
gst-Store: An Engine for Large RDF Graph Integrating
Spatiotemporal Information

Dong Wang, Lei Zou∗, Dongyan Zhao
Institute of Computer Science & Technology, Peking University

Beijing, China
{wangd,zoulei,zhaodongyan}@pku.edu.cn

ABSTRACT
In this paper, we present a spatiotemporal information integrated
RDF data management system, called gst-Store. In gst-Store, some
entities have spatiotemporal features, and some statements have
valid time intervals and occurring locations. We introduce some
spatiotemporal assertions into the SPARQL query language to an-
swer the spatiotemporal range queries and join queries. Some ex-
amples are listed to demonstrate our demo.

Keywords
RDF query, Spatiotemporal information, Range query, Join query

1. INTRODUCTION
In recent years, the success of the knowledge bases such as DB-

pedia[2], YAGO[10], Freebase[3] etc. greatly enhances the re-
search of Semantic Web. In fact, a substantial part of knowledge
is relevant to spatiotemporal information. For example, the events
“Einstein won Nobel Prize” and “the birth of Lincoln” are relevant
to some specific places and time, i.e., Einstein won Nobel Prize
at Stockholm in 1921 and Lincoln was born in 1809 at Kentucky.
With the advance of the spatiotemporal RDF data research, there
have been some RDF data sets with either spatial or temporal in-
formation. For example, OpenStreetMap[6] is a spatial RDF data
set, and the GovTrack1 data set have temporal information. In con-
trast, YAGO2 is the first data set that harmoniously combines the
spatiotemporal features and the semantic features.

Though researchers have made some efforts on spatiotemporal
RDF data management and proposed some corresponding data mod-
els and query languages, the existing mature RDF management sys-
tems, such as RDF-3x[9], Hexastore[12], Jena2[13], SW-store[1]
etc., only consider the semantic(structure) features of RDF data
except for a few systems, such as YAGO2 Demo[8] and Virtu-
oso[4]. However, YAGO2 Demo only supports some hard coded

∗corresponding author, zoulei@pku.edu.cn. This work was sup-
ported by NSFC under grant No.61370055 and 61272344 and
CCF-Tencent Open Research Fund.
1http://www.govtrack.us/data/rdf/

(c) 2014, Copyright is with the authors. Published in Proceeding of the 17th
International Conference on Extending Database Technology (EDBT 2014)
on OpenProceedings.org. Distribution of this paper is permitted under the
terms of the Creative Commons license CC-by-nc-nd 4.0.

spatiotemporal assertions on statements and Virtuoso implements
a post-process way for spatial RDF queries. It is not friendly or
flexible enough to express users’ query requirements in YAGO2
Demo system, and the post-process way in Virtuoso is inefficient
for complex spatiotemporal SPARQL queries.

In this demo, we present gst-Store, a graph-based spatiotemporal
RDF data management system. Similar to YAGO2[7], we represent
each statement as a five-tuple 〈s, p, o, l, t〉, where s, p, o, l, t rep-
resent for the features subject, predicate, object, location and
time interval respectively. Note that l and t can be null if there is
no spatial nor temporal information.

We introduce a variety of spatiotemporal assertions to express
users’ query requirements into traditional SPARQL queries. The
spatial range assertions restrict the area of an entity that locates in
or an event (an event is denoted as a triple statement) that happens
in. The spatial join assertions require that the distance between the
locations of two entities/events is no more than a given distance
threshold r. The temporal range assertions restrict the time interval
of an entity or an event. The temporal join assertions express the
relative position of the time intervals of two entities/events.

The rest of this paper is organized as follow. Firstly, the details
about the data and query model are discussed in Section 2. Then,
we briefly describe the query format and the architecture of gst-
Store in Section 3. At the end, we demonstrate gst-Store by some
real examples in Section 4.

2. DATA MODEL
Both the entity model and the statement model are modified in

our spatiotemporal RDF model. Therefore, in this section, we first
separately introduce the entity model and the statement model, and
then describe our spatiotemporal query model.

2.1 Entity Model
In spatiotemporal RDF data, we suppose that entities may have

their own spatial features. A spatial feature represents the specific
location of an entity. Thus, an entity can be denoted as a tuple
〈s, locatedIn, l〉, where l is represented as longitude and latitude
coordinates. Obviously, only part of the entities have spatial fea-
tures. For example, the White House has a specific location on the
map. In contrast, people (such as Abraham Lincoln) and virtual
concepts (such as Physics) have no spatial information. So far, we
only model the spatial information by longitude and latitude co-
ordinates. Actually, our framework can also solve more complex
ways, e.g., to use a polygon to denote the spatial features of an
entity.

A large amount of entities have inherent temporal features. For
example, a person has his/her birthday and deathday, and an or-
ganization is active during its registration date and its dissolution
date. These temporal features are used to build up the life cycle of

 

 

652 10.5441/002/edbt.2014.66



Figure 1: The Input Interface & Example 1

a person, a building or an organization etc.. Thus, we use a time
interval to express the life cycle of an entity, i.e., an entity is ac-
tive in the time interval. Since the users are always interested in
the active entities during a specific temporal interval, the perpetual
entities like virtual concepts or the celestial bodies would not be
considered if the user gives a temporal assertion over the variables,
and only the active entities satisfying the given temporal assertion
are considered as the result.

2.2 Statement Model
We use a five-tuple 〈s, p, o, l, t〉 to denote a statement, where

s, p, o, l, t represent for subject, predicate, object, location and
time interval respectively. The first three items are the same as
the original RDF statements, and location and time interval de-
note the place and the valid time interval of the statement (when it
describes an event) respectively. Specifically, we use the longitude
and latitude 〈x, y〉 to denote the happening location of a statement.
The “time interval” feature is a bigram 〈start, end〉, i.e., it has a
start time and an end time. Both the start time and the end time are
dates with format “yyyy-mm-dd”. Similar as the original RDF
data model, the spatiotemporal RDF data can be organized as a
graph including spatiotemporal features. More detailed discussions
can be found in [11].

2.3 Query Model
Our statement query model in gst-Store is also organized as a

five-tuple 〈s, p, o, l, t〉, where s and o can be replaced with vari-
ables with spatiotemporal assertions, and l and t specify the spa-
tiotemporal assertions of the statement. Since a query statement
is also an edge connecting two entities, a list of statement query
patterns form a query graph including a list of spatiotemporal as-
sertions. If two statement query patterns share the same variable,
the two corresponding edges are connected via the same variable
(i.e., a vertex in the query graph).

Besides, we have specific spatial assertions of s and o to give the
spatial constraints of the variables. The detailed assertion formats
are given in the following section. In practice, most data sets have
incomplete entity temporal information. Therefore, explicit entity

temporal assertions usually cause incorrect answers. For example,
suppose that a user wants to find a person who was alive during
1800 and 1810. If there’re only the birth dates of all the people, ev-
ery person who was born before 1800 would be returned (if we sup-
pose that every person who was not announced to be dead is alive),
or no person is returned (if we only return the confirmed answers).
In this case, in our demo, we provide the statement temporal as-
sertions to users, and then use the statement temporal assertions to
build the entity temporal assertions in the background.

Generally speaking, we take spatiotemporal assertions on vari-
ables and statements into account. A SPARQL query with spa-
tiotemporal assertions can be modeled as a query graph Q. It con-
tains the following elements.

• Vertices in Q which denote the subjects or objects, and edges
which indicate the triple patterns in a SPARQL query.

• The textual features of vertices or edges, i.e. the non-variable
subjects, predicates and objects.

• A list of spatiotemporal assertions of variables.

• A list of spatiotemporal assertions of statements.

The goal of query processing is to find the subgraph matches in
the RDF graph meanwhile satisfying the spatiotemporal assertions.
The formally definitions can be found in [11]. The matches of a
query is considered as the query results. gst-Store organizes each
match as a list of statements corresponding to the query patterns
and visualize the matches on the map.

3. GST -STORE SYSTEM
3.1 Form the query

In [11], we have defined a spatial RDF query language as a
SPARQL-like language. In this demo paper, we extend the query
language with the spatiotemporal semantics. For ease of use, we
implement the query interface as a list of statement query patterns
in our demo system, as shown in Figure 1. The user can easily

653



input the spatiotemporal assertions of the variables and the state-
ment query patterns just following the corresponding variables or
the corresponding statement query patterns.

In Figure 1, each statement query pattern has 8 components,
which are designed for the triples and the corresponding spatiotem-
poral assertions. The “subject” and “object” boxes are used to input
the URI/text of an entity or a variable. Note that the input is a vari-
able if and only if the string starts with “?”. We also utilize the
AJAX technique to facilitate the inputs for “subject” and “object”.
The “predict” box receives the predicates of the statement query
patterns. For ease of use, we implement a drop down box including
all the predicates in the RDF data set. When a user needs more or
less query patterns, the “+” and “-” buttons are provided to add or
to remove a statement query pattern.

The spatial assertions have a uniform input format. Since gst-
Store supports both spatial range queries and spatial join queries,
we introduce the following input formats to form the query require-
ment (i.e. spatial assertions).

• Spatial range assertion: We provide two range shapes, a
rectangle or a circle in gst-Store. Specifically, we use the
range of the longitude and latitude to denote a rectangle, and
use the longitude and latitude of the center O as well as the
radius r to denote a circle. We implement an interactive way
on the google map to support the input.

– rectangle: We use “([x1, x2], [y1, y2])” to denote a rect-
angle. The outermost “(” and “)” means it’s a spatial
range assertion, and the two “[x1, x2]” and “[y1, y2]”
denote the ranges of the longitude x and latitude y.

– circle: We use “(O = (x, y), r = R)” to denote a cir-
cle. “O = (x, y)” denotes the longitude x and latitude
y of the center of a circle, and “r = R” denotes the
radius R of the circle.

• Spatial join assertion: The spatial join assertions restrict the
maximum distance between a variable/statement and another
variable/statement. We use expressions like “[expression, r
= D]” to denote a spatial join assertion. The outermost
“[” and “]” means that it is a spatial join assertion, and the
expression refers to the corresponding variable/statement.
The r = D expression denotes the maximum distance D be-
tween the matches of the corresponding variable/statements.

– If the expression is the variable name (i.e. expression
starts with “?”), the bound item is the corresponding
variable.

– If the expression is an integer, the bound item is the
corresponding statement query pattern. The first input
statement query pattern has serial number “1”, and the
second has “2” and so on.

The temporal assertions also have range and join semantics. In
gst-Store, the time intervals of the corresponding statements are
restricted via setting the temporal assertions of the time interval
boundaries, i.e., the start time and the end time. The valid input
formats are shown as follow.

• Temporal range assertion: In temporal range assertions,
users can use comparison symbols or a temporal range to
limit the boundary of the both ends of the time interval.

– comparison symbols: A user can use year-month-day
to denote a time point, and use >, <, =, >= or <= to

denote the range of the assertion of the start/end time.
Note that if a user cannot determine the exact date, the
last bits can be replaced by “#” as a wildcard. For in-
stance, “19##-##-##” means any day in the 20th cen-
tury.

– temporal range: We use the “(year-month-day, year-
month-day)” format to describe a time interval as a
temporal range for the start/end time of the constrained
statement query pattern.

• Temporal join assertion: The temporal join assertions are
like “[symbol, id, year-month-day]”, where “year-month-
day” denotes the interval length from the constrained time
point. Note that if the last characters of id are “.s” or “.e”, it
means that the start time or the end time of the corresponding
statement query pattern. For example, “[<,1.e,10-##-##]”
means that the time point is earlier than the first statement’s
end time for at least 10 years.

– symbol is a comparison symbol to point the direction
of the assertion. “>”(“<”) means the assertion is af-
ter(before) a time point(or the end time of a time inter-
val), and “<>” means this statement happens during a
time interval that around the corresponding statements
within a given length.

– id is the input serial number (it is same as in spatial join
queries) to indicate the corresponding statement query
pattern. In order to point out the start time or the end
time or the idth statement query pattern, we allow users
to add “.s”(start time) or “.e”(end time) following the
id.

– year-month-day denotes the time length from the con-
strained time point. Note that year can be positive or
negative.

Furthermore, we implement a convenient way to input the spa-
tiotemporal range assertions. For each spatial assertion input box,
users can click the nearby “Draw it!” button to draw a rectangle
on the Google Map tool. Firstly, users should click the button, and
then click on the map to determine one corner of the rectangle, and
finally click the opposite corner of the rectangle on the map. Sim-
ilarly, to input a temporal range assertion, users can first click the
“Put it!” button, and then choose the start time point on the time
line, and finally choose the end time point to denote the temporal
range assertion.

3.2 Query Processing
When a user issues a query, the query processing program turns

active to respond the query. Our query processing stage is based on
a tree-style index and a top-down search algorithm. The solution
follows the ideal of gStore[14], and we design a novel data model
to integrate the spatiotemporal features and a query model to effi-
ciently and effectively answer the spatiotemporal RDF queries.

3.2.1 Index Structure
The index of gst-Store is called ST-tree. Firstly, we convert a

data graph into a signature graph [11], i.e., we use a bit string to
denote each entity in the RDF data set. Specifically, the bit string
of an entity is computed based on the neighborhood of the entity.
And then, we use an MBR and a segment to denote the spatial and
the temporal features of the entity respectively. The ST-tree is built
based on the “insert” and the “split” operations similar as the R-
tree[5] and the VS-tree[14]. We integrate the signature cost, the

654



spatial cost and the temporal cost into a uniform cost model. The
“insert” and the “split” operations are based on the cost model.
In the insert process, we insert the entity into the leaf node of
the ST-tree with the lowest cost. In the split process, the full tree
node is separated to two half size nodes with the lowest cost. It can
be proved that the ST-tree is a balance tree, and each layer of the
ST-tree forms a signature graph with spatiotemporal features.

3.2.2 Query Evaluation
Based on the ST-tree, we propose a top-down search algorithm to

find the query results. Similar with VS-tree [14], it can be proved
that each match of the query corresponds to a match of the sig-
nature query graph in arbitrary signature graph lies on any layer
of the ST-tree. Therefore, we propose a series of pruning rules for
efficiently retrieve the matches of the query by considering both se-
mantic and spatiotemporal constraints. Specifically, the processing
is divided into two stages. At the first stage, we obtain the candi-
date sets of the variables in the query. Then, we verify the validity
of each combination of the candidates. The verification guarantees
the correctness of each result. As soon as we obtain the candidates,
we generate each match of the query in the data graph, and show
the results in the interface. In Section 4, some examples are listed
to present the outputs of gst-Store.

4. DEMONSTRATIONS
In this section, we demonstrate gst-Store by two examples. We

use Yago22 as the underlying data set in our demo which is built
automatically from Wikipedia, GeoNames, and WordNet. It con-
tains 447 million facts about 9.8 million entities [7]. Our demo
system can support users to precisely issue their query intentions
(structural queries) to find the entities in Wikipedia, which is not
supported by existing fulltext search function in Wikipedia.

EXAMPLE 1. Find all the people who was born between 1850
and 1900 in a city which is located in Iberian Peninsula.

The query input of Example 1 is shown in Figure 1. The triple
patterns means that “?p” is a person who was born in a city “?c”.
The rectangle surrounds Iberian Peninsula and the segment on the
time line represents the time interval of 1850-1900. Users can use
the google map tool to draw a rectangle to input a spatial range
assertion, and the time line is given to directly specify the temporal
assertions.

EXAMPLE 2. Find all married couples p1 and p2 satisfying the
following conditions:

1. p1 was born in city c1 during 1900th and 1950th.
2. p2 was born in city c2 after p1’th birth at least 10 years.
3. c1 locates in east America.
4. The distance between c1 and c2 is no more than 2000km.
5. Both p1 and p2 are film makers.

Example 2 has complex inputs. In Example 2, we have spatial
range, spatial join, temporal range and temporal join assertions.

We show the query results of Example 2 in Figure 2. We lie
the satisfied spatial features on the map and the satisfied temporal
features on the time line. In this example, we hit only one couple
satisfying all the assertions, Mr. and Mrs. Donner. Mr. Donner
was born in New York on April 24th, 1930 and Mrs. Donner was
born in Cleveland when Mr. Donner was 19 years old. If a given
query have lots of matches, the user can set how many results are
returned in each page. The matched spatial entities and the spatial
2http://www.mpi-inf.mpg.de/yago-naga/yago/

Figure 2: The Result of Example 2

statements are anchored on the map, and the users can click the
hyperlink to find the corresponding location on the Google Map
tool.

5. REFERENCES
[1] D. J. Abadi, A. M. 0002, S. Madden, and K. Hollenbach. Sw-store: a

vertically partitioned dbms for semantic web data management.
VLDB J., 18(2), 2009.

[2] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak,
and S. Hellmann. Dbpedia - a crystallization point for the web of
data. J. Web Sem., 7(3), 2009.

[3] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase:
a collaboratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 1247–1250. ACM, 2008.

[4] O. Erling and I. Mikhailov. Rdf support in the virtuoso dbms. In
Networked Knowledge - Networked Media.

[5] A. Guttman. R-trees: A dynamic index structure for spatial
searching. In SIGMOD, 1984.

[6] M. Haklay and P. Weber. Openstreetmap: User-generated street
maps. Pervasive Computing, IEEE, 7(4):12–18, 2008.

[7] J. Hoffart, F. Suchanek, K. Berberich, and G. Weikum. Yago2: a
spatially and temporally enhanced knowledge base from wikipedia.
Artificial Intelligence, 2012.

[8] J. Hoffart, F. M. Suchanek, K. Berberich, E. Lewis-Kelham,
G. de Melo, and G. Weikum. Yago2: exploring and querying world
knowledge in time, space, context, and many languages. In WWW
(Companion Volume), pages 229–232, 2011.

[9] T. Neumann and G. Weikum. Rdf-3x: a risc-style engine for rdf.
PVLDB, 1(1), 2008.

[10] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of
semantic knowledge. In WWW, 2007.

[11] D. Wang, L. Zou, Y. Feng, X. Shen, J. Tian, and D. Zhao. S-store: An
engine for large rdf graph integrating spatial information. In DASFAA
(2), pages 31–47, 2013.

[12] C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing
for semantic web data management. PVLDB, 1(1), 2008.

[13] K. Wilkinson, C. Sayers, H. A. Kuno, and D. Reynolds. Efficient rdf
storage and retrieval in jena2. In SWDB, 2003.

[14] L. Zou, J. Mo, L. Chen, M. Özsu, and D. Zhao. gstore: answering
sparql queries via subgraph matching. Proceedings of the VLDB
Endowment, 4(8):482–493, 2011.

655


