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Abstract: Reconfiguration of silicon photonic integrated circuits relying on the weak, volatile 

thermo-optic or electro-optic effect of silicon usually suffers from a large footprint and 

energy consumption. Here, integrating a phase-change material, Ge2Sb2Te5 (GST) with 

silicon microring resonators, we demonstrate an energy-efficient, compact, non-volatile, 

reprogrammable platform. By adjusting the energy and number of free-space laser pulses 

applied to the GST, we characterize the strong broadband attenuation and optical phase 

modulation effects of the platform, and perform quasi-continuous tuning enabled by thermo-

optically-induced phase changes. As a result, a non-volatile optical switch with a high 

extinction ratio, as large as 33 dB, is demonstrated. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (130.4815) Optical switching devices; (160.2900) Optical storage materials; (160.3130) Integrated 

optics materials; (200.6715) Switching. 

References and links 

1. L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University 

Press, 2015).

2. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).

3. C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. 

Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. 

Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that 

communicates directly using light,” Nature 528(7583), 534–538 (2015).

4. Y. C. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. J. Zhao, H. Larochelle, 

D. Englund, and M. Soljacic, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–

446 (2017). 

5. J. Capmany, I. Gasulla, and D. Perez, “Microwave photonics: The programmable processor,” Nat. Photonics 

10(1), 6–8 (2016).

6. P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. 

Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,”

Opt. Express 18(10), 9852–9858 (2010).

7. D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J.

Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).

Vol. 8, No. 6 | 1 Jun 2018 | OPTICAL MATERIALS EXPRESS 1551 

#327177 https://doi.org/10.1364/OME.8.001551 

Journal © 2018 Received 2 Apr 2018; revised 4 May 2018; accepted 9 May 2018; published 17 May 2018 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OME.8.001551&domain=pdf&date_stamp=2018-05-17


8. J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 × 2 silicon electro-optic 

switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17(26), 24020–

24029 (2009). 

9. C. Qiu, X. Ye, R. Soref, L. Yang, and Q. Xu, “Demonstration of reconfigurable electro-optical logic with silicon 

photonic integrated circuits,” Opt. Lett. 37(19), 3942–3944 (2012).

10. L. H. Yu, Y. L. Yin, Y. C. Shi, D. X. Dai, and S. L. He, “Thermally tunable silicon photonic microdisk resonator 

with transparent graphene nanoheaters,” Optica 3(2), 159–166 (2016).

11. Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible 

optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46(21), 1460–

1461 (2010). 

12. D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, 

“Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 

20(9), 10283–10294 (2012).

13. M. Rude, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical 

switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14),

141119 (2013). 

14. T. Moriyama, D. Tanaka, P. Jain, H. Kawashima, M. Kuwahara, X. M. Wang, and H. Tsuda, “Ultra-compact, 

self-holding asymmetric Mach-Zehnder interferometer switch using Ge2Sb2Te5 phase-change material,” IEICE

Electron. Express 11(15), 20140538 (2014).

15. M. Stegmaier, C. Rios, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile All-Optical 1 × 2 Switch 

for Chipscale Photonic Networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).

16. H. B. Liang, R. Soref, J. W. Mu, A. Majumdar, X. Li, and W. P. Huang, “Simulations of Silicon-on-Insulator 

Channel-Waveguide Electrooptical 2 × 2 Switches and 1 × 1 Modulators Using a Ge2Sb2Te5 Self-Holding

Layer,” J. Lightwave Technol. 33(9), 1805–1813 (2015).

17. Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, and J. Hu, “Broadband nonvolatile photonic switching based on 

optical phase change materials: beyond the classical figure-of-merit,” Opt. Lett. 43(1), 94–97 (2018).

18. K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate 

switch using indium-tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).

19. Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact Electro-Optical Modulator-Based Ge2Sb2Te5 on

Silicon,” IEEE Photonics Technol. Lett. 30(3), 250–253 (2018).

20. W. H. P. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. 

Phys. Lett. 101(17), 171101 (2012).

21. C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-Chip Photonic Memory Elements 

Employing Phase-Change Materials,” Adv. Mater. 26(9), 1372–1377 (2014).

22. C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, 

“Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).

23. Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 

3(9), e1700160 (2017).

24. J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating 

with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).

25. F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-Power Switching Of Phase-Change Materials with Carbon 

Nanotube Electrodes,” Science 332(6029), 568–570 (2011).

26. M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832

(2007).

27. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline 

phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).

28. M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. 

Photonics 11(8), 465–476 (2017).

29. H. S. P. Wong, S. Raoux, S. Kim, J. L. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, 

“Phase Change Memory,” Proc. IEEE 98(12), 2201–2227 (2010).

30. S. Raoux and M. Wuttig, Phase Change Materials: Science and Applications (Springer, 2009). 

31. D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the 

Speed Limits of Phase-Change Memory,” Science 336(6088), 1566–1569 (2012).

32. S. Raoux, F. Xiong, M. Wuttig, and E. Pop, “Phase change materials and phase change memory,” MRS Bull. 

39(8), 703–710 (2014).

33. S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. H. 

Chen, H. L. Lung, and C. H. Lam, “Phase-change random access memory: A scalable technology,” IBM J. Res. 

Develop. 52(4–5), 465–479 (2008).

34. Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing 

sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” 

Opt. Express 22(17), 20652–20662 (2014).

35. M. Stegmaier, C. Rios, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical Effect in Phase-Change 

Nanophotonics,” ACS Photonics 3(5), 828–835 (2016).

36. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004). 

Vol. 8, No. 6 | 1 Jun 2018 | OPTICAL MATERIALS EXPRESS 1552 



37. Y. K. Wu, K. Liu, D. W. Li, Y. N. Guo, and S. Pan, “In situ AFM and Raman spectroscopy study of the

crystallization behavior of Ge2Sb2Te5 films at different temperature,” Appl. Surf. Sci. 258(4), 1619–1623 (2011).

38. G. H. Wei, T. K. Stanev, D. A. Czaplewski, I. W. Jung, and N. P. Stern, “Silicon-nitride photonic circuits 

interfaced with monolayer MoS2,” Appl. Phys. Lett. 107(9), 091112 (2015).

39. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, 

D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012). 

40. C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and Biologically-Inspired

Computing Using Phase-Change Materials,” Adv. Mater. 23(30), 3408–3413 (2011).

1. Introduction

Silicon photonics has been extensively studied in the past decade for many applications 

including optical interconnects, sensing, and signal processing [1], due to its potential to 

realize high component density and reduced power consumption, and its compatibility with 

complementary metal-oxide-semiconductor (CMOS) fabrication technology. With silicon 

photonics going fabless [2], large-scale silicon photonic integrated circuits (PICs) have 

recently become a reality [3,4]. Many of these PICs feature system reconfigurability to 

benefit from the cost-effective mass manufacturing of a universal platform instead of task-

specific customized circuits [5]. This is analogous to the benefit of an electronic field-

programmable gate array (FPGA) over an application specific integrated circuit (ASIC). 

Current reconfigurable silicon PICs, however, primarily rely on the thermo-optic [4,6,7] or 

electro-optic [8,9] effect of silicon, and thus suffer from several limitations. Both effects 

produce minimal tuning of the refractive index (usually ∆n < 0.01), leading to devices with 

large footprint (at least few tens of microns for the length of active regions) and energy 

consumption (typically several milliwatts) [10]. The volatile nature of these effects also 

necessitates a constant supply of the electric power.  

Recently, phase-change materials (PCMs) have shown great promise for non-volatile 

integrated photonic applications such as optical switches [11–18], optical modulators [16,19], 

photonic memories [20–22], and optical computing [23,24]. By applying short optical or 

electrical pulses with very low energy (as low as femtojoules) [22,25], PCMs can be 

reversibly switched between the covalent-bonded amorphous phase and the resonant-bonded 

crystalline phase. These two phases exhibit dramatically high contrast in the electrical 

resistivity and optical constants (∆n > 1) over a broad wavelength range from the visible to 

infrared (IR) spectral region [26–28]. Additionally, by carefully controlling the excitation 

signal, intermediate states between the two phases can be reached, resulting in multi-level 

operation [22–24,29]. The transition between the two phases takes place on a picosecond to 

sub-nanosecond timescale for amorphization [30], and on a sub-nanosecond to nanosecond 

timescale for crystallization [30,31], enabling ultra-fast operation for potentially over 10
15 

switching cycles [32]. The switched final state can also remain intact for several years under 

ambient conditions without any external power [26,29]. Moreover, PCMs are extremely 

scalable and can be shrunk to the nanoscale [33]. Therefore, PCM-integrated silicon 

photonics presents a promising solution to energy-efficient, ultra-compact [14,19], and ultra-

fast non-volatile reprogrammable PICs. While several devices based on the GST-SOI 

platform have already been reported [12–14], none of them have taken into account the pulse 

energy- or number-dependent optical response that has provided access to a desirable multi-

level memory in silicon nitride photonics [22]. Also, the fundamental properties of this 

platform, such as attenuation and optical phase modulation, have not yet been systematically 

explored. 

In this work, utilizing Ge2Sb2Te5 (GST), one of the most well-known PCMs, we build a 

non-volatile, quasi-continuously reprogrammable, GST-on-silicon hybrid nanophotonic 

integrated platform based on microring resonators. We successfully characterize both the 

strong broadband attenuation and optical phase modulation properties of the GST-on-silicon 

platform. By controlling the pulse energy and number of pulses applied to the GST from a 

pulsed laser, we demonstrate quasi-continuous tuning of the GST state, and the subsequent 

tuning of the attenuation and resonance of microring resonators. Designed to achieve near 
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critical coupling when the GST is in the amorphous state, the microring resonators show a 

very high extinction ratio of optical switching (up to 33 dB) between the amorphous and 

crystalline states. 

2. Structure and fabrication 

As illustrated in Fig. 1(a), our GST-on-silicon platform integrates GST with silicon ridge 

waveguides where light is evanescently coupled with the GST. Due to the dramatic difference 

in the complex refractive index between amorphous GST (aGST) and crystalline GST 

(cGST), the light mode and complex effective index neff of the hybrid waveguide will be 

strongly modified once GST is switched between two phases, as is shown in Figs. 1(b) and 

1(c). The simulations are performed using the frequency-domain finite-element method 

(FEM). The transmission and phase properties of silicon PICs using such a structure can thus 

be significantly altered. 

 

Fig. 1. GST-on-silicon hybrid nanophotonic integrated circuits (nano-PICs). (a) Schematic of 

the platform. Inset: cross-section of the hybrid waveguide. To emphasize the gap between the 

waveguide and the ring, the schematic is not in scale. (b), (c) Fundamental quasi-transversal 

electric (TE) mode profiles (normalized amplitude profiles of the electric field) of the hybrid 

waveguide at 1550 nm for (b) aGST with neff = 2.62 − 0.0024i and (c) cGST with neff = 2.97 − 

0.22i. Both were simulated with frequency-domain FEM using the optical constants of GST 

and ITO measured by ellipsometry. (d) SEM of a microring with 5 μm as-deposited GST. (e) 

AFM height map of the region highlighted by the yellow dashed rectangle in (d). 

We fabricated the hybrid platform on a silicon-on-insulator (SOI) wafer with a 220-nm-

thick silicon layer on top of a 3-μm-thick buried oxide layer. The pattern, including the 500-

nm-wide waveguides, microring resonators, and grating couplers [34], was defined by a 

JEOL JBX-6300FS 100kV electron-beam lithography (EBL) system using positive tone ZEP-

520A resist. After development, 190 nm partially etched ridge waveguides were made by an 

inductively coupled plasma reactive ion etching (ICP-RIE) process. The partially etched 

design is chosen to reduce the step height for the GST deposition later in the process and to 
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enhance the coupling between bus waveguides and microrings. The enhanced coupling 

maintains the critical coupling condition (where the round-trip loss rate is the same as the 

coupling rate) in the microring resonator, in the presence of high loss from the GST. The 

devices were then measured to obtain the reference transmission spectra. A second EBL 

exposure using positive tone poly(methyl methacrylate) (PMMA) resist was subsequently 

carried out to create windows for the GST deposition. After development, 20 nm of GST was 

sputtered onto the chip from a GST target (AJA International) using a magnetron sputtering 

system, and then capped with 11 nm of indium tin oxide (ITO) to protect the GST from 

oxidation. The deposited ITO layer here is relatively transparent over the visible and near-IR 

spectral region according to ellipsometry measurements (extinction coefficient κ < 0.002 from 

480 nm to 1700 nm, and much smaller than that of GST in the amorphous and crystalline 

state). Finally, the lift-off of the GST/ITO layers was completed using methylene chloride. 

Figure 1(d) shows a scanning electron micrograph (SEM) of one of the fabricated microring 

resonators partially covered with an as-deposited GST strip (length L = 5 μm). Using atomic 

force microscopy (AFM), as is shown in Fig. 1(e), we confirmed a 31-nm-thick smooth thin 

film of GST/ITO was deposited on the silicon waveguide with an average root mean square 

(RMS) surface roughness of 2.2 nm (which is much shorter than the wavelength of interest). 

 

Fig. 2. GST characterization. (a) complex refractive index of aGST and cGST as a function of 

wavelength. (b) XRD data of aGST and cGST. The curve of cGST is offset vertically for 

clarity. 

3. Results and discussion 

To characterize the properties of the GST-on-silicon platform, we measured the transmission 

spectrum of 40 microring resonators (20 μm radius, and a gap of 100 nm between the bus 

waveguide and the microring) covered with various lengths of GST using a vertical fiber-

coupling setup. Focusing sub-wavelength grating couplers [34] were utilized to couple light 

from a tunable continuous wave laser (Santec TSL-510) to the waveguides and collect light 

on the other side of the waveguides into a low-noise power meter (Keysight 81634B) via 

single-mode fibers (SMFs). The power of the coupled light was selected to be low enough (< 

100 μW) to prevent any phase transition of the GST and minimize the thermal-optic effects of 

the GST [35] and silicon [36]. The polarization of the input light was controlled to match the 

fundamental quasi-TE mode of the waveguide by a manual fiber polarization controller 

(Thorlabs FPC526). The temperature of the test stage was fixed at 20°C using a 

thermoelectric controller (TEC, TE Technology TC-720), so as to avoid any thermal shift of 

the resonators. For each device, we performed the transmission measurement: (i) before the 

GST deposition to record the intrinsic loss and resonant wavelength of each microring, (ii) 

right after the GST deposition (which is aGST), and then (iii) after rapid thermal annealing 

(RTA) of the chip at 200 °C for 10 mins in a N2 atmosphere to change the GST from the 

amorphous to the crystalline state. We verified the states by ellipsometry and X-ray 

diffraction (XRD) measurement of a blanket GST layer deposited on a silicon wafer. As 
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shown in Fig. 2(a), the extracted optical constants have high contrast over a broad spectral 

region between as-deposited and annealed GST and agree well with previously measured 

values from aGST and cGST, respectively [27,28]. The XRD data in Fig. 2(b) show that the 

XRD distribution changed from a disordered aGST pattern to a typical diffraction pattern of 

fcc cGST after RTA with four characteristic peaks [37]. The strong signal near 70° in Fig. 

2(b) is from the silicon substrate, which covers the (420) peak of cGST. 

Figure 3(a) shows the representative output spectra of microrings in the amorphous and 

crystalline states, which are strongly related to the state and the length of the GST. Two 

spectra, corresponding to aGST and cGST, for each length of GST are plotted on the same 

scale, where each set corresponding to a different length is vertically offset for clarity. In both 

states, with an increase of the GST length L (shown on the right axis of the plot), the 

linewidths of the resonant dips broaden, corresponding to the increase in loss, and a red-shift 

of the spectrum is observed, corresponding to the increase in the effective index. Similar 

broadening and red-shift of the resonances can be observed for every microring upon 

switching the GST from the amorphous to the crystalline state. The absorptive and refractive 

modulation effects introduced by the GST are so substantial that we observe a distinct color 

change between aGST and cGST under a microscope, as is shown in Figs. 3(b) and 3(c). We 

note that with increasing length of the GST, the round-trip loss rate increases, while the 

coupling rate between the waveguide and the ring remains the same. Hence, the ring resonator 

goes from being over-coupled, to critically-coupled, then under-coupled. This can be 

observed from Fig. 3(a), where the transmission dip changes depending on the length of 

aGST. 

 

Fig. 3. Transmission measurement of the microrings with GST. (a) Representative output 

spectra of microrings with different lengths of GST, in both the amorphous and crystalline 

states. For each length of GST, the cGST and aGST spectra are in scale, while each set of 

spectra for a different length of GST is offset vertically for clarity. (b), (c) Microscope images 

of a microring with 5 μm (b) aGST and (c) cGST. 

To quantitatively describe the modulation effects, we extracted the quality factor Q and 

resonant wavelength of each dip by fitting the measured resonances to the Lorentzian 

lineshape function [Fig. 4(a)]. We could not fit the data of the microrings with cGST of length 

L > 2 μm since the visibility of the resonance is significantly reduced due to strong 

attenuation from the cGST, as is shown in Fig. 3(a). As the quality factor and the free spectral 

range (FSR) of the bare silicon microring (without any GST) remain unchanged throughout 

the fabrication process [shown by the curves denoted as “0 μm” GST in Fig. 3(a)], we assume 

that the intrinsic loss (composed of scattering loss, material absorption loss, and bending loss) 

of the microrings remains unchanged after the GST deposition and RTA. The loss introduced 

by GST can then be estimated as the difference in the loss of the microring before and after 

GST deposition [38]: 
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where α is the attenuation coefficient of the GST-on-silicon hybrid waveguide, α0 is the mode 

mismatch loss between the regular silicon waveguide and the hybrid waveguide, R = 20 μm is 

the radius of the microrings, λ0 is the resonant wavelength, Q0 and Q are the quality factors of 

the same microring before and after the GST deposition, FSR is the free spectral range of the 

microring, and ng = λ0
2/(FSR⋅2πR) is the group index averaged over the whole ring with 

partial GST coverage. Here, the change in FSR and ng due to the GST deposition is neglected 

because of the limited coverage area of GST on the microrings. As plotted in Fig. 4(b), the 

GST-introduced loss is linearly proportional to the length of the GST. From this, we obtained 

the attenuation coefficient of the hybrid waveguide near 1550 nm to be αaGST = 0.27 ± 0.04 

dB/μm for aGST and αcGST = 7.6 ± 1.0 dB/μm for cGST. The uncertainty noted is obtained 

from the upper and lower limit of the confidence interval (95%) for estimated parameters by 

linear regression analysis. Therefore, the attenuation modulation effect from aGST to cGST is 

around 7.3 dB/μm. Compared with the simulation results, the experimental attenuation 

coefficient for cGST agrees quite well with the theoretical value of 7.7 dB/μm, whereas that 

for aGST is much larger than the expected 0.08 dB/μm. We attribute this inconsistency to the 

unwanted scattering loss due to the surface roughness of GST. The scattering loss is 

negligible when the device is in the lossy crystalline state. However, the scattering loss 

becomes dominant when the absorption rate of GST is relatively small in the amorphous 

state. The extracted mode mismatch loss is less than 0.5 dB in both states and is ignored in 

calculating the attenuation coefficient using Eq. (1), except in the amorphous state. 

Fig. 4. Characterization of the GST-on-silicon platform using microring resonators. (a) 

Lorentzian fitting of the spectrum for the resonant dips in a ring with Q ~11,000 near 1550 nm. 

(b), (c) GST length dependent (b) loss and (c) spectral shift of the microrings for aGST and 

cGST with respect to those of the intrinsic microrings. Every dot represents a single device. 

(d), (e) Wavelength dependent (d) attenuation coefficient and (e) resonance shift per unit GST 

length for aGST and cGST with respect to the reference (before GST deposition) (dots: 

experiment data, dotted lines: linear fitting, solid lines: simulation). 
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The linear increase of the red spectral shift ∆λ with respect to the reference (before GST 

deposition) as a function of the GST length is shown in Fig. 4(c). We fit the resonance shifts 

per unit GST length ∆λ/L near 1550 nm to be 0.444 ± 0.007 nm/μm and 1.14 ± 0.12 nm/μm 

for aGST and cGST, respectively. Thus, the optical phase modulation effect from aGST to 

cGST is around 0.70 nm/μm. We observe that there is a residual shift of ~0.2 nm for every 

microring after the GST deposition, as is reflected by the non-zero shift at L = 0 μm. We 

attribute this to an irreversible modification of the ring resonators during the deposition 

process, possibly from residual resist left over from the lift-off process. The spectral shift can 

also be theoretically estimated [39] by 

eff 0

eff0

,
2π

n

L Rn

λλ ΔΔ
≈ (2)

where neff0 is the real part of the effective index for the bare silicon waveguide, and Δneff is 

the real part of effective index change. The effective index neff0 is used instead of group index 

ng because only a small portion of the ring resonator is modified, unlike the case described in 

[39]. According to the simulated waveguide modes, ∆λ/L is 0.98 nm/μm and 2.76 nm/μm for 

aGST and cGST, respectively. Potential causes for the discrepancy between the theory and 

experiment are: the modification of the GST refractive index upon shrinking the GST from 

the wafer size into a small scale, or a non-conformal coverage of GST due to the 

directionality of sputtering. From the experimental data, we estimate the refractive indices of 

the nano-patterned GST to be naGST ≈2.58 – 0.12i and ncGST ≈4.68 – 1.92i, whereas the pristine 

GST indices are (measured by ellipsometry) naGST = 3.89 – 0.02i and ncGST = 6.63 – 1.09i. The 

increased imaginary value for aGST is, however, primarily due to the extra scattering loss. 

Measurement of refractive indices of nano-patterned GST is generally difficult and our results 

indicate that high Q-resonators can potentially be used to characterize properties of materials 

on the nanoscale. Figures 4(d) and 4(e) summarize the extracted attenuation coefficient and 

the resonance shift per unit GST length, as a function of the wavelength. Both the attenuation 

coefficient and the resonance shift exhibit broadband behavior over the whole C band (1530 

nm-1565 nm) for both aGST and cGST, as was expected from the simulations. Notably, a 

close match was observed between the simulation line and the linear fitting line of 

experimental data for the attenuation coefficient of cGST. 

Fig. 5. Determination of GST phase transition conditions by an optical heating setup. (a) 

Schematic of the optical imaging system (PCX Lens: plano-convex lens). (b) Schematic of the 

optical pumping system. (c) Induced attenuation coefficient as a function of the fluence of a 

single laser pulse (white, blue, and red dots denote devices that retained the crystalline state, 

had intermediate states of GST, and had damaged GST, respectively). Inset: the green 

Gaussian pulse denotes that only a single pulse was used for this experiment. (d) Sample 

output spectra of a microring with 4 μm GST in the determined set and reset conditions. 
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The state of GST can be reversibly programmed by the application of heat via optical or 

electrical pulses. Here, we explore reversible and quasi-continuous tuning of the GST by a 

532-nm actively Q-switched pulsed diode-pumped solid-state (DPSS) laser (Coherent

HELIOS 532-3-50) with 440 ps pulse duration. As illustrated in Fig. 5(a), an optical imaging

system was used to locate the devices of interest under white light. Once the CCD camera, the

beam splitter (BS), and the objective were moved away to avoid laser damage, the setup

became an optical pumping system [Fig. 5(b)] enabling the pulsed laser to switch the GST.

The pump energy of the optical pulses was adjusted by a variable neutral-density (ND) filter

and a half-wave plate (HWP), along with a polarizing beam splitter (PBS). Rotating the HWP

in the beam path rotated the polarization of the pump laser, the vertical component of which

was transmitted to the sample by after passing through the PBS. The pump energy was

measured by a laser power meter (Coherent FieldMaxII-TO) with a thermopile sensor

(Coherent PM10). The number and repetition rate of the pulses were controlled by providing

a TTL signal to the Q-switch of the laser using a dual channel arbitrary function generator

(Tektronix AFG3022B). In order to align the laser beam spot (diameter ~120 μm) with the

GST strip, we used the pump laser to burn a hole on the edge of the chip with consecutive

high-energy pulses, marked the contour of the hole on the screen of the imaging system, and

then moved the target GST strip to the center of the mark with a 3-axis stage. After optically

heating the sample, the chip was taken back to the fiber setup for transmission measurement.

To realize quasi-continuous tuning of the hybrid platform, we first determined the set 

(crystallization) and the reset (amorphization) condition of the GST. For amorphization, the 

GST should be melted and then rapidly quenched to maintain its disordered state by a single 

short pulse. In contrast, heating the GST to just above its crystallization temperature, but 

below the melting point, by a long-enough sequence of short pulses or a single long pulse, 

converts the lattice arrangement to a crystalline or partially crystalline state. We chose several 

microrings with the same length (L = 5 μm) of fully crystalline GST (after RTA) and 

illuminated the GST with a single pulse of different energies (a different pulse energy for 

each ring). The attenuation coefficient introduced by the GST was then extracted from the 

transmission spectrum. Because the attenuation coefficient reflects the state of GST or the 

degree of crystallization, the pulse that leads the attenuation coefficient to drop to around the 

previously fitted value of αaGST can serve as the reset pulse. Similarly, the pulse of lower 

energy that maintained the initial crystalline GST attenuation coefficient αcGST can be 

identified as an appropriate set pulse. As is shown in Fig. 5(c), with the increase of the laser 

fluence, the attenuation coefficient decreases from αcGST to a value below αaGST (red dots in 

the figure), corresponding to damage to the GST, which was verified by microscope 

inspection. We estimate the error in our power measurements to be ~10 mJ/cm2. Such a large 

error is primarily due to the free-space setup and can be potentially reduced by guiding the 

light on-chip. We chose the single reset pulse fluence to be ~31 mJ/cm2 which was below the 

damage fluence, and each of the set pulses to be ~10 mJ/cm2. To fully crystallize the GST, we 

applied 450 consecutive set pulses with a repetition rate of 50 kHz to accumulate heat. These 

thermal conditions are comparable to those used previously [40] and justified by conducting 

the reset and set pulses back and forth several times on the same microring and comparing the 

attenuation coefficient to the fitted values. Figure 5(d) shows the typical spectra of one 

microring with 4 μm GST after the set and reset pulses. The single reset pulse reduced the 

attenuation coefficient to 0.62 dB/μm, while the set sequence successfully made the spectrum 

recover back to the initial state (cGST). Considering the effective area of the GST used in the 

hybrid waveguides, the equivalent energies of each pulse to switch the GST to amorphous 

and crystalline state are only ~620 pJ (~9 aJ/nm3) and ~200 pJ (~3 aJ/nm3), respectively, 

which are comparable to previous reports with similar volumes of GST [13,22]. We note that 

the energy-efficiency of our device is only an order of magnitude larger than the fundamental 

limit, estimated to be ~1.2 aJ/nm3 [32]. We emphasize that as the phase transition is non-

volatile, no more energy is needed after the switching process. It is due to this non-volatile 
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nature of GST phase change where the PCM-based tuning mechanisms out-perform 

traditional thermo-optic or electro-optic mechanisms in terms of total energy-efficiency for 

reconfigurable photonics. 

The set and reset pulses allow us to control the hybrid nano-PICs in a quasi-continuous 

manner. As is shown in Fig. 6, a microring with 2 μm of fully crystalline GST was pumped 

by a reset pulse to convert the GST to the amorphous state. Since the loss of the microring for 

aGST is close to the transmission loss in the coupling region, the critical coupling condition 

was reached in the amorphous state, enabling deep dips in the transmission spectrum [Figs. 

6(a) and 6(b)]. To achieve intermediate states, we exploited the heat accumulation effect by 

applying a succession of excitations, each comprised of 25 set pulses to the GST on the 

microring. With the increase of the number of excitations, the resonance linewidths increased, 

the depth of the resonances diminished, and the resonances shifted to longer wavelengths, 

implying an increased fraction of crystallization in the GST. With five 25 set pulse 

excitations, the spectrum of the microring is almost identical to that where the GST is in the 

fully crystalline state. Due to the remarkable absorptive and refractive modulation effects of 

GST, the transmission of the microring at 1551.5 nm shows a switching effect with an 

extinction ratio of 33 dB [Fig. 6(b)]. To justify the crystallization procedure, we extracted the 

attenuation coefficient of the hybrid waveguide at around 1551.5 nm, as is shown in Fig. 6(c). 

The attenuation coefficient gradually increased to ~7 dB/μm, which is close to the previously 

fitted value αcGST. We repeated this experiment with several other rings, and observed similar 

qualitative behavior, although quantitative match was not obtained. We attribute this 

uncertainty to the small shifts in the relative position between the laser beam spot and the 

GST strip. Note that, although we achieved each intermediate state from its last state in one 

direction, our experiment implies that we can achieve any pre-defined intermediate states 

from fully crystalline GST by first applying a reset pulse and then applying a variable number 

of set pulses. Although packets of 25 pulses were used in our experiment, we note that 

reducing the number of set pulses in each excitation, more intermediate states can be realized. 

Fig. 6. Quasi-continuous tuning of the GST-on-silicon hybrid nano-PICs. (a) Output spectra of 

a microring with 2 μm GST under different number of excitations, where “excitation” denotes 

a packet of 25 consecutive pulses applied at 50 kHz repetition rate. (b) A zoom-in inspection 

of the region highlighted by the grey dashed rectangle in the spectra in (a). (c) Attenuation 

coefficient of the hybrid waveguide as a function of the number of excitations. Inset: the green 

Gaussian pulse with “×25” denote the excitation process. 
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4. Summary

We have characterized the broadband attenuation and optical phase modulation effects of the 

GST-on-silicon hybrid nano-PICs using microring resonators. With different pulse energy 

and number of laser pulses, it was shown that the GST on the hybrid platform can be 

reversibly switched between amorphous and crystalline states and quasi-continuously tuned to 

several intermediate states. Based on this platform, a non-volatile optical switch with a high 

extinction ratio up to 33 dB was demonstrated. Our research is only a first step towards future 

large-scale reprogrammable silicon PICs. For instance, with appropriate design, a broadband 

low-loss 2 × 2 optical switch [17] could be realized, which would be the building block for a 

future non-volatile routing network and optical FPGA. It is worth noting that the free-space 

optical heating setup used in this work is not a scalable method for complex PICs due to the 

slow locating process. While on-chip optical heating can help modulate the device fast and 

accurately, the complexity of the PICs may still be limited because of the difficulties in 

routing the light and high loss from the PCM [24]. To flexibly control the phase transition, 

local electrical heating either using another transparent conductive material or silicon itself 

may be preferable [18,19], wherein mature CMOS electronics can be leveraged to make 

reprogrammable photonic-electronic integrated circuits. 
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