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Abstract 

We invesrigare new appmaches for frequent graph-based 
patrem mining in graph darasers andpmpose a novel ofgo- 
rirhm called gSpan (graph-based,Tubsmrure parrern min- 
ing), which discovers frequenr subsrrucrures z h o u r  can- 
didate generorion. &an builds a new lexicographic or. 
der among graphs, and maps each graph to a unique mini- 
mum DFS code as irs canonical label. Based on rhis lexico- 
graphic orde,: &an adopts rhe deprh-jrsr search srraregy 
ro mine frequenr cannecred subgraphs eflciently. Our per- 
formance study shows rhar gSpan subsianriolly outperforms 
previous algorithm, somerimes by an order of magnirude. 

1. Introduction 

Frequent substructure pattern mining has been an emerg- 
ing data mining problem with many scientific and com- 
mercial applications. As a general data structure, la- 
heled graph can be used to model much complicated sub- 
structure patterns among data. Given a graph dataset, 
D = {GO, GI, ..., Gn}, support(g) denotes the number 
of graphs (in D)  in which g is a subgraph. The problem 
of frequent subgraph mining is to find any subgraph g s.t. 
suppurt(g) > minSup (a minimum support threshold). To 
reduce the complexity of the problem (meanwhile consid- 
ering the connectivity propeny of hidden structures in most 
situations), only frequent connected subgraphs are studied 
in this paper. 

The kernel of frequent subgraph mining is subgraph iso- 
morphism test. Lots of well-known pair-wise isomorphism 
testing algorithms were developed. However, the frequent 
subgraph mining problem was not explored well. Recently, 
lnokuchi et al. 141 proposed an Apriori-based algorithm, 
called AGM, to discover all frequent (both connected and 
disconnected) substructures. Kuramochi and Karypis [SI 
funher developed the idea using adjacent representation of 
graph and an edge-growing strategy. Their algorithm, called 
FSG, is able to find all frequent connected subgraphs from a 
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chemical compound dataset in 10 minutes with 6.5% min- 
imum support. For the same dataset, our novel algorithm 
can complete the same task in 10 seconds. 

AGM and FSG both take advantage of the Apriori level- 
wise approach [ I]. In the context of frequent subgraph min- 
ing, the Apriori-like algorithms meet two challenges: ( I )  
candidate generation: the generation of size (k + 1) sub- 
graph candidates from size k frequent subgraphs is more 
complicated and costly than that of itemsets; and (2) prun- 
ing false positives: subgraph isomorphism test is an NP- 
complete problem. thus pruning false positives is costly. 

Contribution. In this paper. we develop &on, which 
targets to reduce or  avoid the significant costs mentioned 
above. If the entire graph dataset can fit in main memory, 
&an can be applied directly; otherwise. one can first per- 
form graph-based data projection as  in [6], and then apply 
gSpan. To the best of our knowledge, gSpan is the first algo- 
rithm that explores depth-first search (DFS) in frequent sub- 
graph mining. Two techniques, DFS lexicographic order 
and minimum DFS code, are introduced here, which form 
a novel canonical labeling system to support DFS search. 
gSpon discovers all the frequent subgraphs without candi- 
date generation and false positives pruning. It combines the 
growing and checking of frequent subgraphs into one pro- 
cedure, thus accelerates the mining process. 

2. DFS Lexicographic Order 

This section introduces several techniques developed in 
&an, including mapping each graph ro a DFS code fa 
sequence), building a novel lexicographic ordering among 
these codes, and conrrrucring a search rree based on rhis 
lexicographic order. 
DFS Subscripting. When performing a depth-first search 
[31 in a graph, we construct a DFS tree. One graph can have 
several different DFS trees. For example, graphs in Fig. 
I(b)-(d) are isomorphic to that in Fig. I(a). The thickened 
edges in Fig. I(b)-(d) represent three different DFS trees for 
the graph in Fig. I(a). The depth-first discovery of the ver- 
tices forms a linear order. We use subscripts to label this 
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Figure 1. Depth-First Search Tree 

Table 1. DFS codes for Fig. l(b)-(d) 

order according to their discovery time [3].  i < j means uj 
is discovered before v j .  We call uo the roof and U" the righr- 
most verru. The straight path from ~0 to v,, is named the 
righrmsr path. In Fig. l(h)-(d), three different subscript- 
ings are generated for the graph in Fig. I(a). The right most 
path is (uO,vlrvq) in Fig. I(b), (vo,v4) in Fig. I(c), and 
( u o , v ~ , v ~ , v 4 )  in Fig. I(d). We denote such subscripted G 
as GT. 
Forward Edge and  Backward Edge. Given GT. the for- 
ward edge (free edge [31) set contains all the edges in the 
DFS tree. and the backward edge (back edge [ 3 ] )  set con- 
tains all the edges which are not in the DFS tree. For sim- 
plicity. ( i , j )  is an ordered pair to represent an edge. If 
i < j ,  it is a forward edge; otherwise, a backward edge. 
A linear order, +r is built among all the edges in C by the 
following rules (assume el = (a1,jl),e2 = ( i Z , & ) ) :  (i) if 
21 = i s  and j~ < j,, el  <,r e2; (ii) if it < j~ and jl = i z .  
el 4~ e2: and (iii) if e l  4~ e2 and e2 <T e3. el <T e3. 

Definition 1 (DPS Code) Given a DFS free T for a graph 
G, an edge sequence (ei) can be consrructed bused on <T, 
such that e; <T e#+,, where i = 0,. . . ,!El - 1. ( e i )  is 
called a DFS code. denoredas code(G,T). 

For simplicity. an edge can he presented by a 5-tuple, 
( i , j , l j , l ( j , j l , l j ) ,  where li and l j  are the labels ofvi and 
U, respectively and l ( j , j )  is the label of the edge between 
them. For example, ( v o , u l )  in Fig. I(b) is represented by 
(0, 1, X, a, Y ) .  Table I shows the corresponding DFS codes 
forFig. I(b). I(c),and I(d). 

Definition 2 (DFS Lexicographic Order)  Suppose Z = 
{code(G,T)  (T is a DFS rree ofG),  i.e., Z is a ser con- 

ruining a / /  DFS codes for all rhe connected labe/ed graphs. 
Suppose rhere is a linear order ( < L j  in rhe label ser (Lj ,  
then rhe lexicographic combinorion of 4~ and <L is a lin- 
ear order (+J on the set ET x L x L x L. Forfurrher 
derails see [71. DFS Lexicographic Order is a linear order 
dejnedas follows. l fa  = code(G,,T,) = (ao,al ,  _.., a m )  
and ,9 = code(Gg,Tp) = (bo, bl ,  ..., b, ) ,a ,  E Z .  then 
a < p iff either of rhe following is rrue. 

(i) 
( 2 2 )  

3t,0 < t < min(m,n),ah = bh fur  k < t , a t  -& bt 
ak = bk for  OS k 6 m, a n d n  2 m. 

For the graph in Fig. 1 (a), there exist tens of different 
DFS codes. Three of them. which are based on the DFS 
trees in Fig. I(b)-(d) are listed in Table 1. According to 
DFS lexicographic order, 7 < a < p .  
Definition 3 (Minimum DFS Code) Given (I graph G, 
Z(G) = {code(G,T) I Ti5  a DFS wee of G }, based on 
DFS /e.ricogropkic order; the minimum one, min(Z(G)), 
is called Minimum DFS Code of G .  Ir is also a canonical 
labe[ of G.  

Theorem 1 Given WO graphs G and,&. G is isomorphic 
ro G' ifandonly ifmin(G) = m i n ( G  ). (pmofomirredj 

Thus the problem of mining frequent connected sub- 
graphs is equivalent to mining their corresponding mini- 
mum DFS codes. This problem turns to he a sequential pat- 
tern mining problem with slight difference, which concep- 
tually can be solved by existing sequential pattern mining 
algorithms. 

Given a DFS code a = ( a o , a l ,  ..., am),  any valid DFS 
code p = (%,a], ..., amr b). is called a's child, and a is 
called B's parent. In fact, to construct a valid DFS code, 
b must be an edge which only grows from the vertices on 
the rightmost path. In Fig. 2, the graph shown in 2(a) has 
several potential children with one edge growth, which are 
shown in Z(b)-(f) (assume the darkened vertices constitute 
the rightmost path). Among them, 2(b), 2(c), and 2(d) grow 
from the rightmost venex while 2(e) and 2(0 grow from 
other vertices on the rightmost path. Z(b.O)-(h.3) are chil- 
dren of 2(b), and 2(e.O)-(e.2) are children of 2(e). Back- 
ward edges can only grow from the rightmost vertex while 
forward edges can grow from venices on the rightmost path. 
This restriction is similar toTreeMinerV's equivalence class 
extension [SI and FREQT's rightmost expansion [2] in fre- 
quent tree discovery. The enumeration order of these chil- 
dren is enhanced by the DFS lexicographic order, i.e., it 
should he in the order of 2(b). 2(c), 2(d), 2(e), and 2(0. 

Definition 4 (DFS Code Tree) In  a DFS Code Tree, each 
node represenrs a DFS code, the relarion between porenr 
and child node complies wirh rhe parent-child relation de- 
scribed above. The relarion among siblings is consisrenr 
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Figure 2. DFS CodelGraph Growth 

with the DFS lexicographic onfez T h ~ r  is, rhe ps-order 
search of DFS Code Tree follows rhe DFS lexicographic or- 
der: 

Given a label set L,  a DFS Code Tree should contain an 
infinite number of graphs. Since we only consider frequent 
subgraphs in a finite dataset, the size of a DFS CodeTree is 
finite. Fig. 3 shows a DFS Code Tree, the nth level nodes 
contain DFS codes of (n - 1)-edge graphs. Through depth- 
first search of the code tree, all the minimum DFS codes of 
frequent subgraphs can be discovered. That is, all the fre- 
quent subgraphs can be discovered in this way. We should 
mention that if in Fig. 3 the darken nodes contain the same 
graph but different DFS codes, then s' is not the minimum 
code (proved in 171). Therefore, the whole sub-branch of s' 
can be pruned since it will not contain any minimum DFS 
code. 

3. The @pan Algorithm 

We formulate the g S p m  algorithm in this section. gSpon 
uses a sparse adjacency list representation to store graphs. 
Algorithm 1 outlines the pseudo-code of the framework, 
which is self-explanatory (Note that D represents the graph 
dataset, 8 contains the mining result). 

Assume we have a label set {A, B, C,. . .} for vertices, 
and {a,b,c , .  ..} for edges. In Algorithm I line 7-12, the 
first round will discover all the frequent subgraphs con- 
taining an edge A A .  The second round will discover 
all the frequent subgraphs conmining A A B ,  but not any 
A A A .  This procedure repeats until all the frequent sub- 
graphs are discovered. The database is shrunk when this 
procedure continues (Algorithm I-line IO) and when the 
subgraph turns to be larger (Subprocedure I-line 8, only 
graphs which contains this subgraph are considered. D, 
means the set of graphs in which s is a subgraph). Sub- 
graphMining is recursively called to grow the graphs and 
find all their frequent descendants. SubgraphMining stops 
searching either when the support of a graph is less than 
minSup, or i t s  code is not a minimum code, which means 

I 

Figure 3. A Search Space: DFS Code Tree 

this graph and all its descendants have been generated and 
discovered before (see [71). 

Algorithm 1 GraphSetProjection(D.5). 
I :  son the labels in D by their frequency; 
2:  remove infrequent vertices and edges; 
3: relabel the remaining vertices and edges: 
4 S 1  t all frequent I-edgegraphs in D; 
5:  sort 8' in DFS lexicographic order; 
6: 8 t 8': 
I :  for each edge e E 5' do 
8: 
9: SubgraphMining(D, 8, s): 
10: D t D - e ;  
11: if \Dl < rninSup; 
12: break; 

initialize s with e, set s.D by graphs which contains e; 

Subvrocedure 1 SubrraDhMinindD. 8. s). 
I: ifs #min(s )  
2 return; 

4: enumerates in each graph in D and count its children; 
5: for each c, c is s' child do 
6: i f supwt(c)  _> minSup 
7: s t c; 
8: SubgraphMining(D., 5, s); 

3: 8 t s U { s } :  

4. Experiments and Performance Study 

A comprehensive performance study has been con- 
ducted in our experiments on both synthetic and real world 
datasets. We use a synthetic data generator provided by Ku- 
ramochi and Karypis [SI. The real data set we tested is a 
chemical compound dataset. All the experiments of gSpan 
are done on a SOOMHZ Intel Pentium 111 PC with 448 MB 
main memory, running Red Hat Linux 6.2. We also imple- 
mented our version of FSG which achieves similar perfor- 
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Figure 4. Runtime: Synthetic data 

mance as that reported in IS]. As shown in Figures 4 and 5, 
we compare the performance of gSpon with FSG (51 if the 
result is available; otherwise we show our own implemen- 
tation result based on the same dataset. [SI did the test on a 
Linux machine with similar configuration. 

Synthetic Datasets. The synthetic datasets are gen- 
erated using a similar procedure described in [I]. Ku- 
ramochi et al. [SI applied a simplified procedure in their 
graph data synthesis. We use their data generator. gSpon 
was tested in various synthetic datasets with different pa- 
rameters, IN1 (the number of possible labels), 111 (the av- 
erage size of potential frequent subgraphs-kernels), IT1 (the 
average size of graphs in terms of edges) and fixed param- 
eters, ID1 = 10K (the total number of graphs generated), 
JLI = 200 (the number of potentially frequent kernels). and 
minSvp = 0.01 x ID(. As shown in Fig. 4, the speed-up is 
between 6 and 30. 

The chemical com- 
pound dataset can be retrieved through this UFL '. The 
dataset contains 340 chemical compounds, 24 different 
atoms, 66 atom types, and 4 types of bonds. The dataset 
is sparse, containing on average 27 vertices per graph and 
28 edges per graph. The largest one contains 214 edges and 
214 vertices. So the discovered patterns are much like tree, 
though they do contains some cycles. We use the type of 
atoms and bonds as labels. The goal is to find the com- 
mon chemical compound substructures. Fig. 5 illustrates 
the runtime of &pan and FSG as minSup varies from 2% 
to 30%. The total memory consumption is less than IOOM 
for any point of gSpan plotted in the figure. For FSG, when 
the minSup is less than 5%. the process is aborted either 
because the main memory is exhausted or the runtime is too 
long. Fig. S shows &an achieves better performance by 
15-100 times in comparison with FSG. 

Chemical Compound Dataset. 

Figure 5. Runtime: Chemical data 

5. Conclusions 

In this paper. we introduced a new lexicographic order- 
ing system and developed a depth-first search-based mining 
algorithm gSpan for efficient mining of frequent subgraphs 
in large graph database. Our performance study shows that 
g S p n  outperforms FSG by an order of magnitude and is 
capable to mine large frequent subgraphs in a bigger graph 
set with lower minimum supports than previous studies. 

The synthetic data generator is 
kindly provided by Mr. Michihiro Kuramochi and Professor 
George Karypis in University of Minnesota. Dr. Pasquale 
Forggia, at Dipartimento di lnformatica e Sistemistica Uni- 
versith di Napoli " Federico I I  ", provided helpful sugges- 
tions about the usage of VFlib graph matching library. We 
also thank Yanli Tong for her comments. 
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