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The dentate gyrus (DG) plays a crucial role in hippocampal-related memory. The

most abundant cellular type in the DG, namely granule neurons, are developmentally

generated around postnatal day P6 in mice. Moreover, a unique feature of the DG is the

occurrence of adult hippocampal neurogenesis, a process that gives rise to newborn

granule neurons throughout life. Adult-born and developmentally generated granule

neurons share some maturational aspects but differ in others, such as in their positioning

within the granule cell layer. Adult hippocampal neurogenesis encompasses a series

of plastic changes that modify the function of the hippocampal trisynaptic network.

In this regard, it is known that glycogen synthase kinase 3β (GSK-3β) regulates both

synaptic plasticity and memory. By using a transgenic mouse overexpressing GSK-3β

in hippocampal neurons, we previously demonstrated that the overexpression of this

kinase has deleterious effects on the maturation of newborn granule neurons. In the

present study, we addressed the effects of GSK-3β overexpression on the morphology

and number of dendritic spines of developmentally generated granule neurons. To

this end, we performed intracellular injections of Lucifer Yellow in developmentally

generated granule neurons of wild-type and GSK-3β-overexpressing mice and analyzed

the number and morphologies of dendritic spines (namely, stubby, thin and mushroom).

GSK-3β overexpression led to a general reduction in the number of dendritic spines. In

addition, it caused a slight reduction in the percentage, head diameter and length of thin

spines, whereas the head diameter of mushroom spines was increased.
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INTRODUCTION

The hippocampal dentate gyrus (DG) plays a pivotal role in learning and episodic memory (Garthe
et al., 2009; Deng et al., 2010; Sahay et al., 2011). In addition, it is one of the few brain regions in
which neurogenesis occurs during adulthood (Bayer and Altman, 1975; Kempermann et al., 2015).
The vast majority of neurons present in the DG are excitatory granule neurons, which participate
in both classic (Amaral, 1978) and alternative (Kohara et al., 2014; Llorens-Martin et al., 2015a)
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trisynaptic hippocampal circuits. Although still a matter of
debate, the function of newborn and developmentally generated
granule neurons appears to differ (Nakashiba et al., 2012). The
main afferent connection of granule neurons is the perforant
pathway, which arises in the entorhinal cortex (Amaral and
Witter, 1989), although other cortical and non-cortical structures
innervate them (Wang et al., 2005; Vivar et al., 2012; Deshpande
et al., 2013; Kohara et al., 2014). The most predominant
innervation from the perforant pathway occurs in the two outer
thirds of the molecular layer, where the dendrites of granule
neurons are located (Amaral and Witter, 1989). Importantly,
adult-born and developmentally generated granule neurons
differ, among other aspects, in their positioning within the
granule cell layer. In this regard, the former are located
exclusively in the inner third of this layer, whereas the latter
are found in the two outer thirds (Kempermann et al., 2003,
2004).

The formation of new afferent excitatory synaptic contacts in
granule neurons takes place in dendritic spines (for simplicity,
spines) (Krzisch et al., 2015; Herms and Dorostkar, 2016).
Of note, the morphology of these spines is quite variable. In
general terms, they can be classified into the following three
categories on the basis of morphological criteria: stubby, thin,
and mushroom. Interestingly, the morphology and volume of
spines correlate with the dynamics (plasticity) and strength of
the synaptic contacts (Matsuzaki et al., 2001; Rochefort and
Konnerth, 2012; Heck and Benavides-Piccione, 2015; Segal,
2016), which, in turn, are related to long-term potentiation
(LTP) (Bliss and Collingridge, 1993). In this regard, a key
protein that regulates LTP is glycogen synthase kinase 3 (GSK-3)
(Hooper et al., 2007; Peineau et al., 2007). GSK-3 refers to two
isoforms, namely GSK-3α and GSK-3β (Woodgett, 1990). In the
central nervous system (CNS), GSK-3β plays a pivotal role in
memory regulation (Zhu et al., 2007; Avila et al., 2010; Kettunen
et al., 2015; Pardo et al., 2016). In line with this, a transgenic
mouse overexpressing GSK-3β in excitatory neurons of the
forebrain was generated in our laboratory (Lucas et al., 2001).
Noteworthy, the overexpression of GSK-3β was particularly
high in the DG of these animals (Fuster-Matanzo et al., 2011;
Sirerol-Piquer et al., 2011). Accordingly, this animal model
exhibited marked hippocampal-dependent memory impairment
(Hernandez et al., 2002). In addition, it has recently been shown
that GSK-3β overexpression profoundly impairs connectivity
(e.g., in the number and volume of the postsynaptic densities
and spines) of adult-born granule neurons (Llorens-Martin
et al., 2013, 2016). However, the putative effects of GSK-3β
overexpression on the structural plasticity of developmentally
generated granule neurons have not been addressed to date. In
this regard, here we analyzed the density and morphology of the
spines of these neurons. With this aim, we labeled individual
granular cells by performing intracellular injections of Lucifer
Yellow in fixed brain tissue. To ensure their developmental
origin, only granule neurons located in the outer third of
the granule cell layer received the injections. Our results
revealed that GSK-3β overexpression alters the density and
morphology of spines of granule neurons of developmental
origin.

MATERIALS AND METHODS

Animals
Transgenic mice overexpressing GSK-3β under the control of
the CamKII promoter were generated as previously described
(Lucas et al., 2001). Briefly, GSK-3β- overexpressing (GSK3-
OE) mice were bred by crossing TetO mice (carrying the
bidirectional tet-responsive promoter followed by the GSK-
3β and β-galactosidase cDNAs, one in each direction) with
CamKIIα-tTA mice. Wild-type (WT) littermates resulting from
the crossing CamKIIα-tTA mice (heterozygous) with TetO-
GSK-3β (heterozygous) ones were used as controls. A marked
increase in GSK−3β levels was evident in various regions of
the forebrain of GSK3-OE mice. In particular, high expression
was observed in the hippocampus (Llorens-Martin et al., 2013).
Animals were housed in a specific pathogen-free colony facility
at the Centro de Biología Molecular “Severo Ochoa” in accordance
with European Community Guidelines (directive 86/609/EEC)
and were handled following European and local animal care
protocols. All the protocols were approved by the local (Centro
de Biología Molecular “Severo Ochoa”, AEEC-CBMSO-23/172)
and national (Comunidad de Madrid, PROEX 205/15) Welfare
Animal Ethics Committees. Four female mice (5 months old) per
genotype were used. Animals were housed in groups of four per
cage. Mice from both genotypes were randomly assigned to each
cage in order to ensure a homogenous distribution of genotypes.

Sacrifice and Tissue Sectioning
Mice were fully anesthetized with an intraperitoneal
pentobarbital injection (EutaLender, 60 mg/kg bw)
and transcardially perfused with saline followed by 4%
paraformaldehyde in 0.1 M phosphate buffer (pH = 7.4).
Brains were quickly removed and post-fixed overnight in the
same fixative at 4◦C. The next day, they were washed three times
with cold 0.1 M phosphate buffer. Coronal vibratome sections
were obtained (200 µm: Lancer 1000; St Louis, MO, USA)
and then processed for intracellular injections, as previously
described (Buhl and Schlote, 1987; Einstein, 1988; Elston et al.,
1997).

Intracellular Injections of Lucifer Yellow
Sections were prelabeled with 4,6-diamidino-2-phenylindole
(DAPI) in 0.1 M phosphate buffer pH 7.4 for 1–2 min (D9542;
Sigma, St. Louis, MO, USA). A continuous current was then used
to inject individual cells with Lucifer yellow dye (8% in 0.1 M
Tris buffer, pH 7.4 (L0259; Sigma, St. Louis, MO, USA)). At
least 30 individual granule neurons in the DG per animal were
injected. Intracellular injections were performed in a semiregular
array ≈30 µm from the surface (in the second focal plane of
DAPI-stained nuclei). Cells were injected until all the individual
dendrites could be traced to an abrupt end at their distal tips,
thereby indicating that the dendrites were completely filled and
ensuring that the fluorescence did not diminish at a distance
from the soma. In order to ensure the developmental origin of
the neurons, only the outermost line of cell nucleus was used to
perform the intracellular injections (Kempermann et al., 2003). In
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order to rule out the possibility that differences in the migration
of newborn granule neurons may bias our observations, we
quantified the distance migrated by retrovirally labeled fully
mature newborn granule neurons of 10 weeks of age in animals of
both genotypes. It should be noted that newborn granule neurons
are considered fully mature at 8 weeks of cell age and onwards.
The migration of 100 cells per genotype was analyzed and it is
shown in Supplementary Figure S1.

Retroviral Stock Preparation
We used a retroviral stock encoding for GFP (Zhao et al., 2006).
The plasmids used to produce the virus were kindly provided by
Prof. FH. Gage. Retroviral stocks were concentrated to working
titers of 1 × 107 – 2 × 108 pfu/ml by ultracentrifugation (Zhao
et al., 2006). Since the retroviruses used are engineered to be
replication-incompetent, only dividing cells at the time of surgery
can be infected (Zhao et al., 2006).

Stereotaxic Surgery
Mice were anesthetized with Isoflourane and placed in a
stereotaxic frame. Coordinates (mm) relative to bregma in
the anteroposterior, mediolateral, and dorsoventral axes were
as follows: dentate gyrus (DG) [–2.0, 1.4, 2.2]. 2 µl/DG of
virus solution was infused at a rate of 0.2 µl/min via a glass
micropipette. Animals were 8 weeks old at the time of retroviral
injections.

Immunostaining
After neuron injections, the sections were double immunostained
with a rabbit anti-Lucifer yellow antibody [generated at the
Cajal Institute (Benavides-Piccione et al., 2013; Merino-Serrais
et al., 2013) 1:400000] and a mouse anti β-Galactosidase antibody
(Promega 1:3000) in blocking solution (2% BSA (A3425; Sigma),
1% Triton X-100 (30632; BDH Chemicals), and 5% sucrose in
0.1 M phosphate buffer). The anti-Lucifer yellow antibody was
used in order to amplify the Lucifer yellow signal and to avoid
fading during confocal image acquisition. To detect the binding
of primary antibodies, the following secondary antibodies were
used: a biotinylated donkey anti-rabbit secondary antibody
(1:200, RPN1004; Amersham Pharmacia Biotech) followed by
a streptavidin conjugated with Alexa 488 (1:1000; Molecular
Probes, Eugene, OR, USA); and a goat anti-mouse secondary
antibody conjugated with Alexa 594 (1:1000; Molecular Probes,
Eugene, OR, USA). The sections were then washed and mounted
with ProLong Gold Antifade Reagent (Invitrogen Corporation,
Carlsbad, CA, USA).

In order tomeasure the distancemigrated by newborn granule
neurons, immunostaining against GFP was performed. For
immunohistochemical analysis, series of 50-µm thick brain slices
weremade up randomly of one section from every 9th. Slices were
initially pre-incubated in phosphate buffer with 1 % Triton X-100
and 1% bovine serum albumin, and then immunohistochemistry
was performed as described previously (Pallas-Bazarra et al.,
2016). A rabbit anti-GFP (Invitrogen 1:1000) and a secondary
donkey anti-rabbit Alexa 555-conjugated antibody (Molecular
Probes 1:1000) were used.

All sections were counterstained with DAPI (Calbiochem,
1:5000). The following incubation periods were used: 48 h at 4◦C
for primary antibodies; 24 h at 4◦C for secondary antibodies; and
10 min for DAPI incubation.

Migration into the GL
In order to measure the migration of retrovirally labeled 10-
week-old newborn granule neurons, the distance between the
hilar border of the subgranular zone (SGZ) and the center of the
cell nucleus of each GFP+ cell was measured. Hundred cells per
genotype were analyzed. Data are presented as mean ± SEM.

Spine Reconstruction and Morphometric
Analysis
Images for spine analysis were acquired with a Zeiss confocal
microscope (LSM 710, Carl Zeiss MicroImaging GmbH,
Germany) using a 63x oil objective. Three-dimension Z-stacks
(voxel size 0.057 µm × 0.057 µm × 0.14 µm) were obtained in
order to reconstruct entire dendrites of granule cells of WT and
GSK3-OE mice.

For the analysis of spine density and volume, a minimum of
40 individual whole branches per genotype were reconstructed
and subdivided into 10-µm segments using Imaris software
x 64 7.6.4. Thus, the number and volume of spines were
calculated on the basis of their position (distance from the
soma) along the dendrite. For the analysis of spine morphology,
a minimum of 40 randomly chosen dendritic fragments per
genotype were reconstructed using NeuronStudio software. After
that, the spines were detected by the software and assigned
to one of three categories, namely stubby, thin, or mushroom.
NeuronStudio software classifies the spines according to their
head to neck diameter ratio, length to head diameter ratio and
head diameter. Critical values that control this classification
scheme can be adjusted (Rodriguez et al., 2008). Thus, we applied
the following parameters for classification purposes: neck ratio
(head to neck diameter ratio) 0.900 pixels; thin ratio (length
to head diameter ratio) 2.500 pixels; and mushroom size (head
diameter) 0.450 µm. Each spine was checked manually in order
to ensure accurate classification. The head spine diameter, and the
approximate measure of spine length (Max-DTS) were calculated
for each type of spine. In addition, the percentage of each type of
spines was calculated. Themorphometric parameters provided by
NeuronStudio software were as follows:

HEAD-DIAMETER: The diameter of the head of the spine.
MAX-DTS: The distance from the “tip” of the spine to the

surface of the model. This value is therefore an approximate
measure of the length of the spine. Note that the tip is the voxel
contained within the spine that is furthest from the surface.

Statistical Analysis
Statistical analysis was performed using the SPSS 23 software
(SPSS, 1989; Apache Software Foundation, Chicago, IL, USA).
The Kolmogorov–Smirnov test was used to test the normality of
the sample distribution. For the analysis of the dendritic spine
number and volume and of the head diameter and Max-DTS
of the spines, data were analyzed by a Student’s t-test in the
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case of normal sample distribution, or by a nonparametric test
(Mann–Whitney U-test) in those cases in which normality could
not be assumed. Graphs represent mean values ± SEM. The
distributions of dendritic spine sizes, head spine diameters and
Max-DTS were compared by means of a Kolmogorov–Smirnov Z
test. The analysis of the percentage of the different types of spine
was accomplished by a chi-squared (χ2) test.

RESULTS

GSK-3β Overexpression Decreases the
Spine Density of Developmentally
Generated Granule Neurons In vivo
In order to determine whether GSK-3β overexpression alters the
number of spines in developmentally generated granule neurons,
we performed intracellular injections of Lucifer yellow in granule
neurons located in the outer edge of the GL of the DG of WT
(Figures 1A,C) and GSK3-OE mice (Figures 1D–F). Given the
developmental migratory pattern of these cells, those located in
the two outer thirds of this layer have a developmental origin
(Kempermann and Gage, 2000). In order to rule out any putative
confounding effect caused by altered migration of adult-born
granule neurons, the migration of retrovirally labeled 10-week-
old newborn granule neurons was measured in GSK3-OE and
WT mice (Supplementary Figure S1). As can be observed, no
differences in the migratory pattern of fully mature newborn
granule cells can be observed at this cell age, thus confirming
the developmental origin of the neurons located at the outermost
position of the GL.

Double immunohistochemistry for Lucifer Yellow or GFP
and GSK-3β overexpression reporter (β-Galactosidase) was
performed in order to check GSK-3β overexpression in each
cell analyzed. No β-Galactosidase+ cells were found in WT
mice, as previously reported (Llorens-Martin et al., 2013, 2016).
GSK-3β overexpression decreased the density of spines in
developmentally generated granule neurons (U = 0; p = 0.029)
(Figure 1G), and this effect took place along their whole dendritic
tree (Figure 1H and Supplementary Table S1). However, no
marked differences were found in the size of these spines
in GSK3-OE mice as compared to WT ones (Supplementary
Table S2 and Figure 1I). Nevertheless, examination of the
cumulative probability distribution of the spines grouped by size
revealed that GSK-3β overexpression caused a slight alteration in
the size distribution of these structures, the smallest spines being
less abundant in GSK3-OE mice than in their WT counterparts
(K–S Z = 14.258; p < 0.001) (Figures 1J,K).

GSK-3β Overexpression Induces Subtle
Morphological Alterations in the Spines
of Developmentally Generated Granule
Neurons
In the light of the alterations found in the distribution of spine
sizes in GSK3-OE mice, we aimed to further characterize the
effects of GSK-3β overexpression on the morphology of these
structures. For this purpose, we analyzed both the head spine

diameter and an approximate measure of the spine length (the
Max-DTS) in Lucifer yellow-labeled developmentally generated
granule neurons of WT and GSK3-OE mice (Figure 2A).
GSK-3β overexpression did not alter the mean head spine
diameter (Figure 2B). However, examination of the cumulative
frequency distribution of this parameter revealed the existence
of two distinct populations of spines altered in opposite
directions (K–S Z = 1.493; p = 0.023). Thus, in GSK3-OE
neurons those spines with small head diameter became smaller
(Figure 2Ci), and conversely those spines with big head diameter
became bigger (Figure 2Cii). On the other hand, GSK-3β
overexpression promoted a general decrease in the spine Max-
DTS (U = 9154017; p= 0.020) (Figure 2D), being the cumulative
frequency distribution of this parameter also altered in the
same direction (K–S Z = 1.539; p = 0.018) (Figure 2E). These
results together are indicative of a subtle remodeling of the
spine morphology in developmentally generated granule neurons
promoted by GSK-3β overexpression.

GSK-3β Overexpression Differently
Affects the Morphology of the Distinct
Types of Dendritic Spines in
Developmentally Generated Granule
Neurons
Given the intrinsic variability of the spine morphology, we next
classified the spines of Lucifer yellow-labeled developmentally
generated granule neurons of WT and GSK3-OE mice into
three categories (stubby, thin and mushroom) (Figure 3A) and
analyzed the proportion and morphology of each type of spine.
GSK-3β overexpression did not lead to drastic alterations in
the percentages of the different types of spines (Figure 3B).
However, the percentage of thin spines showed a slight reduction
in GSK3-OE mice (χ2 = 3.148; p = 0.08). In addition, both
the head diameter (U = 3186547; p < 0.001) and the Max-DTS
(U = 3236117; p = 0.002) of thin spines were reduced in these
mice. Interestingly, the cumulative frequency distributions of
these parameters were also altered (head diameter K–S Z = 2.102;
p < 0.001; Max-DTS K–S Z = 1.620; p = 0.011). In contrast, the
head diameter of mushroom spines was increased (U = 417358;
p = 0.008), being its cumulative frequency distribution also
altered in the same direction (K–S Z = 1.718; p = 0.005).
However, no changes in the Max-DTS of this spine subtype were
found (Figures 3C–F).

DISCUSSION

The DG is the only hippocampal region in which adult
neurogenesis occurs. Due to the continuous addition of newly
generated synaptic elements to the preexisting network, the
DG has an extraordinarily high degree of plasticity and,
consequently, this structure is involved in unique aspects of
hippocampus-dependent learning, such as pattern separation
(Sahay et al., 2011). The coexistence of mature — either newborn
or developmentally generated — and immature elements confers
the DG enormous functional complexity, which remains elusive.
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FIGURE 1 | GSK-3β overexpression alters the number of dendritic spines in developmentally generated granule neurons in vivo. (A–F) Representative

images of granule neurons (labeled with Lucifer yellow) from WT (A–C) and GSK-3β-overexpressing (GSK3-OE) (D–F) mice. In (A, D), tile-scan acquisitions showing

the whole hippocampus can be observed. It should be noted that the injections were performed only in granule neurons located in the outer border of the granule

layer, in order to ensure that they were generated during development. (B,E) Single neurons labeled with Lucifer yellow, as well as high power magnifications

(Continued)
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FIGURE 1 | Continued

showing their spines (C,F, respectively). (G) Quantification of the average density of spines in WT and GSK3-OE granule neurons. (H) Quantification of spine density

along the dendritic tree of WT and GSK3-OE granule neurons. GSK-3β overexpression led to a reduced number of spines in almost the entire dendritic tree of these

neurons. (I) Quantification of the spine volume of WT and GSK3-OE granule neurons along their dendritic trees. (J) Representation of the cumulative frequency

distribution of the spine size in WT and GSK3-OE granule neurons. A more detailed representation of the frequency distribution of the smallest spines can be

observed in K. GSK-3β overexpression slightly alters the distribution of spine sizes, although no regional differences in this parameter were observed along the

dendritic tree of granule neurons. In (G–I) graphs represent mean ± SEM; n = 4 mice per genotype; !0.1 > p ≥ 0.05; ∗0.05 > p ≥ 0.01 (Mann–Whitney’s U test). In

(J) ∗∗∗p < 0.001 (Kolmogorov–Smirnov test). DG: dentate gyrus. ML, Molecular layer. GL, Granule layer. White scale bar: 150 µm. Yellow scale bar: 50 µm. Purple

scale bar: 10 µm.

Thus, the DG should be considered a structure subjected to
continuous remodeling and transformation, and affected by
plastic changes that only occur in restricted regions of the
brain during adulthood. Therefore, how mature and immature
elements interact in physiological and pathological conditions
is an opened question that should be investigated. In this
regard, newborn and developmentally generated granule neurons
share some maturational aspects but differ radically in others
(Nakashiba et al., 2012). These two types of neurons have
markedly different morphologies, which are probably related to
the distinct positioning of these two cell types within the granule
cell layer. Here we have demonstrated that mature newborn
granule neurons (generated at two months of animal age) do
not differ in their positioning within the GL between genotypes.
Given that 10-week-old newborn neurons were analyzed at
4–5 months of age, that the average migration of these fully
mature cells is about 20 µm, and that only those cells located at
the outermost position of the GL were included in this study, it is
possible to ensure the developmental origin of the cells analyzed.

While the classical morphology of the newborn granule
neurons includes the presence of a single and long primary
apical dendrite that emerges from the soma and is extensively
branched in the molecular layer [namely “Y-shape” (Llorens-
Martin et al., 2015b)], the developmentally generated granule
neurons usually present several primary apical dendrites, which
are shorter than those of newborn neurons, and the “Y-shape”
can rarely be appreciated (Llorens-Martin et al., 2015b).
Although electrophysiological recordings demonstrate that after
completion of the maturational period (approximately 8 weeks) a
newborn granule neuron is functionally indistinguishable from
its developmentally generated counterpart (Song et al., 2005;
Zhao et al., 2006; Bischofberger, 2007), it is reasonable to assume
that a series of both cooperative and competitive events occurs
betweenmature andmaturing neurons during the different stages
of development. In fact, it has been postulated that mature and
immature spines compete to establish synaptic contacts with
axonal terminals of the perforant pathway (Toni and Sultan,
2011; Krzisch et al., 2015). It is thought that the spines of newborn
neurons replace those of mature, developmentally generated
granule neurons, in order to allow the functional selection
of newly generated neurons for survival (Bosch et al., 2015;
Krzisch et al., 2015). Given that mature synaptic connections
must be plastic enough to allow their replacement by a new
synaptic connection, this process is highly demanding in terms
of plasticity. In line with this, GSK-3β is a key regulator of
synaptic plasticity (Arendt, 2003; Peineau et al., 2008; Bradley

et al., 2012). In fact, it is known that long-term depression
(LTD) inhibits LTP through the activation of GSK-3β (Peineau
et al., 2007). Thus, an increase in GSK-3β activity results in
impaired LTP generation in the hippocampus (Hooper et al.,
2007). Although the mechanism by which GSK-3β inhibits LTP
generation remains to be fully elucidated, it is known that GSK-
3β triggers the endocytosis of the AMPA receptor GluR1 subunit,
thereby leading to the elimination of the synapse (Peineau
et al., 2008). Consistent with our previous results in newborn
granule neurons (Llorens-Martin et al., 2013, 2016), here we
demonstrate that GSK-3β overexpression reduces the number
of spines in developmentally generated granule neurons. This
observation reflects impairment of connectivity in both newborn
and developmentally generated granule neurons. Thus, the active
elimination of pre-existing synapses emerges as a mechanism by
which the dysregulation of GSK-3β activity may result in a net
reduction of spines. However, this phenomenon could also be
explained by a decrease in the incorporation of new synapses
caused by downstream substrates of GSK-3β. Among these, the
microtubule-associated protein Tau is considered to be pivotal
in neurodegenerative diseases (Takashima et al., 1993). Tau plays
a central role in regulating the stability of both microtubules
and postsynaptic densities (Ittner et al., 2010; Pallas-Bazarra
et al., 2016). In line with this, Tau phosphorylation by GSK-3β
has been proposed as a mechanism by which the dysregulation
of the activity of this kinase decreases the incorporation of
new spines in newborn granule neurons (Llorens-Martin et al.,
2016).

It is important to note that the distinct morphological types
of spines have been differentially related to the plasticity of
synaptic connections. For instance, thin spines are believed to
be the most plastic type of spine (McGilvray, 2016). In line
with the aforementioned notion, among the different types
of spines, thin ones account for the highest proportion in
granule neurons. In particular, a decrease in the proportion
of thin spines has been reported in Alzheimer’s disease (AD)
patients (McGilvray, 2016). In addition, we have previously
demonstrated that GSK-3β overexpression, which is also related
to AD (Shiurba et al., 1996; Leroy et al., 2002; Jope and
Johnson, 2004), causes a decrease in the percentage of both
thin and mushroom spines in newborn granule neurons
(Llorens-Martin et al., 2016). In the present study, we report
that GSK-3β overexpression tends to lead to a decrease in
the proportion and size of thin spines, together with a
subtle increase in the head volume of mushroom spines in
developmentally generated granule neurons. On the other

Frontiers in Neuroanatomy | www.frontiersin.org 6 March 2017 | Volume 11 | Article 18

http://www.frontiersin.org/Neuroanatomy/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroanatomy/archive


Pallas-Bazarra et al. GSK-3β Alters Granule Neuron Spines

FIGURE 2 | GSK-3β overexpression results in subtle alterations in the spine morphology of developmentally generated granule neurons.

(A) Representative image of a Lucifer yellow-labeled granule neuron showing the parameters used to analyze the morphology of the dendritic spines (head diameter

and Max-DTS). (B–E) Quantification of the head diameter (B,C) and Max-DTS (D,E) of dendritic spines in WT and GSK-3β-overexpressing (GSK3-OE) granule

neurons. GSK-3β overexpression alters the cumulative frequency distribution of dendritic spine head diameter (Ci, ii). In addition, it reduced dendritic spine Max-DTS

(D) as well as the cumulative frequency distribution of this parameter (E). In (B,D), mean ± SEM is represented; n = 4 mice per genotype; ∗0.05 > p ≥ 0.01

(Mann–Whitney’s U test). In (C,E), cumulative frequency distributions are represented; n = 4 mice per genotype; ∗0.05 > p ≥ 0.01 (Kolmogorov–Smirnov test). Scale

bars: 1 µm.

hand, a decrease in the volume of postsynaptic clusters
(Llorens-Martin et al., 2013), together with a decrease in the
percentage of mushroom spines (Llorens-Martin et al., 2016),

has been observed in GSK3-overexpressing newborn granule
neurons. Although GSK-3β decreases the density of spines both
in newborn (Llorens-Martin et al., 2016) and developmentally
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FIGURE 3 | GSK-3β overexpression differently affects the morphology of the distinct types of dendritic spines in developmentally generated granule

neurons. (A) Representative image of a Lucifer yellow-labeled granule neuron showing three distinct spine morphologies: stubby (orange triangles), thin (yellow

triangles), and mushroom (blue triangles). (B) Quantification of the percentages of stubby, thin, and mushroom spines in WT and GSK-3β-overexpressing (GSK3-OE)

granule neurons. GSK-3β overexpression did not affect the proportion of the different types of spine, although a trend towards a reduction in the percentage of thin

spines can be observed in GSK3-OE granule neurons. (C–F) Quantification of the head diameter (C,D) and Max-DTS (E,F) of stubby, thin, and mushroom spines in

WT and GSK3-OE granule neurons. GSK-3β overexpression led to subtle alterations in the morphology of the thin and mushroom spines. In (B) !0.1 > p ≥ 0.05 (χ2

test). In (C,E) mean ± SEM is shown in the graphs; n = 4 mice per genotype; ∗∗0.01 > p ≥ 0.001, ∗∗∗p < 0.001 (Mann–Whitney’s U test). In (D,F) cumulative

frequency distributions are shown in the graphs; n = 4 mice per genotype; !0.1 > p ≥ 0.05, ∗0.05 > p ≥ 0.01, ∗∗0.01 > p ≥ 0.001, ∗∗∗p < 0.001

(Kolmogorov–Smirnov test). White scale bar: 5 µm. Yellow scale bar: 0.5 µm.
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generated granule neurons (as our present data reveal),
a differential effect on the percentages and morphometric
parameters of the different types of spines seem to occur
in these two cell populations. Interestingly, it has recently
been demonstrated that the synaptic connectivity of mature
granule neurons negatively affects the functional integration of
newly generated ones (McAvoy et al., 2016). Thus, GSK-3β
overexpression increased the head area of mushroom spines
and reduced that of thin ones. According to the recent data
published by McAvoy et al., the stability of these synaptic
connections may be detrimental for the addition of newly
generated synaptic contacts. Such contacts ultimately determine
the resulting plasticity of a given synaptic network, which is
necessary for learning and for the acquisition of new memories
(Sahay et al., 2011)

Thus, in line with our previous results, we propose that
GSK-3β overexpression in the hippocampus leads to a deficit
in synaptic plasticity (Peineau et al., 2008) and impairment
of the functional maturation of newborn granule neurons
(Llorens-Martin et al., 2013, 2016). Furthermore, as we
demonstrate here, GSK-3β overexpression in this brain region
triggers a series of alterations in the spines of the oldest
elements present in the DG, namely developmentally generated
mature granule neurons. Further studies are required to
unravel the causal relationship between the aforementioned
phenomena, as well as the deleterious consequences of
the dysregulation of GSK-3β activity on the intriguing
coupling between plasticity and stability that drives DG
function.
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FIGURE S1 | GSK-3β overexpression does not alter fully mature newborn

neuron migration. (A) Representative image of retrovirally labeled 10 week old

newborn granule neurons in the dentate gyrus. (B) Quantification of the distance

between the hilar border of the subgranular zone and the center of the cell

nucleus in WT and GSK3-OE newborn neurons. GSK-3β overexpression does not

alter the migration of fully mature newborn granule neurons. Graph represent

mean ± SEM; n = 100 cells per genotype. Scale bar: 50 mm. ML, molecular

layer; GL, granular layer; H, hilus.
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