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Abstract: Feature Pyramid Network (FPN) has been widely applied in the task of salient object
detection (SOD), which has achieved great performance. However, most existing FPN-based SOD
methods still have some limitations, such as insufficient guidance due to gradual dilution of semantic
information, excessive computation leading to slow inference speed, and low efficiency of training
models. In this paper, we design a novel Gradual Shrinkage and Cyclic Interaction Network (GSCINet)
for efficient and accurate SOD, consisting of a Multi-Scale Contextual Attention Module (MSCAM)
and an Adjacent Feature Shrinkage and Interaction Module (AFSIM). Specifically, the MSCAM
aims at efficiently capturing multi-scale and multi-receptive-field contextual attention information
through a series of well-designed convolutions and attention weight matrices of different scales to
enhance the performance of initial input features. Subsequently, in AFSIM, we propose a gradual
shrinkage structure and introduce a circular interaction mechanism to optimize the compressed
features with less calculation cost, thereby enabling fast and accurate inference of salient objects.
Extensive experimental results demonstrate the high efficiency and superiority of GSCINet against
17 state-of-the-art (SOTA) saliency detection methods under multiple evaluation metrics.

Keywords: computer vision; deep learning; feature pyramid network; multi-scale contextual attention
features; salient object detection

1. Introduction

Inspired by the human visual perception mechanisms, salient object detection (SOD) is
dedicated to detecting and segmenting the most attractive objects or regions from an image
or video. With its ability to process data quickly and efficiently, SOD has been widely used
as a pre-processing stage in many computer vision tasks, such as image retrieval [1], visual
tracking [2], style transfer [3], and image or video compression [4], among several others.

Early SOD methods [5–9] predict saliency maps by using hand-crafted features
(e.g., color, texture, contrast). However, these SOD methods have limited capacity for
detecting salient objects with complicated contours in cluttered backgrounds due to the
under-utilization of high-level semantic information. Recently, the application of convo-
lutional neural networks (CNNs) [10,11] and full convolutional networks (FCNs) [12–18]
has successfully broken these limitations and has been widely used in SOD tasks with its
efficient multi-level features extraction ability.

Designing effective model architectures that can capture more powerful feature rep-
resentations have been a research hotspot in SOD tasks. Additionally, how to utilize
complementary information (i.e., high-level semantic information and low-level spatial
detail information) from different level features is also a key issue for accurate SOD. One
typical architecture used to generate feature representations is the feature pyramid network
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(FPN) structure [19], which mainly contains an encoder of a bottom-up pathway, a decoder
of a top-down pathway, and some side connections. Various SOD methods [12,14,16,20–23]
have been proposed based on the FPN structure and have accomplished great perfor-
mance. However, when the semantic information of the high-level features guides the
low-level features, this semantic information is diluted as the number of network layers
increases, and thus it cannot effectively locate salient objects (as illustrated in the last three
columns of Figure 1). In addition, the integration of large resolution features will cause
high computational load, resulting in slow inference speed and difficulty in model training.

UCF PoolNet              R2NetImage GT Ours

Figure 1. Illustration for saliency maps of the proposed GSCINet methods compared with other
FPN-based SOD methods, including UCF [12], PoolNet [20] and R2Net [21]. Note that GT denotes
ground truth.

In this paper, we rethink the feature pyramid network (FPN) structure [19] and pro-
pose a Gradual Shrinkage and Cyclic Interaction Network (named as GSCINet) for accurate
and efficient SOD. The proposed GSCINet method consists of two components, i.e., a Multi-
Scale Contextual Attention Module (MSCAM) and an Adjacent Feature Shrinkage and
Interaction Module (AFSIM). Unlike classical FPN structure [19], the GSCINet method
aims to reduce the computational load and increase the flow of diverse information by
progressively aggregating and shrinking adjacent features and a cyclic interaction strategy.
More specifically, we first used the MSCAM to simultaneously capture local and global con-
textual attention information by utilizing light-weight convolutions and channel-attention
matrices of different scales, which can help learn more discriminative features effectively.
Subsequently, the AFSIM was adopted to gradually aggregate adjacent features and it-
eratively interact with complementary information at different level features in a cyclic
structure to generate high-quality feature representations. Finally, we trained the whole
GSCINet network in an end-to-end manner and accomplished superior prediction results
compared with 17 state-of-the-art (SOTA) SOD methods on five public benchmark datasets.

In summary, our main contributions are summarized as follows:
(1) We propose a Multi-Scale Contextual Attention Module (MSCAM), which can

efficiently extract abundant contextual attention features with different receptive fields to
strengthen the performance of each initial input feature.

(2) We constructed an Adjacent Feature Shrinkage and Interaction Module (AFSIM) to
reconstruct multi-level features, which is capable of reducing computational cost and inter-
acting with complementary information to generate high-quality feature representations.

(3) Extensive experimental results convincingly demonstrate the significant supe-
riority of the GSCINet method over 17 state-of-the-art SOD methods under different
evaluation metrics.
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2. Related Work
2.1. Traditional-Based SOD Methods

Over the past two decades, many SOD methods have been proposed to detect and
segment salient objects in real-world scenes [6,7,12,13,24–26]. Early SOD methods are
also called traditional SOD methods, which are mainly based on hand-crafted features
(e.g., color [27], contrast [7], and intensity [24]) and some heuristic priors (e.g., spatial
distribution prior [5], center prior [6], and background prior [9]) to predict saliency maps,
and more details can be found in [28].

Due to the inability to fully exploit high-level semantic features for understanding
image contents, these methods [5–7,9,24,27] have significant challenges in generating low-
quality saliency maps in the face of complex and cluttered scenes. Recently, with the rise of
deep learning, fully convolutional networks (FCNs)-based SOD methods [13,15,20,25,29,30],
thanks to their ability to efficiently capture and exploit multi-level features, have success-
fully broken these limitations and greatly improved the accuracy of saliency maps.

2.2. FCNs-Based SOD Methods

Inspired by the great success of FCNs in the semantic segmentation [31], FCNs-based
SOD methods can directly predict saliency maps instead of classification scores of image
blocks, which can not only greatly improve the computational efficiency, but also extract more
significant feature information. Most of the structures of these methods [12–15,20,21,23,26]
are based on a feature pyramid network (FPN) [19], as depicted in Figure 2a. For example,
Zhang et al. [12] utilized the reformulated dropout after several convolutional layers to
learn uncertain convolutional features for the SOD task. Next, Wang et al. [14] designed
a localization-to-refinement network, where the former can better localize salient objects
and the latter helps refine saliency maps. Zhang et al. [13] devised a bi-directional structure
based on FPN to pass messages between multi-level features, where a gate function was
exploited to control the message passing rate. To compensate for the gradual dilution of
top-down semantic information in FPN architecture, Liu et al. [20] developed a pyramid
pooling module (PPM). Feng et al. [21] introduced a residual learning strategy in the FPN
structure to gradually align the prediction for accurate SOD. Li et al. [26] proposed a
stacked U-shape network with channel-wise attention to enhance the discriminant ability
of feature representations for saliency detection. Mei et al. [23] embedded a dense context
exploration (DCE) module into the FPN structure to enhance the ability of the network to
learn salient features.

Input Output Input

Output

(a) Feature Pyramid Network (FPN) Structure (b) The GSCINet Network Structure

Figure 2. Illustration of different network structures. Left to right column: Feature Pyramid Network
(FPN) [19] and Our GSCINet Network structures are depicted, respectively.
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Although these methods have achieved great performance, they may infer salient
objects slowly and generate inaccurate saliency maps due to the limitations of the FPN
structure. To alleviate this problem, we designed a novel GSCINet network structure
(schematically shown in Figure 2b) that adequately captures the explicit and implicit
information and iteratively aggregates complementary information to generate high-quality
feature representations by adopting a shrink interaction strategy, thus achieving efficient
and accurate saliency detection.

3. The Proposed GSCINet Methods

In this section, we first present the overall architecture of the proposed GSCINet
method in Section 3.1. We then introduce two principal components (i.e., MSCAM and
AFSIM) in Sections 3.2 and 3.3 to elaborate the GSCINet method. Finally, in Section 3.4, we
describe the loss function of our training network.

3.1. Overall Architecture

Figure 3 depicts the complete architecture of the proposed GSCINet method. It mainly
contains two novel modules, i.e., a Multi-Scale Contextual Attention Module (MSCAM)
and an Adjacent Feature Shrinkage and Interaction Module (AFSIM). The MSCAM first
efficiently captures local and global contextual attention information to enhance the perfor-
mance of initial multi-level features at each layer by utilizing multiple dilated depth-wise
separable convolutions with different receptive fields and attention weights matrices of
different scales. In this way, the initial features are optimized to have richer saliency infor-
mation. After MSCAM, the AFSIM aggregates all optimized features through an adjacent
combination manner to progressively shrink the quantity and resolution of multi-level fea-
tures and then adaptively interacts with complementary information at each layer feature
by utilizing a recurrent strategy. Finally, the interacted features are aggregated again to
generate high-quality feature representations, and then we applied a convolution layer
with a 1 × 1 kernel and a sigmoid function on the feature to predict the final saliency map.

MSCAM
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MSCAM: Multi-Scale Contextual Attention Module

 

Saliency map
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Figure 3. The complete architecture of the proposed GSCINet method for fast and accurate salient
object detection, consisting of a Multi-Scale Contextual Attention Module (MSCAM) and an Adjacent
Feature Shrinkage and Interaction Module (AFSIM).

3.2. Multi-Scale Contextual Attention Module (MSCAM)

For the SOD task, it is necessary to extract abundant contextual information for efficiently
locating and segmenting salient objects. Some existing SOD methods [13,26,29,30,32,33] use
different convolutions to capture contextual information and have achieved significant
performance. However, not all contextual information is relevant to the salient objects
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in the feature channels, and on the contrary, some noise information may interfere with
the prediction of salient objects. In addition, the superposition of a large number of
convolutions will greatly increase the parameters and computation. At this point, we
design the MSCAM that captures different scale contextual attention information with fewer
parameters to increase the effectiveness of positive contextual information. In this module,
the representational power of all initial multi-level features is enhanced, benefiting from
the integrated multi-scale contextual attention features. Figure 4 shows the architecture of
the proposed MSCAM.

Un

DDSC

AWM

DDSC

AWM

DDSC

AWM

DDSC

AWM

C

Conv,

1 1

Conv,

1 1

On

GAP

FC

ReLU

FC

Sigmoid

DDSConv

BN

ReLU

Element-wise addition

Element-wise multiplication

C Concatetation

DDSConv Dilated depthwise separable 

convolution

AWM Attention weight metrix

Figure 4. Detailed illustration of the proposed Multi-Scale Contextual Attention Module (MSCAM).

Specifically, we took the ResNet-50 [34] as the backbone network to extract initial
multi-level features U = {U1, U2, U3, U4, U5} from the first pooling layer and the following
four convolutional blocks of the backbone. We used a convolution layer with a 1 × 1 kernel,
a Batch Normalization (BN) and a ReLU activation function on each level feature for
dimension reduction, resulting in each feature with a channel number of 128. Unlike
previous methods [13,14,23,25,26,32], the MSCAM adopts multiple dilated depth-wise
separable convolutions with different dilation rates (i.e., 0, 2, 4, 6) to capture multi-receptive-
field contextual information with fewer parameters and computation. It should be noted
that contextual information at different scales is correlated due to the introduction of side
connections. As depicted in Figure 4, in different branches, dilated depth-wise separable
convolutions with different dilation rates are applied to each input initial feature. Therefore,
we calculated multi-scale contextual information (Mi) of Un (n = 1, 2, 3, 4, 5) as follows:{

Mi = Ai(δ(Un)), i = 1
Mi = Ai(δ(Un) + Mi−1), i = 2, 3, 4

(1)
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where Ai denotes the dilated depth-wise separable convolution at branch i and δ represents
a dimension reduction that contains a convolution layer with 1 × 1 × 128 kernel, a Batch
Normalization (BN), and a ReLU activation function.

Considering the inequality of information at different feature channels, we attempted
to leverage the captured multi-scale contextual information Mi to learn diverse attention
matrices for the purpose of selecting more useful information. To this end, the MSCAM
uses a series of dimensionality reduction and activation operations to generate the channel-
attention weight matrix A, i.e.,

A = σ|F2(τ(F1(λ(Mi)))) |, (2)

where σ denotes the sigmoid function, F1 and F2 are two fully connected (FC) layers, τ
represents the ReLU function, λ is global average pooling operation, and Mi presents
multi-scale contextual information. As a result, we can realize the selection of important
object information from different feature channels based on Equation (2). With the attention
weight A, we effectively strengthen the performance of each multi-scale contextual feature.
The mathematical formula is defined as:

M̂i = Mi ⊗Ai, i = 1, 2, 3, 4 (3)

whereAi is the ith element in theA and⊗ denotes element-wise multiplication. Contextual
attention information at different scales is then aggregated by a single concatenation,
and residual connections are introduced to generate features O = {O1, O2, O3, O4, O5} with
abundant saliency information, i.e.,

On = γ(Cat(M̂1, M̂2, M̂3, M̂4)) + γ(Un), n = 1, 2, 3, 4, 5 (4)

where γ represents the dimension reduction and Cat and + denote the concatenation and
element-wise addition, respectively.

3.3. Adjacent Feature Shrinkage and Interaction Module (AFSIM)

Intuitively, the different level features are complementary [13,21,22,25,35], i.e., high-
level features containing rich semantic information are helpful for locating the salient
objects, while low-level features can provide the spatial detail information to complement
the boundaries of the salient objects. The classical FPN structure [19] uses side connec-
tions to transfer the information between features at the same scale, which interact with
information of the different scale features via a top-down pathway. Based on the above
observation, the top-level features are progressively up-sampled and then fused with the
corresponding features in the top-down pathway to increase the semantic information of
the bottom-level features. However, semantic information is continuously diluted in the
process of continuous aggregation, resulting in not much semantic information actually
reaching the bottom-level features. In addition, due to the ever-expanding resolution
of downward aggregation features, this kind of structural reasoning speed is slow and
time-consuming to train. For that, we designed the AFSIM to progressively shrink and
circularly restructure multi-level features for fast and accurate SOD tasks.

Figure 3 gives the structure of the proposed AFSIM. Specifically, the AFSIM consists of
three steps, i.e., shrinkage, interaction, and aggregation. Firstly, we adopted a combination
of adjacent features to reduce the number of multi-level features, thereby realizing the
gradual reduction of five sub-layer features into three sub-layer features T = {T1, T2, T3},
which can be represented as:

Ti = Oi+2 + Oi+1 + Oi, i = 1, 2, 3 (5)

where + denotes element-wise addition and O presents multi-level features from the
MSCAM. Note that we used the element-wise addition instead of concatenation, which
is mainly based on the fact that the latter will greatly increase the number of feature
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channels, resulting in high computational cost. Secondly, considering the complementarity
of different level features, different from [15,22,25,33,35] employing a single top-down
interaction manner, we interacted with multi-level features T via a circular interaction
strategy, i.e., 

T2 = T2 + T3
T̃1 = T1 + T2
T̃2 = T̃1 + T2
T̃3 = T̃2 + T3

, (6)

where T̃n denotes the interacted multi-level feature at the nth level. Finally, to further
increase the semantic information and spatial detail information, we again aggregated the
interacted multi-level feature T̃n with the top-level feature O5 and the bottom-level feature
O1 to generate a high-quality feature representation P. The entire process was formulated
as follows:

P = T̃1 + T̃2 + T̃3 + O5 + O1. (7)

Through the collaboration of MSCAM and AFSIM, the performance of each initial
multi-level Un is remarkably improved. Moreover, the number of the optimized multi-level
features are shrunk to reduce the calculation and improve reasoning efficiency. Additionally,
the high-level semantic information and the low-level spatial structure details are adaptively
interacted to gradually reconstruct and strengthen the features. Overall, this enables
the proposed GSCINet method to efficiently and accurately predict salient objects with
complicated structures in cluttered real-world scenes.

3.4. Loss Function

Given the aggregated features, we appended a 1 × 1 convolution layer, along with
a sigmoid activation function to produce the initial saliency maps. To obtain complete
saliency maps with sharp boundaries, we trained the GSCINet network with a hybrid loss
defined as:

IHybird = IBCE + IIoU , (8)

where IBCE and IIoU denote binary cross-entropy(BCE) loss function [36] and IoU loss
function [37].

The BCE loss function [36] is most widely used in segmentation and binary classifica-
tion, which is calculated as follows:

IBCE = − ∑
(m,n)

[Y(m, n) log(X(m, n)) + (1−Y(m, n)) log(1− X(m, n))], (9)

where X and Y present the predicted salient object and ground truth, respectively. Both
X(m, n) ∈ [0, 1] and Y(m, n) ∈ {0, 1} are the probability of the salient objects at the position
(m, n). However, the BCE loss function that only focuses on the loss of each individual
pixel always ignores the loss of part of the complete structure in the images, and it is not
conducive to supervising the generation of saliency maps with better quality. Hence, we
introduced the IoU loss function [37] to concentrate on more complete saliency regions,
formulated as:

IIoU = 1−
∑

(m,n)
[X(m, n)×Y(m, n)]

∑
(m,n)

[Y(m, n) + X(m, n)−Y(m, n)× X(m, n)]
, (10)

We adopted the Adam optimizer to train the proposed GSCINet method, and it directly
generated the final saliency maps without any post-processing.
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4. Experiment
4.1. Datasets

We comprehensively evaluated the proposed GSCINet method on five public bench-
mark datasets, including ECSSD [38], PASCAL-S [39], HKU-IS [40], DUT-OMRON [41],
and DUTS-TE [42]. The ECSSD [38] and PASCAL-S [39] datasets consist of relatively small
of 1000 and 850 images, respectively. Some images in these two datasets contain cluttered
backgrounds, which are very challenging. The HKU-IS [40] dataset consists of 4447 images
with multiple salient objects. The DUT-OMRON [41] dataset comprises 5168 images with
complicated structures and different types. The DUTS-TE [42] dataset, derived from the
DUTS dataset, has 5019 images usually used for testing.

4.2. Experimental Details

We implemented the GSCINet method with the PyTorch framework on a PC equipped
framework NVIDIA 2080Ti GPU. The pre-trained ResNet-50 [34] network is adopted to
capture different level features. In the training process, each input image is resized at a
resolution of 320 × 320, and data augmentation is carried out by using random horizontal
flipping and rotation. We used the Adam optimizer with the momentum of 0.9 and the
weight decay of 5 × 10−4 for loss optimization. Additionally, the initial learning rate was
5 × 10−5, and the batch size was set to 12. It took about 10 h for our method to converge
for 150 epochs. During testing, the images were resized to 320 × 320 for network inference.
There was no post-processing (e.g., fully connected conditional random field (CRF)) to
improve the performance of the final predicted saliency maps. The proposed GSCINet
method can detect salient objects at a real-time speed of 40 FPS.

4.3. Evaluation Metrics

We used multiple standard evaluation metrics to test the performance of the GSCINet
method, including the Precision-Recall (PR) curve, F-measure (Fm) curve, Mean Absolute
Error (MAE), Average F-measure (AFm), Weight F-measure (WFm), and E-measure (Em).

PR curve: The PR curve contains precision and recall scores that are computed by
comparing the saliency maps with the ground truths to plot the PR curve with different
thresholds in the range of [0, 255].

F-measure (Fm) : Fm is computed by the weighted harmonic mean of precision and
recall to balance the importance of precision and recall, which is defined as follows:

Fm =
(1 + β2)× Precision× Recall

β2 × Precision× Recall
, (11)

where β2 is set to 0.3 to emphasize the precision over recall [43], and we adopted both
Average F-measure (AFm) and Weight F-measure (WFm) for comparison of our GSCINet
and other SOD methods.

Mean Absolute Error (MAE): MAE measures the pixel-level difference between the
saliency maps X and the ground truths Y, which is calculated by:

MAE =
1

W × H

W

∑
m=1

H

∑
n=1
|X(m, n)−Y(m, n)|, (12)

where H and W are height and width of the input images, respectively. X(m, n) is the
saliency value of the pixel at (m, n).

E-measure (Em) [44]: Em estimates the similarity between the saliency maps X and
the ground truths Y by computing local and global similarities and combining local pixel
values with image-level averages. It is defined as:

Em =
1

W × H

W

∑
m=1

H

∑
n=1
C(t), (13)
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where t is the alignment matrix and C(t) denotes the enhanced alignment matrix.

4.4. Comparison With State-of-the-Arts

To demonstrate the proposed GSCINet method, we quantitatively and qualitatively
compared it with 17 state-of-the-art SOD methods, including UCF [12], Amulet [25],
DGRL [14], RASNet [45], BDMPM [13], PoolNet [20], BASNet [16], TSPOANet [46],
AFNet [15], CPD [32], R2Net [21], CAGNet [29], GateNet [22], ITSD [47], DSRNet [30],
CANet [33], and SUCA [26]. For a fair comparison, all the comparative saliency maps
were directly provided by authors or running the available source codes. In addition,
the different evaluation values of all saliency maps were generated by using the same
evaluation code.

4.4.1. Quantitative Evaluation

Table 1 shows the quantitative comparison results of our GSCINet method against
17 state-of-the-art SOD methods on five public benchmark datasets under four evaluation
metrics (i.e., MAE, AFm, WFm, and Em). It can be seen that the proposed GSCINet method
outperforms other SOD methods on different SOD datasets. Specifically, our method
surpasses the second-best MAE by 5.88%, 4.69%, 10.35%, and 5.26% on ECSSD, PASCAL-S,
HKU-IS, and DUTS-TE datasets, respectively. This implies that GSCINet is capable of
predicting more pixels of the correct salient objects. Moreover, in terms of AFm, 0.923 vs.
0.917 of CPD [32] on ECSSD dataset, 0.831 vs. 0.819 of DSRNet [30], CAGNet [29], and
GateNet [22] on PASCAL-S dataset, 0.910 vs. 0.905 of CAGNet [29] on HKU-IS dataset,
0.838 vs. 0.822 of CAGNet [29] on DUTS-TE dataset, the performance is improved by
0.65%, 1.47%, 0.55%, and 1.95%, respectively. Similarly, the proposed GSCINet method
has achieved significant improvement under the evaluation metrics of WFm and Em. These
quantitative results demonstrate the great performance of GSCINet in predicting and
segmenting salient objects.

Table 1. Quantitative results on five public SOD datasets: the top three results are marked with red,
green, and blue. The symbols “↑/↓” indicate that the larger the result, the better, and the smaller the
result, the better.

Method Year,
Pub

ECSSD (1000) PASCAL-S (850) HKU-IS (4447) DUT-OMRON (5168) DUTS-TE (5019)
MAE ↓ AFm ↑ W Fm ↑ Em ↑ MAE ↓ AFm ↑ W Fm ↑ Em ↑ MAE ↓ AFm ↑ W Fm ↑ Em ↑ MAE ↓ AFm ↑ W Fm ↑ Em ↑ MAE ↓ AFm ↑ W Fm ↑ Em ↑

UCF 2017, ICCV 0.069 0.844 0.806 0.896 0.116 0.726 0.689 0.807 0.062 0.823 0.779 0.904 0.120 0.621 0.574 0.768 0.112 0.631 0.596 0.770
Amulet 2017, CVPR 0.059 0.868 0.840 0.912 0.100 0.757 0.728 0.827 0.051 0.841 0.817 0.914 0.098 0.647 0.626 0.784 0.085 0.678 0.658 0.803
DGRL 2018, CVPR 0.046 0.893 0.871 0.935 0.077 0.794 0.772 0.869 0.041 0.875 0.851 0.943 0.066 0.711 0.688 0.847 0.054 0.755 0.748 0.873

BDMPM 2018, CVPR 0.045 0.869 0.871 0.916 0.074 0.758 0.774 0.845 0.039 0.871 0.859 0.938 0.064 0.692 0.681 0.839 0.049 0.746 0.761 0.863
RASNet 2018, ECCV 0.056 0.889 0.857 0.922 0.101 0.777 0.731 0.838 - - - - 0.062 0.713 0.695 0.849 0.059 0.751 0.740 0.864
PoolNet 2019, CVPR 0.039 0.915 0.896 0.945 0.075 0.815 0.793 0.876 0.032 0.900 0.883 0.955 0.056 0.739 0.721 0.864 0.040 0.809 0.807 0.904
BASNet 2019, CVPR 0.037 0.880 0.904 0.921 0.076 0.771 0.793 0.853 0.032 0.896 0.889 0.946 0.057 0.756 0.751 0.869 0.048 0.791 0.803 0.884
AFNet 2019, CVPR 0.042 0.908 0.886 0.941 0.070 0.815 0.792 0.885 0.036 0.888 0.869 0.948 0.057 0.739 0.717 0.860 0.046 0.793 0.785 0.895
CPD 2019, CVPR 0.037 0.917 0.898 0.950 0.071 0.820 0.794 0.887 0.033 0.895 0.879 0.952 0.056 0.747 0.719 0.873 0.043 0.805 0.795 0.904

TSPOANet 2019, ICCV 0.046 0.900 0.876 0.935 0.077 0.804 0.775 0.871 0.038 0.882 0.862 0.902 0.061 0.716 0.697 0.850 0.049 0.776 0.767 0.885
R2Net 2020, TIP 0.038 0.914 0.899 0.946 0.069 0.817 0.793 0.880 0.033 0.896 0.880 0.954 0.054 0.744 0.728 0.866 0.041 0.801 0.804 0.901

CAGNet 2020, PR 0.042 0.914 0.892 0.939 0.076 0.819 0.789 0.882 0.034 0.905 0.885 0.947 0.057 0.744 0.718 0.859 0.045 0.822 0.797 0.904
ITSD 2020, CVPR 0.040 0.875 0.897 0.918 0.068 0.773 0.811 0.854 0.035 0.890 0.881 0.945 0.063 0.745 0.734 0.858 0.042 0.798 0.814 0.893

GateNet 2020, ECCV 0.040 0.916 0.894 0.943 0.067 0.819 0.797 0.884 0.033 0.899 0.880 0.953 0.055 0.746 0.729 0.868 0.040 0.807 0.809 0.903
DSRNet 2021, TCSVT 0.039 0.910 0.891 0.942 0.067 0.819 0.801 0.883 0.035 0.893 0.873 0.951 0.061 0.727 0.711 0.855 0.043 0.791 0.794 0.892
CANet 2021, TMM 0.044 0.900 0.878 0.936 0.073 0.813 0.792 0.879 0.037 0.882 0.866 0.946 0.058 0.730 0.720 0.859 0.044 0.785 0.788 0.890
SUCA 2021, TMM 0.036 0.915 0.906 0.948 0.067 0.818 0.803 0.886 0.031 0.897 0.890 0.955 - - - - 0.044 0.803 0.802 0.903
Ours - 0.034 0.923 0.911 0.953 0.064 0.831 0.811 0.898 0.029 0.910 0.900 0.957 0.054 0.757 0.736 0.862 0.038 0.838 0.823 0.920

Furthermore, we also provide PR curves and Fm curves on five public SOD datasets,
as shown in Figures 5 and 6. It can be observed that our method can achieve good results
on different thresholds and is also competitive with other SOD methods on challenging
saliency detection datasets. These results represent that our GSCINet is more robust than
other methods.
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Figure 5. Quantitative results of PR curves for GSCINet and other SOD methods on the five saliency
detection datasets.

0 50 100 150 200 250
Threshold

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F-
m
ea
su
re

ECSSD

DSRNet
ITSD
GateNet
CAGNet
R2Net
AFNet
BASNet
TSPOANet
PoolNet
DGRL
BDMPM
UCF
Amulet
Our

0 50 100 150 200 250
Threshold

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F-
m

ea
su

re

PASCAL-S

DSRNet
ITSD
GateNet
CAGNet
R2Net
AFNet
BASNet
TSPOANet
PoolNet
DGRL
BDMPM
UCF
Amulet
Our

0 50 100 150 200 250
Threshold

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F-
m
ea
su
re

HKU-IS

DSRNet
ITSD
GateNet
CAGNet
R2Net
AFNet
BASNet
TSPOANet
PoolNet
DGRL
BDMPM
UCF
Amulet
Our

0 50 100 150 200 250
Threshold

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F-
m

ea
su

re

DUT-OMRON

DSRNet
ITSD
GateNet
CAGNet
R2Net
AFNet
BASNet
TSPOANet
PoolNet
DGRL
BDMPM
UCF
Amulet
Our

0 50 100 150 200 250
Threshold

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F-
m
ea
su
re

DUTS-TE

DSRNet
ITSD
GateNet
CAGNet
R2Net
AFNet
BASNet
TSPOANet
PoolNet
DGRL
BDMPM
UCF
Amulet
Our

Figure 6. Quantitative results of Fm curves for GSCINet and other SOD methods on the five saliency
detection datasets.

4.4.2. Qualitative Evaluation

Figure 7 shows visual comparisons of the proposed method with 11 state-of-the-art
SOD methods. It can be inferred that the saliency maps in different scenarios generated
by the proposed GSCINet method are much closer to the ground truth (GT). In contrast,
most of the SOTA methods fail to consistently obtain satisfying results, especially in some
challenging scenarios, including salient objects with low contrast or similar contours to
the background (rows 1 and 2), multiple salient objects of the same semantic (rows 3 and
4), smaller salient objects in complicated environments (rows 5 and 6), and salient objects
with big contour structures (rows 7, 8, and 9). More importantly, our method can detect
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and segment the complete salient objects with sharp boundaries, while most of the other
methods produce the under-segmented saliency maps, demonstrating the effectiveness of
the proposed GSCINet method.

Image             GT             Ours           Amulet           UCF        BDMPM        DGRL        RASNet        AFNet     PoolNet       GateNet         ITSD          CANet        DSRNet

Figure 7. Qualitative comparison of 11 state-of-the-art deep SOD methods and our GSCINet method.
As can be seen, the proposed method (ours) is the closest to ground truth (GT).

4.4.3. Efficiency Evaluation

To further demonstrate the effectiveness of the proposed GSCINet method, we also
evaluated the efficiency and flexibility of our model and some existing SOD methods,
including the number of model parameters (#Param), the inference speed (FPS), and the
model memory (M). From Table 2, we identified that the inference time of our DSCINet
achieved a speed of 40 FPS without any other post-processing, which is very competitive
compared with the other methods. Furthermore, the number of model parameters and
the size of model memory of the proposed GSCINet are 24.46 and 96, respectively, which
are much smaller compared with the other SOD methods. These results further show the
superiority of our GSCINet method in the efficient and accurate detection of salient objects.

Table 2. The proposed GSCINet method and other SOD methods in the comparison of parameter
number (#Param (M)), inference Speed (FPS), and Model Memory (M).

Method Input Size #Param (M) Inference Speed (FPS) Model Memory (M)

Amulet 320 × 320 33.15 8 132

DGRL 384 × 384 161.74 8 631

BDMPM 256 × 256 - 22 259

AFNet 224 × 224 37.11 26 128

BASNet 256 × 256 87.06 25 332

PoolNet 384 × 384 68.26 17 410

R2Net 224 × 224 - 33 117

GateNet 384 × 384 128.63 30 503

DSRNet 400 × 400 75.29 15 290

CANet 256 × 256 - 32 -

Ours 320 × 320 24.46 40 96
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4.5. Ablation Studies

The proposed GSCINet method consists of two modules, including a Multi-Scale
Contextual Attention Module (MSCAM) and an Adjacent Feature Shrinkage and Interaction
Module (AFSIM). To demonstrate the effectiveness of each component, we conducted a
series of ablation studies on five public SOD benchmark datasets. Note that all ablation
experiments were conducted with the ResNet-50 [34] backbone on five public SOD datasets,
and the training strategies for all methods were the same in this section.

4.5.1. The Effectiveness of MSCAM

The MSCAM is designed to efficiently promote the saliency information of each initial
multi-level feature by aggregating multi-scale and multi-receptive-field contextual atten-
tion features. To show the advantages of the MSCAM, we gave another three methods for
comparison. The first method (named “Backbone”) only uses the ResNet-50 network [34]
to detect and segment salient objects. The second method (named “Backbone+FPN”) uses
the “Feature Pyramid Network (FPN)” [19] structure to generate saliency maps. The third
method (named “Backbone+ASPP+FPN”) utilizes the “Atrous Spatial Pyramid Pooling
(ASPP)” structure [48] to strengthen the performance of the initial multi-level features
for SOD. Table 3 shows the result of quantitative comparisons. Specifically, the “Back-
bone+MSCAM+FPN”(the 5th row) consistently outperforms the “Backbone” (the 1st row )
and “Backbone+FPN”(the 2nd row ) with a margin of (6.80% and 3.18%), (7.06% and 2.16%),
(6.41% and 3.94%), (13.15% and 5.26%), and (11.22% and 5.38%) on ECSSD, PASCAL-S,
HKU-IS, DUT-OMRON, and DUTS-TE datasets, w.r.t, WFm. Furthermore, the predicted
performance of MSCAM is significantly improved in other evaluation metrics. In addition,
by comparing the “Backbone+ASPP+FPN” (the 4th row ), the only addition of our MSCAM
in the ResNet50 backbone network clearly brings performance gain under the four evalua-
tion metrics (as illustrated in Figure 8). Therefore, it can be concluded that the proposed
MSCAM is effective in location and segmentation of the salient objects, whose performance
clearly outperforms the “Backbone”, “Backbone+FPN”, and “Backbone+ASPP+FPN” meth-
ods, receptively.

Table 3. Ablation analysis of our GSCINet method on ECSSD, PASCAL-S, HKU-IS, DUT-OMRON,
and DUTS-TE datasets under four evaluation metrics. The symbols “↑/↓” indicate that the larger the
result, the better, and the smaller the result, the better.

Method ECSSD (1000) PASCAL-S (850) HKU-IS (4447) DUT-OMRON (5168) DUTS-TE (5019)
MAE↓ AFm↑ W Fm↑ Em↑ MAE↓ AFm↑ W Fm↑ Em↑ MAE↓ AFm↑ W Fm↑ Em↑ MAE↓ AFm↑ W Fm↑ Em↑ MAE↓ AFm↑ W Fm↑ Em↑

Backbone 0.055 0.877 0.853 0.915 0.084 0.779 0.751 0.858 0.043 0.864 0.842 0.932 0.070 0.690 0.654 0.769 0.053 0.766 0.740 0.885
Backbone+FPN 0.045 0.891 0.880 0.930 0.070 0.805 0.787 0.877 0.038 0.875 0.862 0.946 0.058 0.727 0.703 0.864 0.045 0.795 0.781 0.906

Backbone+AFSIM 0.041 0.909 0.894 0.942 0.067 0.827 0.806 0.897 0.032 0.897 0.886 0.950 0.055 0.744 0.722 0.857 0.040 0.829 0.815 0.917
Backbone+ASPP+FPN 0.039 0.908 0.896 0.945 0.067 0.814 0.795 0.888 0.034 0.884 0.872 0.948 0.056 0.738 0.718 0.862 0.042 0.809 0.796 0.912

Backbone+MSCAM+FPN 0.039 0.917 0.908 0.946 0.065 0.823 0.804 0.884 0.030 0.907 0.896 0.956 0.055 0.761 0.740 0.870 0.039 0.834 0.823 0.918
Backbone+MSCAM+AFSIM 0.034 0.923 0.911 0.953 0.064 0.831 0.811 0.898 0.029 0.910 0.900 0.957 0.054 0.757 0.736 0.862 0.038 0.838 0.823 0.920
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Figure 8. Cont.



Electronics 2022, 11, 1964 13 of 16

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

WFm

ECSSD PASCAL-S HKU-IS DUT-OMRON DUTS-TE

0.7

0.75

0.8

0.85

0.9

0.95

1

Em

ECSSD PASCAL-S HKU-IS DUT-OMRON DUTS-TE

Figure 8. Ablation studies results of the proposed GSCINet method. The five points de-
note “Backbone”, “Backbone+FPN”, “Backbone+AFSIM”, “Backbone+MSCAM+FPN”, and “Back-
bone+MSCAM+AFSIM”, respectively.

4.5.2. The Effectiveness of AFSIM

The AFSIM can progressively reduce the amount of calculations to improve infer-
ence speed and training efficiency, which can adaptively interact with diverse informa-
tion on multi-level features to generate powerful and robust feature representations for
accurate and efficient SOD. As observed in Table 3, compared with “Backbone” and “Back-
bone+FPN”, the proposed AFSIM can enhance the ability to detect salient objects in chal-
lenging scenes. Specifically, 0.909 vs. 0.877 and 0.891, 0.827 vs. 0.805 and 0.779, 0.897 vs.
0.864 and 0.875, 0.744 vs. 0.690 and 0.727, and 0.829 vs. 0.766 and 0.795 on the public
SOD benchmark datasets in terms of AFm. Furthermore, the other three evaluation metrics
(i.e., MAE, WFm and Em) also achieve great promotion (as depicted in Figure 8), proving
the effectiveness of the proposed AFSIM. In addition, as depicted in Table 3, it can be
seen that the sixth row (w MSCAM and AFSIM) significantly improves the prediction
performance compared with third (w AFSIM) and fifth (w MSCAM) rows. Specifically,
the MAE scores of our GSCINet method are respectively reduced by (20.59% and 5.88%),
(4.69% and 1.56%), (10.35% and 3.45%), (1.85% and 1.85%), and (5.26% and 2.63%). Simi-
larly, the performance of the other three evaluation metrics also increased. These results
demonstrate the effectiveness of the proposed MSCAM and AFSIM when inserted into the
backbone network simultaneously.

4.6. Analysis and Limitations

Although the proposed GSCINet method has accomplished satisfactory results, it still
has some limitations. Some failure examples are shown in Figure 9. When the images
have low contrast objects and backgrounds (the top two rows), it is challenging for the
proposed DSCINet method. Nevertheless, it is also tricky for state-the-of-art SOD methods
(e.g., GateNet [22], R2Net [21], and DSRNet [30]). Furthermore, for the images with objects
obscured by background (the third and fourth rows), the proposed GSCINet method also
fails to predict satisfactory saliency maps. Hence, more different information is required to
help capture distinguishing objects.

In future work, we will take into account multi-modal information (e.g., depth in-
formation, text information) to further strengthen the expressive ability of multi-level
features, thereby generating high-quality representations for accurate and efficient SOD
tasks. In addition, we will explore some questions about the influence of emotion and brain
memory on locating salient objects in real-world scenes.
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Image                GT                 Ours               GateNet           R2Net            DSRNet

Figure 9. Failure cases of the proposed GSCINet method and other state-of-the-art SOD methods,
including GateNet [22], R2Net [21] and DSRNet [30].

5. Conclusions

In this paper, we proposed a novel Gradual Shrinkage and Cyclic Interaction Network,
namely GSCINet, which aims to discriminate more saliency information at the cost of fewer
parameters and calculations for efficient and accurate SOD. This method was implemented
with two essential modules, i.e., MSCAM and AFSIM. The former substantially increases
the valuable information of initial input features by using a series of light-weight and multi-
receptive-field dilated convolutions and embedding multiple attention weight matrices.
The latter emphasizes compressing and optimizing the multi-level features via adaptively
aggregating adjacent features and using a circular interaction strategy. The collaboration of
MSCAM and AFSIM is able to progressively filter out background noise and enhance the
information of salient objects. Extensive experimental results on five public SOD datasets
demonstrate that our GSCINet method significantly outperforms 17 state-of-the-art saliency
detection methods under different evaluation metrics.
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