn2
represent the normalized

measurements of p gene expressions of a gene set

(pathway) in two phenotypes where sample X.j(Y.j) is

the jth p-dimensional vector in one phenotype. Let X, Y

be independent and identically distributed with the dis-

tribution functions Fx, Fy, p-dimensional mean vectors

μx and μy, and p × p positive-definite and symmetric co-

variance matrices Cx and Cy. Statistical methods in

package GSAR can test specific alternative hypotheses.

Figure 2 illustrates these different alternative hypotheses

Fig. 1 GSAR package outline. The inputs for the statistical tests can be (1) the matrix of gene expression for a single gene set in the form of

normalized microarray or RNA-seq data and a vector of labels indicating to which condition each sample belongs; or (2) the matrix of gene expression

for all genes, a vector of labels indicating to which condition each sample belongs, and a list of gene sets. Each test returns P-value and, optionally, the

test statistic of observed data, test statistic for all permutations, and other optional outputs. Some functions produce graph plots
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using the simple example of a bivariate normal distribu-

tion which represent a gene set of size p = 2. The standard

bivariate normal distribution shown in panel A of Fig. 2 is

compared to the different alternatives shown in panels B,

C, D, and E which show different distribution, mean

(shift), variance (scale), and correlation as compared to

panel A. Some alternative hypotheses are more specific

than others. For example, different mean or variance

implies different distribution; however the opposite is

not necessarily true.

Minimum spanning tree (MST)

The p-dimensional N samples from two phenotypes X

and Y can be represented by an edge-weighted undirected

graph G(V,E) with vertices V = {v1,⋯, vN} corresponding

to samples and edge weights estimated by the Euclidean

distance between samples in the Rp space. The minimum

spanning tree (MST) of a graph G(V,E) is defined as the

acyclic subset of edges T1 E that is selected from the full

set of N(N-1)/2 possible edges in the graph to connect all

N vertices such that
P

i;j∈T 1
d vi; ; vj
� �

is minimal [29]. The

distance between vertices i and j in the MST, d(vi, vj), cor-

relates with their distance in Rp. This property allows the

multivariate generalization of multiple univariate test sta-

tistics so they could be used for p-dimensional expression

data of gene sets. The MST is built using a standard

function from package igraph where the used algorithm

is selected automatically. For weighted graphs, Prim’s

algorithm is chosen.

Required input

The required input for all the test functions in the package

GSAR can be in two modes: (1) single gene set mode,

where the matrix of gene expressions (or other gene-related

measurements, e.g., protein abundances) for a single

gene set and a numeric vector specifying the experi-

mental group or condition for each sample are pro-

vided; (2) multiple gene sets mode, where the full

matrix of gene expressions, a numeric vector specify-

ing the experimental condition, and a list of gene sets

(each item is a character vector of gene identifiers) are

provided (function TestGeneSets).

Data and examples

A processed version of the p53 dataset is included in the

package for demonstration and can be loaded using

data(p53DataSet). This dataset comprises 50 samples of

the NCI-60 cell lines: 17 cell lines carrying wild type

(WT) TP53 and 33 cell lines carrying mutated (MUT)

TP53 [30]. Transcriptional profiles obtained from Affyme-

trix microarrays (platform hgu95av2) were downloaded

from the Broad Institute's website. The processing steps

are listed in the reference manual and the package vi-

gnette (see Additional file 2). The vignette also demon-

strates the use of different tests in GSAR using the ALL

(microarray) and Pickrell (RNA-seq) datasets, available re-

spectively from the Bioconductor data packages ALL and

tweeDEseqCountData.

Fig. 2 An example of bivariate normal distribution illustrating specific

alternative hypotheses for a hypothetical gene set of size p = 2. a The

standard bivariate normal distribution; b differential distribution as

compared to panel A; c differential mean (shift) as compared to

panel A; d differential variance (scale) as compared to panel A;

e differential correlation between two components as compared to

panel A. While the left-side panel shows three-dimensional density

plots, the right-side panel shows the corresponding contour plots
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Results and discussion
This Section presents the statistical methods available in

package GSAR that test different statistical hypotheses.

Several examples based on simulated and real datasets

illustrate methods application.

Multivariate Wald-Wolfowitz test

In the multivariate WW test, the MST is constructed

and all the edges connecting two vertices from different

phenotypes are removed to split the MST into disjoint

trees. The standardized number of remaining disjoint

trees (R) is used as the test statistic [10, 29]

W ¼
R−E R½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var Rð Þ
p

The null distribution is estimated by permuting sample

labels and calculating R for a large number of times M.

The null distribution is asymptotically normal and H0 is

rejected for a small number of subtrees [29]. The signifi-

cance (P-value) is calculated as

P−valueWW ¼

XM

k¼1
I W k≤W obs½ � þ 1

M þ 1

where Wk is the test statistic of permutation k, Wobs is

the observed test statistic from the original data and I[.]

is an indicator function. Function WWtest in package

GSAR implements this method, testing the null hypoth-

esis H0 : FX = FY against the alternative H1 : FX ≠ FY,

where FX and FY are the distribution functions of X and

Y, respectively. The following R command implements

the method

WWtest(object, group, nperm = 1000, pvalue.only =

TRUE)

where object is a numeric matrix of gene expression

with columns and rows corresponding to samples and

genes, respectively, group is a numeric vector (with

values 1 and 2) indicating group associations for sam-

ples, nperm is the number of permutations used to esti-

mate the null distribution, and pvalue.only is a logical

parameter that indicates if returning the P-value only is

desired. When pvalue.only = FALSE, the observed statis-

tic, the vector of permuted statistics, and the P-value are

returned in a list (see Additional file 2 for examples of

real dataset analysis).

Figure 3 presents two illustrative examples: (1) The

MST of the pooled samples of X, Y ~ N(0p×1,Ip×p) (H0 is

true) is shown in panel A and its disjoint subtrees (R =

27) are shown in panel B; (2) The MST of the pooled

samples of X ~ N(0p×1,Ip×p) and Y ~ N(1p×1,Ip×p) (H0 is

Fig. 3 Two illustrative examples of the disjoint MST subtrees. (1) The MST of the pooled samples of X, Y ~ N(0p×1,Ip×p) (H0 is true) is shown in panel

a and its 27 disjoint subtrees (R = 27) are shown in panel b; (2) The MST of the pooled samples of X ~ N(0p×1,Ip×p) and Y ~ N(1p×1,Ip×p) (H1 is true) is

shown in panel c and its 3 disjoint subtrees (R = 3) are shown in panel d
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false) is shown in panel C and its disjoint subtrees (R = 3)

are shown in panel D. 0p×1 and 1p×1 are p-dimensional

mean vectors of zeros and ones, and Ip×p is the p × p iden-

tity matrix. Applying function WWtest to these two cases

yields P-value = 0.813 and P-value < 0.001, respectively.

Multivariate Kolmogorov-Smirnov and mean deviation

tests

The vertices in the MST are ranked based on a specific

scheme and the test statistic is calculated based on these

ranks. Package GSAR supports two statistics: (1) The

Kolmogorov-Smirnov (KS) statistic which calculates the

maximum deviation between the Cumulative Distribu-

tion Functions (CDFs) of the ranks between X and Y

samples, i.e., the maximum absolute difference between

the number of observations from X and Y ranked lower

than i, 1 ≤ i ≤N, is the test statistic [10, 29]

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1n2

n1 þ n2

r

max
i

dij j

where

di ¼
ri

n1
−
si

n2

and ri(si) is the number of vertices (observations) in

X(Y) ranked lower than i; (2) The mean deviation (MD)

statistic which calculates the average deviation between

the CDFs of the ranks between X and Y samples. The

MD statistic for a gene set of size p is defined as

D ¼
X

p

i¼1

P X; ið Þ−P Y ; ið Þ½ �

where

P X; ið Þ ¼

X

j∈X;j≤i
rαj

X

j∈X
rαj

and

P Y ; ið Þ ¼
X

j∈Y ;j≤i

1

n2

rj is the rank of sample j in the MST and the exponent α

is set to 0.25 to give the ranks a modest weight. Al-

though the MD statistics use sample ranks here, a simi-

lar statistic that calculates the average deviation of CDFs

of gene ranks between a gene set and its complement

has been used successfully in the context of single sam-

ple gene set enrichment analysis [5, 31]. For both KS

and MD statistics, the null distribution is estimated by

permuting sample labels and calculating the statistic D

for a large number of times M. While the MD statistic

has asymptotically a normal distribution and tests a two-

sided hypothesis, the KS statistic asymptotically follows

the Smirnov distribution [29] and tests a one-sided hy-

pothesis. Hence the P-values for these two methods are

estimated as

P−valueMD ¼

XM

k¼1
I Dkj j≥ Dobsj j½ � þ 1

M þ 1

P−valueKS ¼

XM

k¼1
I Dk≥Dobs½ � þ 1

M þ 1

Sample ranking scheme in the MST can be designed

to confine a specific alternative hypothesis more power.

Two alternatives are currently considered in GSAR.

First, functions KStest and MDtest test the null hypoth-

esis H0 : μX ¼ μY against the alternative H1 : μX≠μY .

The MST is rooted at a vertex with the largest geodesic

distance (i.e., one of two vertices that form the ends of

the longest path in the tree) and the rest of the vertices

are ranked according to the high directed preorder

(HDP) traversal of the tree [10, 29]. Function HDP.rank-

ing in package GSAR returns the vertices ranks in a

MST according to the HDP traversal. Second, the radial

Kolmogorov-Smirnov (function RKStest) and radial

mean deviation (function RMDtest) methods test the

null hypothesis H0: var(X) ≠ var(Y) against the alterna-

tive H1: var(X) ≠ var(Y) or equivalently H0 : σX ¼ σY

against H1 : σX≠σY where σX and σY are respectively

the standard deviations of X and Y. The MST is rooted

at the vertex of smallest geodesic distance (centroid) and

vertices are ranked based on their depth and distance

from the root such that ranks are increasing radially

from the root (function radial.ranking). Although the

power analysis in [10] showed that the radial ranking

scheme provides the differential variance hypothesis with

higher detection power than the differential mean hy-

pothesis, yet the power of detecting the latter alternative

is non-negligible. To attain higher confidence in the

results of RKS or RMD methods, they can be supple-

mented by KS or MD methods and then only the gene

sets that satisfy: P-valueRKS < α and P-valueKS > α (or

P-valueRMD < α and P-valueMD > α) should be considered.

Then the null will be rejected when the alternative H1 :

σX≠σY is true but not the alternative H1 : μX≠μY . The

following R commands implement the KS, MD, RKS, and

RMD methods

KStest(object, group, nperm= 1000, pvalue.only = TRUE)

MDtest(object, group, nperm= 1000, pvalue.only = TRUE)

RKStest(object, group, mst.order = 1, nperm = 1000,

pvalue.only = TRUE)

RMDtest(object, group, mst.order = 1, nperm = 1000,

pvalue.only = TRUE)

where object is a numeric matrix of gene expression

with columns and rows corresponding to samples and
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genes, respectively, group is a numeric vector (with values

1 and 2) indicating group associations for samples, nperm

is the number of permutations used to estimate the null

distribution, mst.order is a numeric value indicating the

number of MSTs considered in the radial ranking proced-

ure (see the union of MSTs subsection below for further

details), and pvalue.only is a logical parameter that indi-

cates if returning the P-value only is desired. When

pvalue.only = FALSE, the observed statistic, the vector

of permuted statistics, and the P-value are returned in a

list (see Additional file 2 for examples of real dataset

analysis).

Figure 4 presents two illustrative examples using nor-

mal (23 samples) and clear cell renal cell carcinoma (32

samples) samples from a real gene expression dataset

[32] that is available from the gene expression omnibus

repository (accession number GSE15641). Selected gene

sets from the Kyoto encyclopedia of genes and genomes

(KEGG) [33] were obtained from the curated collection

of the molecular signatures database (MSigDB) [34]. The

MST of the pooled normal and tumor samples, consider-

ing 67 genes from the KEGG ‘renal cell carcinoma’ gene

set is shown in panel A. The samples of each phenotype

are grouped together in the tree, suggesting separation be-

tween the two phenotypes in Rp. The KS test rejects the

null hypothesis (H1 : μX≠μY is true) while the RKS test

fails to do so. The MST of the pooled samples, consid-

ering 19 genes from the KEGG ‘Glycosylphosphatidyli-

nositol anchor biosynthesis’ gene set is shown in panel

B. Normal samples constitute the backbone of the MST

while tumor samples form the branches. The centroid

vertex in the MST naturally occupies the center of the

backbone and hence the difference in ranks is large be-

tween the two phenotypes. The RKS test rejects the

null hypothesis (H1 : σX≠σY is true), while the KS test

fails. The HDP and radial rankings of vertices in the

MST are shown above and below the vertices in both

panels. While most vertices are represented by circles,

the roots of the HDP and radial rankings are highlighted

as rectangular and square shapes, respectively.

Aggregated F-test of variance

The univariate F-test is used to find differential variability

in individual genes similar to [12]. The F-statistic for

gene i, F i ¼ σX i
=σY i

, represents the ratio between the

phenotype variances and follows the F-distribution with

n1-1 and n2-1 degrees of freedom when the null hy-

pothesis H0 : σX i
¼ σY i

is true for gene i. The null hy-

pothesis is rejected if Fi is too large or too small. Then

individual P-values for the genes in a gene set are ag-

gregated to obtain a score statistic. Comparisons among

Fig. 4 Two illustrative examples using 23 normal samples and 32 clear cell renal cell carcinoma samples from the GSE15641 dataset. a The MST

of the pooled normal and tumor samples considering 67 genes from the KEGG renal cell carcinoma gene set. The samples of each phenotype are

grouped together in the tree and the KS test rejects the null (H1 : μX≠μY is true) but not RKS test; b The MST of the pooled normal and tumor

samples considering 19 genes from the KEGG glycosylphosphatidylinositol (GPI) anchor biosynthesis gene set. Normal samples constitute the backbone

of the MST while tumor samples form the branches and RKS test rejects the null (H1 : σX≠σY is true) but not KS test. The roots of the HDP and radial

ranking schemes in the MSTs are highlighted with rectangle and square shapes, respectively
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aggregation methods such as Fisher’s probability combin-

ing method, Stouffer’s method, and Gamma method in

the context of DE analysis determined that Fisher’s

method performed best in terms of power and Type I

error rate [9, 35]. Assigning all individual P-values (Pi, 1 ≤

i ≤ p) equal weights, function aggrFtest uses Fisher’s

method to calculate the aggregated test statistic [36]

T ¼ −2
X

p

i¼1

loge Pið Þ ¼ −2 loge

Y

p

i¼1

Pi

 !

When all P-values are independent, the test statistic T

follows the Chi-square distribution with 2p degrees of

freedom. Since independence assumption is often vio-

lated for expression data, significance is estimated by

permuting sample labels and calculating T many times

(M). P-value is the proportion of permutations yielding

equal or more extreme statistic than the one obtained

from the original observed data, i.e.,

P−valueaggrFtest ¼

XM

k¼1
I T k≥T obs½ � þ 1

M þ 1

This method tests the null hypothesis that all genes

in the gene set show no differential variance between

two conditions against the alternative hypothesis that

at least one gene shows differential variance, i.e., the

null ∀i : σX i
¼ σY i

where 1 ≤ i ≤ p against the alterna-

tive ∃i : σX i
≠σY i

. The following R command imple-

ments the method

AggrFtest(object, group, nperm = 1000, pvalue.only =

TRUE)

The command parameters are exactly the same as de-

fined above for other methods.

Gene sets net correlations analysis

The GSNCA method detects the differences in net cor-

relation structure for a gene set between two conditions

[20] and is implemented in function GSNCAtest. The

genes under each phenotype are assigned weight factors

which are adjusted simultaneously such that equality is

achieved between each gene’s weight and the sum of its

weighted correlations with other genes in a gene set of

p genes

wi ¼
X

j≠i

wj rij
�

�

�

�; 1≤i≤p

where rij is the correlation coefficient between genes i

and j. The problem is solved as an eigenvector problem

with a unique solution which is the eigenvector corre-

sponding to the largest eigenvalue of the genes’ correl-

ation matrix [20]. The test statistic wGSNCA is the first

norm between the two scaled weight vectors under two

phenotypes where each vector is multiplied by its norm.

This statistic tests the null hypothesis H0 :wGSNCA = 0

against the alternative H1 :wGSNCA ≠ 0 and detects

changes in the intergene correlations structure between

two phenotypes. This test differs from other methods

like GSCA and dCoxS that detect any changes in the

correlation matrix, i.e., H0 : CX =CY against the alterna-

tive H1 : CX ≠ CY, in the sense that it detects how correla-

tions change relative to each other. For example, when

CX = a CY and a is constant, eigenvectors of of CX and

CY are identical, however they have different eigenvalues

and average difference in pairwise correlations between

the two conditions. Hence GSCA detects differential

correlation but GSNCA does not detect change in the

net correlation structure. The following R command im-

plements the method (see Additional file 2 for examples

of real dataset analysis)

GSNCAtest(object, group, nperm= 1000, cor.method =

"pearson", check.sd =TRUE, min.sd = 1e-3, max.skip = 10,

pvalue.only = TRUE)

where check.sd is a logical parameter indicating if the

standard deviations of gene expressions should be checked

for small values before intergene correlations are com-

puted, min.sd the minimum allowed standard deviation

for any gene in the gene set where execution stops and an

error message is returned if the condition is violated,

max.skip is maximum number of skipped random permu-

tations which yield any gene with a standard deviation less

than min.sd, and cor.method is a character string indicat-

ing which correlation coefficient is used to calculate inter-

gene correlations (Pearson, Spearman or Kendall). The

rest of the parameters are exactly the same as defined

earlier for other methods.

The need to guard against zero standard deviation arises

in the case of RNA-seq count data where non-expressed

genes may yield zero counts across most samples and pro-

duce zero or tiny standard deviation for one or more genes

in the gene set. Such situation produces an error while com-

puting the correlation coefficients between genes. When

check.sd =TRUE, standard deviations are checked in ad-

vance and if any is smaller than min.sd (default is 10-3), the

execution stops and an error message is returned indicating

the number of feature causing the problem. Another similar

problem arises when non-expressed genes yield zero counts

across some samples under two phenotypes. Permuting

sample labels may group such zero counts under one

phenotype by chance and produce a standard deviation

smaller than min.sd. To allow the method to skip such per-

mutations without causing excessive delay, an upper bound

is set for the number of allowed skips (max.skip). If the

upper limit is exceeded, an error message is returned.

The union of MSTs

The second MST is defined as the MST of the full net-

work after excluding the links of the first MST, i.e., the
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subgraph G(V,E-T1). Package GSAR provides function

findMST2 to find the union of the first and second

MSTs (referred to by MST2). The wrapper function

plotMST2.pathways plots the MST2 of a gene set under

two conditions side-by-side to facilitate the comparison

between the correlation structure and hub genes. A gene

with high intergene correlations in the set tends to oc-

cupy a central position and has relatively high degree in

the MST2 because the shortest paths connecting the

vertices of the first and second MSTs pass through such

gene. In contrast, a gene with low intergene correlations

occupies a non-central position and has low degree (typ-

ically 2). This property of the MST2 makes it a valuable

visualization tool to examine the full correlation network

by highlighting the most highly correlated genes. We il-

lustrate the MST2 approach by considering selected

gene sets from the p53 dataset.

Figure 5 shows the MST2 of the ‘Lu tumor vasculature

up’ gene set obtained from the C2 collection (version

3.0) of curated gene sets in the MSigDB [34]. This gene

set consists of genes over-expressed in ovarian cancer

endothelium and was detected by GSNCA (P-value <

0.05) but not by GSCA (P-value > 0.05) [20]. The MST2

in Fig. 5a (wild type p53) identifies gene TNFAIP6

(tumor necrosis factor, α-induced protein 6) as a hub

genes. This gene was found to be 29.1 fold over-

expressed in tumor endothelium, and was suggested to

be specific for ovarian cancer vasculature [37]. Identify-

ing TNFAIP6 as a hub gene in this gene set suggests that

it could be an important regulator of ovarian cancer and

supports the original observation. The MST2 in Fig. 5b

(mutated p53) identifies gene VCAN (Versican) as a hub

gene. VCAN is involved in cell adhesion, proliferation,

angiogenesis and plays a central role in tissue morpho-

genesis and maintenance and its increased expression is

observed for tumor growth in multiple tissue types [38, 39].

This gene contains p53 binding sites and its expression cor-

relates with p53 dosage [40]. Hence, the role of both hub

genes identified by MST2 (TNFAIP6 and VCAN) and pre-

vious findings in the literature support identifying them as

hubs by the MST2 and indicates the usefulness of MST2 in

provide information regarding the underlying biological

processes in well-defined gene sets.

In addition to gene expression data, MST2 can be

informative in deciphering the properties of protein-

protein interaction (PPI) networks by highlighting the

Fig. 5 MST2 of the Lu tumor vasculature up gene set obtained from the C2 collection of curated gene sets in MSigDB. a wild type p53 samples

show TNFAIP6 as the hub gene; b mutated p53 samples show VCAN as the hub gene
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minimum set of essential interactions among proteins.

PPI networks can be represented by graphs with un-

directed binary edges and the adjacency matrix is used

here instead of the correlation matrix to find the

MST2. Figure 6 (reproduced with permission from

[41]) shows the yeast PPI network constructed using

information retrieved from PINA [42] and String [43]

databases of interactions. Panel A shows the first-

degree neighborhoods around the DBP2 yeast helicase

and panel B shows its MST2. While the full network

of first-degree neighborhoods appears crowded and

disordered, the corresponding MST2 representation

reveals fine network structure with highly connected

molecular chaperons, protein modifiers and regulators

occupying central positions (e.g., UBI4 and SSB1) [41].

Functions RKStest and RMDtest can also use the union

of the first k MSTs (1 < k ≤ 5) instead of the first MST to

include more links before performing their ranking pro-

cedure to achieve higher detection power. Generally,

power gain diminishes when k > 3 and including higher

order MSTs achieves no benefit.

Computational considerations

Non-parametric methods have longer execution time as

compared to parametric methods, however they are ne-

cessary whenever distributional assumptions are vio-

lated. Additional file 1: Table S2 provides an assessment

of the execution times expected when selected methods

from package GSAR are used with different sample size

and gene set size parameters. Additional file 1 also pre-

sents a simple example with R code performing parallel

computing of a selected group of gene sets from the

first case study in Additional file 2. Parallel computing

of large groups of gene sets reduces execution times

significantly and is possible whenever multiple core ma-

chines or high performance computing (HPC) facilities

are accessible.

Conclusions

Bioconductor package GSAR provides a set of statistical

methods for analyzing omics datasets. The package also

implements a convenient graphical visualization tool to

aid in deciphering the hidden structures in complex net-

works. The methods in package GSAR are applicable to

any type of omics data that can be represented in a

matrix format.

Additional files

Additional file 1: Additional document presenting computational

considerations and uniqueness of package GSAR. (DOCX 32 kb)

Additional file 2: Vignette of package GSAR. (PDF 732 kb)

Additional file 3: Source file ‘GSAR_1.9.1.tar.gz’. (GZ 2174 kb)
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