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ABSTRACT

BackgroundGSTM1 encodes glutathione S-transferasem-1 (GSTM1), which belongs to a superfamily of phase 2

antioxidant enzymes. The highly prevalentGSTM1 deletion variant is associatedwith kidney disease progression

inhumancohorts: theAfricanAmericanStudyofKidneyDiseaseandHypertensionand theAtherosclerosisRisk in

Communities (ARIC) Study.

MethodsWe generated a Gstm1 knockout mouse line to study its role in a CKD model (involving subtotal

nephrectomy) and a hypertension model (induced by angiotensin II). We examined the effect of intake of

cruciferous vegetables and GSTM1 genotypes on kidney disease in mice as well as in human ARIC study

participants. We also examined the importance of superoxide in the mediating pathways and of hemato-

poietic GSTM1 on renal inflammation.

Results Gstm1 knockout mice displayed increased oxidative stress, kidney injury, and inflammation in both

models. The central mechanism for kidney injury is likely mediated by oxidative stress, because treatment with

Tempol, an superoxide dismutase mimetic, rescued kidney injury in knockout mice without lowering BP. Bone

marrow crosstransplantation revealed thatGstm1 deletion in the parenchyma, and not in bonemarrow–derived

cells, drives renal inflammation. Furthermore, supplementation with cruciferous broccoli powder rich in

the precursor to antioxidant-activating sulforaphane significantly ameliorated kidney injury inGstm1 knock-

out, but not wild-type mice. Similarly, among humans (ARIC study participants), high consumption of crucif-

erous vegetables was associated with fewer kidney failure events compared with low consumption, but this

association was observed primarily in participants homozygous for the GSTM1 deletion variant.

Conclusions Our data support a role for the GSTM1 enzyme in the modulation of oxidative stress, in-

flammation, and protective metabolites in CKD.

JASN 31: 102–116, 2020. doi: https://doi.org/10.1681/ASN.2019050449

CKD and its cardiovascular disease (CVD) and ESRD

consequences are a significant public health burden in

the United States.1 In the African American Study of

Kidney Disease and Hypertension (AASK) trial, we

found that those with GSTM1 deletion genotypes

(0/1 or 0/0) had, respectively, a 1.7- or 2-fold in-

creased risk for the composite outcome of a decline

in GFR, commencement of dialysis or all-cause

mortality, compared with those with two active al-

leles [GSTM1(1/1)].2 A similar effect was observed

in the Atherosclerosis Risk in Communities (ARIC)

study, in which GSTM1 deletion was associated
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with kidney failure and heart failure in both black and white

participants.3

A significant portion of humans are homozygous for

GSTM1 deletion [GSTM1(0/0)]4 and are therefore completely

deficient of the glutathione S-transferase m-1 (GSTM1) en-

zyme.5,6 The proportion of the GSTM1(0/0) genotype is pop-

ulation dependent and is approximately 50% in those with

European ancestry and 25% in black Americans.4 The

GSTM1 enzyme belongs to a superfamily of glutathione

S-transferases (GSTs) and is involved in the elimination of a

wide range of electrophiles, both protective and toxic, in the

glutathione pathway.7,8 The noncatalytic domain of GSTM1

has also been shown to suppress the apoptosis signal-regulating

kinase (ASK1).9

A growing body of evidence suggests that GSTM1 plays an

important role in determining disease susceptibility. The sig-

nificance of GSTM1 deletion was first recognized in cancer

studies demonstrating that patients carrying the GSTM1(0/0)

genotype were at increased risk for colon10 and lung cancers.11

In subsequent association studies on CVD, participants carry-

ing GSTM1(0/0) were shown to have significantly increased

risks of hypertension (HTN),12,13 coronary artery disease/

atherosclerosis,14,15 and stroke.16,17 Although GSTM1 de-

letion is associated with CKD progression, CVD, and cancer

(which could be explained by the lack of GSTM1 enzyme

for the elimination of toxic electrophiles), GSTM1(0/0) ge-

notype has also been shown to enhance the protective effect

of intake of cruciferous vegetables, such as broccoli, against

lung cancer in multiple populations of European and East

Asian ancestries.18–22

Over the past decade, the potential benefit of isothiocya-

nates (ITCs) has garnered significant attention. These com-

pounds are biologically active metabolites of glucosinolates

that are abundant in cruciferous vegetables such as broccoli.

In particular, the ITC sulforaphane, although not antioxidant

itself, has been shown to be highly potent in inducing the phase

2 detoxification enzymes GSTs (including GSTM1), UD-glu-

curonosyltransferases, sulfotransferases, N-acetyltransferases,

and S- and O-methyltransferases via activation of the Nrf2

pathway.23,24 Sulforaphane-rich broccoli contains high levels

of glucoraphanin, which is metabolized into sulforaphane. The

stronger protective effect of cruciferous vegetable intake in those

withGSTM1(0/0) genotypemay be due to greater total bioavail-

ability of antioxidant-promoting compounds like sulforaphane

in these individuals.25 Very few studies have assessed the effect

of sulforaphane in kidney disease. Of these, two studies showed

that sulforaphane induced expression of superoxide dismutase

and catalase in the liver of spontaneously hypertensive rats,26

lowered their BP, and decreased renal tissue inflammation.27

Multiple studies have demonstrated an association between

the loss ofGstm1 and deleterious effects in animalmodels. The

murine GSTM1 shares approximately 80% amino acid identity

with the human GSTM1 and.90%with the rat GSTM1 (basic

alignment tool [NCBI BLAST], https://blast.ncbi.nlm.nih.gov/

Blast.cgi). In mice, Gstm1 is a potential candidate modifier of

vascular injury. Amouse strain that is more susceptible to renal

vascular remodeling with pathologic features resembling hu-

man arteriolar nephrosclerosis expressed lower levels of Gstm1

than the resistant strain, and had faster proliferation and mi-

gration of vascular smooth muscle cells (VSMCs).28,29 In the

rat, Gstm1 is a positional candidate gene in a quantitative trait

locus forHTN.30Gstm1mRNA and protein levels in the kidney

were found to be reduced in the stroke-prone spontaneously

hypertensive rat (SHRSP), compared with the normotensive

congenic andWistar Kyoto rats,31 andwere inversely correlated

with kidney tissue levels of reactive oxygen species.

To further elucidate the pathways by which GSTM1 dele-

tion affects kidney disease pathophysiology and to identify

potential therapeutic targets, we generated a Gstm1 knockout

(KO) mouse line to mimic the common 20 kb deletion variant

in humans.6 Using these mice and wild-type (WT) controls,

we studied the role of Gstm1 in a CKD model and a HTN

model. We examined the importance of superoxide in the

mediating pathways and of hematopoietic GSTM1 expression

on renal inflammation. Further, we fed mice sulforaphane-rich

broccoli powder (SRBP) to determine whether cruciferous veg-

etables provide a Gstm1-dependent protective effect in kidney

disease, similar to that observed in lung cancer. The clinical rel-

evance of this effect was also examined in humans, using data

from the ARIC study, a community-based prospective cohort.

METHODS

Additional details of the methods can be found in Supplemen-

tal Appendix 1.

Animal Models

Experiments were carried out in accordance with local and

National Institutes of Health guidelines, and the animal

protocol was approved by the University of Virginia and

University of Rochester Institutional Animal Care and Use

Committee. All mice were maintained on a 12-hour light-

dark cycle with free access to standard chow and water. The

Significance Statement

GSTM1 encodes a member of a superfamily of antioxidant en-
zymes, and a highly prevalentGSTM1deletion variant is associated
with kidney disease progression in two human study cohorts. In this
study, the authors demonstrate that Gstm1 knockout mice exhibit
increased oxidative stress, kidney injury, and inflammation in
models of CKD and hypertension, and that Gstm1 loss in the
parenchyma but not in bone marrow–derived cells drives renal
inflammation. Importantly, consumption of broccoli powder or
cruciferous vegetables was protective against kidney disease only
in Gstm1 knockout mice, and was observed mainly in the human
participants in the Atherosclerosis Risk in Communities Study who
were homozygous for GSTM1 deletion. These findings suggest
that targeting antioxidant therapy specifically in individuals carry-
ing theGSTM1deletion variantmay be effective in delaying kidney
disease progression.
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mouse line carrying the Gstm1 deletion was generated by the

electroporation of embryonic stem cells derived from the 129/

SvEv (129S6; Taconic) strain with a targeting construct to

disrupt a 20 kb segment of the Gstm1 locus (Supplemental Fig-

ure 1A). Ablation ofGstm1 was confirmed by Southern blotting

and quantitative RT-PCR (Supplemental Figure 1, B and C).

Subtotal Nephrectomy–Induced CKD Model
A subtotal nephrectomy (Nx) was used to induce CKD in the

model, as previously described.32 Briefly, mice were anesthe-

tized with 2%–4% isoflurane. The right kidney was removed

and the cranial branch of the left renal artery was ligated,

resulting in the infarction of the cranial pole of the left kidney.

Mice were allowed to recover for at least 4 weeks before being

subjected to any other procedures.

Angiotensin II–Induced HTN Model
The HTNmodel was induced by the delivery of angiotensin II

(AngII; Sigma-Aldrich, St. Louis, MO) at 1000 ng/kg per min-

utes for 4 weeks via Alzet miniosmotic pumps (model 2004;

Durect Corporation, Cupertino, CA).

Antioxidant Treatment
Tempol (4-hydroxy-Tempo; Sigma-Aldrich) was administered

to mice in drinking water as a 3 mmol/L solution, simulta-

neous with AngII infusion. Mice treated with SRBP (Natural

Sprout Company) had it mixed with powdered chow at a 1:1

ratio. SRBP contains little sulforaphane, but rather glucora-

phanin, which is metabolized into sulforaphane in the gut.

BP Monitoring in vivo

BP was measured in conscious mice under unrestrained con-

ditions by radiotelemetry (TA11PA-C10; Data Sciences Inter-

national, St. Paul, MN), as previously described.33 Briefly,

mice were anesthetized with 2%–4% isoflurane and had the

radiotelemetry catheter implanted into the left carotid artery.

A subcutaneous pouch was made along the right flank of the

animal, and the transmitter was placed as caudally as possible.

Mice were housed in individual cages on receivers and allowed

to recover for at least 7 days after implantation of the radio-

telemetry device before measurements were recorded and an-

alyzed using Dataquest A.R.T. 20 software (Data Sciences

International). Implantation was performed at least 4 weeks

after Nx-CKD or before AngII-HTN initiation. Reported values

are expressed as mean6SD.

Urine Measurements
Urine samples were collected over 24 hours from mice placed

in individual metabolic cages for assessment of 8-isoprostane

and urinary albumin and creatinine, as previously de-

scribed.32Urinary isoprostane was measured using the ELISA

kit from Oxford Biomedical Research (Oxford, MI). Urinary

albumin and creatinine were measured using the Albuwell M

Murine ELISA kit, and Creatinine Companion kit (Exocell,

Philadelphia PA).

Measurement of Tissue Superoxide

The lucigenin (9,99-bis-N-methylacridinium nitrate, M8010;

Sigma) assay was modified from previous studies as de-

scribed,33 and performed on 3–5 mg of kidney cortical tissue.

Luminescence counts were taken five times for 1 minute each,

averaged, corrected for background, and normalized to dry

tissue weight.

Histopathologic Analyses

Kidney injury was scored blinded using formalin-fixed sec-

tions stained with periodic acid-–Schiff as previously de-

scribed.32 Digital quantitation of glomerular and mesangial

surface areas was performed by light microscopy (Zeiss Axio

Imager Z2) using Stereoinvestigator software (BMF Biosci-

ence) as previously described.34

Podocyte Isolation and Scratch Assay

Podocytes were isolated as previously described.35 At conflu-

ence, mechanical scraping was performed with a 200 ml pi-

pette tip, creating a rectangular-shaped wound in the podocyte

layer. Images of podocytes with the scratched area were taken

immediately after wound creation (0 hour) and after 14 hours,

using an EVOS XL Core Cell Imaging System at 310 magni-

fication. The images were analyzed using ImageJ software

(1.48v; National Institutes of Health) to obtain pixel counts

in the scratched area void of podocytes.

Gene Expression Analysis

RNA from frozen kidney tissue was isolated by RNeasyMini kit

(Qiagen) and transcribed to complementary DNA by iScript

cDNA synthesis kit (Bio-Rad). Quantitative RT-PCR analysis

was performed on an iQ5 system (Bio-Rad) with normaliza-

tion toHprt as the reference gene. The sequences of all primers

used in this study are listed in Supplemental Table 12.

Flow Cytometry

Single-cell suspensions were made from kidney tissue, stained

with antibodies for 1 hour at 4°C, and analyzed on a FACSCalibur

system (BD Biosciences, San Jose, CA) with an eight-color de-

tector (Cytek Development, Fremont, CA). Live, singlet CD45+

cells (leukocytes) were identified and quantified on the basis of

positive staining of respective markers.

BM Transplantation

BM cells were obtained from the femurs and tibias of donor

mice. Recipient mice were irradiated and then 0.2 ml of BM

cells (5 million cells) were injected via the tail vein. Recipient

mice were maintained on antibiotics (enrofloxacin) with

autoclaved water and food for 5 weeks. Eight weeks post-

transplantation, HTN was induced as described above.

Statistical Analyses

Unpaired t test, one-way ANOVA with post hoc Bonferroni

correction, and two-way ANOVAwere used as indicated. Dif-

ferences in Kaplan–Meier survival curves were tested using the
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log-rank test. Differences were considered statistically signif-

icant when P,0.05. All values are presented in the text and

figures as mean6SD.

ARIC Study

The ARIC study was a prospective cohort study of 15,792

participants in the United States, aged 45–65 years at visit 1

(1987–1989).The overall analyzed sample in this study in-

cluded 10,155 participants. The included participants pro-

vided informed consent for genetic studies. This study has

been approved by the Johns Hopkins Institutional Review

Board.

GSTM1 genotypes were determined using exome sequenc-

ing reads. The methods have been reported previously.3 The

concordance between this algorithm of calling GSTM1 dele-

tion using exome sequencing reads and quantitative PCR was

93% (Supplemental Figure 6). We adopted the recessive ge-

netic model, i.e., homozygous deletion [GSTM1(0/0)] versus

heterozygous deletion [GSTM1(0/1)] and no deletion

[GSTM1(1/1)] combined, as our primary model on the basis

of previous findings from lung cancer in humans.18–20,22 We

also performed secondary analysis using the genotypic model,

i.e., using the three genotypes as a categorical variable.

Cruciferous vegetable intake of the participants was as-

sessed using a food frequency questionnaire on their dietary

intake in the previous year (the Willett 131-item food

frequency questionnaire).36 Among the questions in this as-

sessment, one question was specific to broccoli intake, and

another was on cabbage, cauliflower, and Brussels sprouts in-

take. These vegetables have commonly been considered as cru-

ciferous vegetables containing ITC, a protective electrophile.37

Cruciferous vegetable intake was categorized into three levels:

low (three or fewer times per month), medium (more than

three times per month but less than once per week), and high

(once or more per week).

Kidney failure was defined as ESRD ascertained using link-

age to the US Renal Data System or kidney failure on the basis

of International Classification of Diseases, Ninth or Tenth Re-

vision, Clinical Modification (ICD-9-CM/ICD-10-CM) codes

for hospitalization or death.38 Participants were followed from

the baseline (visit 1) to December 2013.

Statistical Analyses in the ARIC Study

We compared the baseline characteristics of the participants

by three levels of cruciferous vegetable intake, using t tests for

nonskewed continuous variables, Wilcoxon tests for skewed

continuous variables, and chi-squared tests for categorical var-

iables. Our primary analysis evaluated the association between

the three levels of cruciferous vegetable intake and kidney fail-

ure stratified by GSTM1 homozygous deletion to determine

whether the protective effect of cruciferous vegetable intake

was indeed stronger among participants with GSTM1(0/0).

Kaplan–Meier curves were plotted by the three levels of cru-

ciferous vegetable intake within those with and without

GSTM1 homozygous deletion. Risk of kidney failure was

assessed by Cox regression. Model 1 controlled for age, sex,

study center, and genetic principal components. Model 2 ad-

ditionally controlled for clinical risk factors of kidney failure

(baseline eGFR, prevalent diabetes, HTN, coronary heart dis-

ease, smoking status, body mass index, physical activity, edu-

cation levels, and total calorie intake). We evaluated these two

models combining black and white participants controlling

for race within each GSTM1 homozygous deletion stratum.

To determine whether the association between cruciferous

vegetable intake and kidney failure was stronger in those

with GSTM1 homozygous deletion, we tested for the interac-

tion between GSTM1 homozygous deletion and cruciferous

vegetable intake. To determine whether the association be-

tween cruciferous vegetable intake and kidney failure within

the GSTM1 homozygous deletion strata differed by the two

race groups, we tested for race interaction with cruciferous

vegetable intake within each GSTM1 homozygous deletion

stratum.

Furthermore, we conducted three sets of secondary analy-

ses. The first set evaluated the association between GSTM1

genotypes (0/0, 0/1, and 1/1) and kidney failure within the

three levels of cruciferous vegetable intake. The second eval-

uated themain effect of cruciferous vegetable intake on kidney

failure. The third evaluated the main effect ofGSTM1 deletion

genotype on kidney failure. The covariates of these secondary

analyses were the same as the primary analysis.

All Cox regression analyses were conducted using Stata

version 14. All other analyses were conducted using R.

RESULTS

Gstm1 Null Mice Have Increased BP and Oxidative

Stress at Baseline

Gstm1 KO mice displayed a modest but statistically signifi-

cantly higher average baseline systolic BP (SBP) of 7 mm Hg

compared with WT controls (Figure 1A). We previously re-

ported through knockdown studies that GSTM1 influences

oxidative stress in VSMCs in vitro.2,29 Consistent with these

earlier findings, Gstm12/2 (KO) mice displayed higher base-

line urinary 8-isoprostane levels (marker of oxidative stress)

(Figure 1B), suggesting that the deletion directly results in

increased oxidative stress in vivo. No difference in urinary

albumin-to-creatinine ratio (ACR) was observed (Figure

1C), suggesting loss of GSTM1 does not influence the glo-

merular filtration barrier or tubular resorptive capacity in

nondisease state. At 1 year of age, there were no observed dif-

ferences in mortality or phenotypes between WT and Gstm1

KO mice (Supplemental Figure 1, D–F).

Deletion of Gstm1 Results in Poor Survival and

Exaggerated HTN and Kidney Injury in the Nx-CKD

Model

We previously reported that both Nrf2 and GSTM1 proteins

are upregulated in the remnant kidney in WTmice after Nx,2
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suggesting that this axis plays a role in adaptive response after

loss of nephron mass. We subjected eight WT and Gstm1 KO

mice to the Nx-CKD model. Gstm1 KOmice had significantly

worse survival after Nx, with a 23% survival rate at 83 days

(12weeks) after the procedure, whereas there was nomortality

in WT mice at 90 days (13 weeks, original study end point)

(Figure 2A).

Because of the observed high mortality beyond 8 weeks,

another cohort of mice underwent Nx and animals and tissue

samples were analyzed at 56 days (8 weeks) after Nx. By ra-

diotelemetry, Gstm1 KO mice had significantly greater SBP

(Figure 2B), and elevated renal superoxide levels as measured

by lucigenin luminescence (Figure 2C), consistent with the

notion that GSTM1 plays a role in regulating oxidative stress.

Gstm1 KO mice had higher urinary ACR (Figure 2D), and

quantitation of kidney histopathology (Figure 2E, Supple-

mental Figure 2B) confirmed they had greater tissue injury,

characterized by severe glomerulosclerosis and chronic in-

flammation. Digital quantitation of glomerular andmesangial

surface area showed a significant increase in both measures in

Gstm1KOmice (Figure 2F), suggesting that glomerular hyper-

filtration and increased glomerular remodeling39 is influenced

by deletion of GSTM1.

Given the significance of the podocytes to the renal filtra-

tion apparatus and the increased albuminuria in Gstm1 KO

mice after Nx, we set out to determine whether GSTM1 defi-

ciency has a direct effect on podocyte health. Primary podo-

cytes (synaptopodin-positive cells) were isolated from healthy,

unmanipulated WTand KO kidneys, and the GSTM1 expres-

sion was found only in WT cells, as expected (Supplemental

Figure 2, C–E). Migration capacity using a standard ex vivo

scratch assay35 showed that Gstm1 KO podocytes migrate at a

significantly higher rate than those fromWTmice, as reflected

by the significantly smaller noncovered area after 14 hours

(Figure 2G). The motile phenotype of podocytes in vitro is

generally considered to be analogous to podocyte foot efface-

ment and injury in vivo.40,41These data suggest that deletion of

Gstm1may exaggerate podocyte response to stress and injury,

and contribute to the increased glomerular injury observed in

mice with Nx-CKD.

Deletion of Gstm1 Results in Exaggerated Kidney
Injury Mediated by Oxidative Stress in the AngII-HTN

Model

To determine the generalizability of the effect of GSTM1 de-

ficiency on susceptibility to kidney injury in disease states, we

next determined the effect of Gstm1 deletion in a model of

HTN induced by AngII infusion. Despite a modest increase in

baseline SBP in Gstm1 KOmice, there was no difference in the

severity of HTN (Figure 3A) or urinary ACR (Figure 3B).

However, Gstm1 KO mice had approximately three times

higher superoxide radicals in kidney tissue (Figure 3C),

despite a lack of difference in NADPH subunits (Nox2 and

Nox4, Supplemental Figure 3A)42 and SOD (cytosolic CuZn-

SOD [SOD1], extracellular CuZn-SOD [SOD3], and mito-

chondrial Mn-SOD [SOD2], Supplemental Figure 3B).

Gstm1 KO mice also had greater tissue injury compared with

WTmice (Figure 3D, Supplemental Figure 3C).We next quan-

tified indicators of inflammation given its significance in the

development of AngII-HTN,43,44 and found that KO mice

had a significant increase in renal expression of several genes

involved in inflammation, including CXCL-1, MCP-1, and

IL-6 (Figure 3E, Supplemental Figure 3D).

Because the AngII-HTN model had fewer surgery-related

complications and mortality compared with the Nx-CKD

model, further studies were conducted in the AngII-HTN
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model. To determine whether oxidative stress was mediating

the exaggerated disease phenotype inGstm1KOmice, Tempol,

a superoxide scavenger, was administered concurrently with

AngII. Although Tempol caused amild increase in SBP (Figure

3A) and no change in ACR (Figure 3B), it did significantly

decrease renal superoxide levels (Figure 3C), kidney pathology

(Figures 3D, Supplemental Figure 3C), and expression of

MCP-1 and CXCL-1 (Figure 3E) in KO mice. Although it is

unclear why SBP increased in KO mice treated with Tempol,

these findings suggest that deletion of Gstm1 enhances kidney

injury through an oxidative stress pathway independent of BP.

Gstm1 KO Mice in the AngII-HTN Model Have

Increased Renal Inflammation associated with the

Deletion of Gstm1 in the Parenchyma

Increased expression of chemokines and cytokines in Gstm1

KO kidneys suggested increased renal inflammation. We next

used flow cytometry to quantify in an unbiased manner the

proportion of inflammatory cells in AngII-HTN WT and KO

kidneys. The gating strategy is shown in Supplemental Figure

4A. Analysis showed more adaptive (CD4+ and CD8+ T cells)

and innate (neutrophils [Ly6G, PMN] andmacrophages [F4/80])

inflammatory cells in the Gstm1 KO kidney (Figure 4A) that

were primarily sequestered in the renal interstitium (Supple-

mental Figure 4, B and C). This suggests that during AngII-

HTN, loss of GSTM1 augments renal inflammation.

Because GSTM1 is abundantly expressed in hematopoietic

cells and renal epithelial cells, and CXCL-1 andMCP-1 are not

uniquely expressed in macrophages and neutrophils but are

also expressed in renal epithelial cells, we next investigated

whether deletion of Gstm1 in BM-derived cells or in the pa-

renchyma contributes to renal inflammation and injury in the

AngII-HTN model, using a BM crosstransplant approach.

Analysis of the renal CD45+ population by two-way ANOVA
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Figure 2. Deletion of Gstm1 in the Nx CDK model results in poor survival and exaggerated HTN and kidney injury. (A) Survival curve
showing significant mortality in Gstm1 KO mice after Nx; P=0.01 versus WT; n=8 each. Time of censoring for mice that were used for
terminal experiments are marked by 3. (B) SBP measured by radiotelemetry was significantly higher in Gstm1 KO mice: WT 135.068.4
versus KO 150.6613.7 mm Hg; P=0.04; n=4/7. (C) Renal superoxide levels measured by lucigenin luminescence and normalized to dry
tissue weight were higher in Gstm1 KO mice: WT 74.5636.1 versus KO 250.46153.6; P=0.04; n=6 each. (D) Urinary ACR was higher in
Gstm1 KO mice: WT 235.1660.3 versus KO 748.46460.4 mg/mg; P=0.04; n=6 each. (E) Kidney pathology scores were greater in
Gstm1 KO mice for all compartments (total: WT 8.362.3 versus KO 18.763.6; P,0.001) and in most individual compartments (glo-
meruli: WT 6.561.2 versus KO 14.562.7; P,0.001; tubules: WT 1.060.0 versus KO 1.560.8; P=0.20; interstitium: WT 0.861.2 versus
KO 2.760.8; P=0.01), n=6 each. (F) Area fractions were greater in Gstm1 KO mice for glomerular to total noninfarcted kidney (G/T, left:
WT 2.360.7 versus KO 3.360.7; P=0.03) and mesangial to glomerular (M/G, right: WT 23.766.1 versus KO 35.765.5; P=0.005), n=6
each. (G) Percent of scratched area that remained uncovered after 14 hours was reduced in Gstm1 KO mice: WT 69.3611.5 versus KO
54.268.6; P=0.007; n=9 each. All comparisons by t test. *P,0.05; **P,0.01; ***P,0.001.
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revealed that the recipient genotype significantly influenced

the degree of renal inflammation, with KO recipient mice hav-

ing increased renal inflammation. There was no significant

effect of donor genotype nor of the interaction between donor

and recipient. Hence, our study shows that deletion of Gstm1

in the parenchyma, and not in BM-derived cells, drives renal

inflammation and injury.

Supplementation with SRBP Ameliorates Kidney Injury

in Gstm1 KO Mice but Not in WT Mice

We first confirmed the bioavailability and activity of synthetic

sulforaphane (Supplemental Figure 5A) and showed that dietary

supplementation of SRBP produced similar effects in WTmice

without effect on body weight (Supplemental Figure 5, B and C).

As expected, SRBP induced Gstm1 expression in the kidney in

WTmice duringAngII-HTN, but not inKOmice inwhichGstm1

expression was not detectable (Supplemental Figure 5D). SRBP

supplementation did not lower SBP in either WTor KO mice in

the AngII-HTNmodel (Figure 5A), and in fact increased SBP in

WTmice. However, SRBP significantly decreased renal levels of

superoxide (Figure 5B), ACR (Figure 5C), and kidney histopa-

thology scores in the glomeruli and interstitium in KO mice

(Figure 5D, Supplemental Figure 5E). In most of these metrics,

KOmice fed SRBPwere similar toWTmice fed SRBP. In contrast,

WTmice treated with SRBP had no significant change compared

with untreated WTmice. Our result suggests that the beneficial

effect of SRBP is dependent on the absence Gstm1.

In Humans, GSTM1 Deletion Modifies the Protective

Effect of Cruciferous Vegetables Against Kidney

Failure
To determine whether our findings of the protective effect of

SRBP in GSTM1 KOmice can be translated to humans, we eval-

uatedwhetherGSTM1 deletionmodified the association between

cruciferous vegetable intake and kidney failure in the ARIC study.

Population Characteristics

Among 10,155 participants in the ARIC study, the mean age

was 54 years, 44% were men, and 27% were black. The mean

baseline eGFR was 103 ml/min per 1.73 m2. The participants

in the three cruciferous vegetable intake categories did not

differ significantly by age, bodymass index, prevalent diabetes,

or baseline eGFR. By the three cruciferous vegetable intake

categories, the high-intake group had significantly lower pro-

portion of men (high intake: 32.6%, low intake: 57.0%), black

participants (high intake: 17.5%, low intake: 34.7%), and cur-

rent smokers (high intake: 22.3%, low intake 30.9%) (Table

1). Among the participants in this study, a subsample

(n=5461) was previously studied for the association between

GSTM1 deletion and kidney failure.3 Compared with the pre-

vious subsample, the additional participants in this study

(n=4694) had higher intake of cruciferous vegetables (high

intake: previous subsample 22.0%, additional participants

26.7%; P,0.001; Supplemental Table 1).

The frequencies of GSTM1 deletion genotype among black

and white participants were similar to the race-specific frequen-

cies reported in other study populations (black participants:

GSTM1(0/0), 26.1%; GSTM1(0/1), 48.3%; GSTM1(1/1), 25.7%;

white participants GSTM1(0/0), 52.3%; GSTM1(0/1), 39.5%;

GSTM1(1/1), 8.2%; Supplemental Table 2).4

Protective Association of Higher Cruciferous

Vegetable Intake was Mainly Observed among
Participants with GSTM1 Homozygous Deletion

Over a median of 24.6 years, 370 kidney failure events were

observed (black participants, 188; white participants, 182). In

the primary analysis, the protective association of higher in-

take of cruciferous vegetable for kidney failure was signifi-

cantly stronger among those with GSTM1(0/0) genotype

than among those with GSTM1(0/1) or GSTM1(1/1) geno-

types (P value for interaction between cruciferous vegetable

intake and GSTM1 genotype ,0.05). Among participants

with GSTM1(0/0) genotype, in model 1, higher intake of cru-

ciferous vegetables was associated with .40% reduction in

risk of kidney failure (model 1 race-combined hazard ratio

[HR]: medium intake, 0.58; 95% confidence interval [95%

CI], 0.41 to 0.82; high intake, 0.41; 95% CI, 0.25 to 0.68;

P-trend,0.001; Figure 6, Table 2). With the additional ad-

justment for clinical risk factors, this association remained

similar (model 2 race-combined HR: medium intake, 0.68;

95% CI, 0.48 to 0.98; high intake, 0.49; 95% CI, 0.29 to 0.83;

P-trend=0.005). Among those withGSTM1(0/1) or GSTM1(1/1)

genotypes, cruciferous vegetable intake did not have significant

dose response association with kidney failure (model 1: race-

combined P-trend=0.45; model 2: race-combined P-trend=0.46;

P value for interaction between cruciferous vegetable intake and

GSTM1 genotype, Model 1: 0.02; Model 2: 0.03) (Table 2). Anal-

ysis with GSTM1(0/1) and GSTM1(1/1) separately yielded sim-

ilar results. (Supplemental Table 3).

In the analysis within each race group, the association between

cruciferous vegetable intake and kidney failure by GSTM1 geno-

type was consistent across the two race groups (all P for interac-

tion between race and cruciferous vegetable intakewithinGSTM1

strata .0.05; Supplemental Table 4). These results suggest

GSTM1 deletionmodifies the protective effect of cruciferous veg-

etable for kidney failure across populations.

baseline (WTBL) and with HTN (WT), n=6/5 and KO mice at baseline (KOBL), with HTN (KO) and with HTN treated with Tempol (KO+T),
n=6/6/4. Expression levels were elevated in the KO mice for MCP-1 (KOBL 0.005460.0050 versus KO 0.04860.016 versus KO+T
0.01960.0068; P,0.001) and CXCL-1 (KOBL 0.007160.0027 versus KO 0.06860.028 versus KO+T 0.01260.0051; P,0.001). WT
comparisons in (E) by t test. Comparisons in other panels andKOcomparisons in (E) by one-wayANOVA. *P,0.05; **P,0.01; ***P,0.001;
****P,0.001.
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Association between GSTM1 Deletion and Kidney

Failure by Cruciferous Vegetable Intake Levels

In the analysis comparing GSTM1(0/0) versus GSTM1(0/1)

or GSTM1(1/1), GSTM1(0/0) did not have significant asso-

ciation with kidney failure within each of the crucifer-

ous intake category adjusting for demographic and clinical

covariates (Supplemental Table 5). When the three GSTM1

deletion genotypes were analyzed separately, GSTM1 dele-

tion genotypes (0/0 and 0/1) were associated with higher

risk for kidney failure compared with GSTM1(1/1) among

those with medium intake (P-trend=0.03; Supplemental

Table 6).
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Figure 4. Gstm1 KO mice in the AngII HTN model have increased renal inflammation associated with the deletion of Gstm1 in the
parenchyma. (A) Flow cytometry data of renal leukocytes normalized to WT counts showed Gstm1 KO mice have increased populations
(P values: CD4+T=0.04; CD8+T=0.05; B=0.16; PMN=0.007; F4/80High=0.004), n=3/4. Comparisons by one-way ANOVA. *P,0.05;
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donor-recipient) normalized to WT-WT showed recipient genotype was the statistically significant factor (donor P values: CD4+T=0.82;
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Overall Association of Cruciferous Vegetable Intake

and GSTM1 Deletion with Kidney Failure

Overall higher cruciferous vegetable intake was associated

with lower risk of kidney failure (model 2 race-combined

HR: medium intake, 0.68; 95% CI, 0.53 to 0.86; high intake,

0.70; 95% CI, 0.51 to 0.96; P-trend=0.01) (Supplemental

Table 7). Similar results were observed within the race

groups. In contrast, GSTM1(0/0) did not have significant

overall association with kidney failure when compared with

GSTM1(0/1) and GSTM1(1/1) combined (Supplemental

Table 8) or by the three deletion genotypes (model 2 race-

combined HR: GSTM1(0/0), 1.30; 95% CI, 0.92 to 1.82;

GSTM1(0/1), 1.24; 95% CI, 0.89 to 1.72; P-trend=0.18;

Supplemental Table 9), suggesting that the main effect of

GSTM1 deletion can be highly dependent on environmental

factors.

DISCUSSION

We have shown that Gstm1 deletion in the mouse directly

influences the severity of kidney injury in two disease models

(Nx-CKD and AngII-HTN). In the Nx-CKD model, Gstm1

deletion resulted in poor survival and exaggerated HTN and

kidney injury. In the AngII-HTN model, Gstm1 deletion re-

sulted in exaggerated kidney injury associated with heightened

renal inflammation. This is likely mediated by oxidative stress,

which was increased in both models, as treatment with
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Tempol, a superoxide scavenger, in the AngII-HTN model re-

duced oxidative stress, expression of MCP-1 and CXCL-1, and

kidney injury without lowering BP in Gstm1 KO mice. BM

crosstransplantation delineated that Gstm1 in the parenchyma,

and not in the hematopoietic cells, determined renal inflamma-

tion. Finally, Gstm1 deletion modified the effect of SRBP supple-

mentation, as SRBP supplementation reduced superoxide levels,

reduced ACR, and improved kidney histopathology scores in

KO mice but not in WT. This modifying effect of GSTM1 de-

letion in mice on SRBP supplementation was also observed in

humans in the ARIC study, where the protective effect of cru-

ciferous vegetable intake on kidney failure was mainly found in

those with homozygous deletion of GSTM1.

Gstm1 is a positional candidate gene for HTN in the SHRSP

rats.31 Here, we found that deletion of Gstm1 in the mouse

resulted in a small but significant increase in SBP at baseline

Table 1. Baseline population characteristics by cruciferous vegetable intake category (n=10, 155)

Characteristic Low Intake Medium Intake High Intake P Value

N 2017 5680 2458

Age, yr, mean (SD) 54.4 (5.8) 54.6 (5.7) 54.4 (5.6) 0.29

Men, n (%) 1150 (57.0) 2512 (44.2) 801 (32.6) ,0.001

Black, n (%) 700 (34.7) 1582 (27.9) 431 (17.5) ,0.001

Body mass index, kg/m2, mean (SD) 27.57 (5.28) 27.78 (5.3) 27.65 (5.48) 0.25

Smoking, n (%) ,0.001

Current smoker 623 (30.9) 1412 (24.9) 548 (22.3)

Former smoker 670 (33.2) 1856 (32.7) 806 (32.8)

Never smoked 724 (35.9) 2412 (42.5) 1104 (44.9)

Diabetes, n (%) 222 (11) 645 (11.4) 258 (10.5) 0.52

HTN, n (%) 741 (36.7) 1990 (35) 762 (31) ,0.001

Coronary heart disease, n (%) 114 (5.7) 282 (5) 105 (4.3) 0.10

eGFR, ml/min per 1.73 m2, mean (SD) 103.31 (16.38) 102.75 (15.51) 102.25 (14.19) 0.07

Education, n (%) ,0.001

Less than high school 595 (29.5) 1154 (20.3) 360 (14.6)

Some college 817 (40.5) 2358 (41.5) 1015 (41.3)

Graduate education 605 (30) 2168 (38.2) 1083 (44.1)

Physical activity score, median (25 percentile, 75 percentile) 2.2 (1.8, 2.5) 2.2 (2, 2.8) 2.5 (2.2, 2.8) ,0.001

Total calorie intake, median (25 percentile, 75 percentile) 1475 (1133, 1913) 1511 (1177, 1918) 1633 (1283, 2056) ,0.001

Intake categories: low intake, three or more times per month; medium, more than three times per month but less than once per week; high intake, at least once per
week. P values for baseline characteristics of participants by three levels of cruciferous vegetable intake were obtained using t tests for nonskewed continuous
variables, Wilcoxon tests for skewed continuous variables, and chi-squared tests for categorical variables.
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Figure 6. Humans with GSTM1(0/0) have reduced incidence of kidney failure with higher cruciferous vegetable intake. Kaplan–Meier
plots of kidney failure by cruciferous vegetable intake category within those (A) with and (B) without GSTM1 homozygous deletion
showed a significant benefit only in those with the homozygous deletion. See Table 2 for statistical analysis.
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and exaggerated HTN in the Nx-CKD model. This could be

explained by increased oxidative stress at baseline and more

severe kidney injury in the Nx-CKDmodel. Our result is con-

sistent with a recent study showing that transgenic overexpres-

sion of Gstm1 in the kidney injury-prone SHRSP rat rescued

renal oxidative stress and HTN.45 In the AngII-HTN model,

there was no difference in SBP between WTand KO mice and

we speculate that the very high dose of AngII administered

potentially masked any modest BP effect of Gstm1 deletion.

In both Nx-CKD and AngII-HTN induced disease models,

we demonstrated that deletion of Gstm1 directly influenced

the severity of kidney injury in the mouse and that this was

associated with increased renal oxidative stress. Although we

cannot at this time attribute worse kidney injury to worse

HTN or vice versa in the Nx-CKD model, these two pheno-

types in Gstm1 KO mice correlate with those seen in human

patients with CKD in whom HTN becomes more severe with

worsening kidney disease.46

The mechanism(s) by which Gstm1 deletion exaggerates

kidney disease is likely through oxidative stress and inflamma-

tion, as both Tempol and SRBP lowered renal superoxide

levels, inflammation, and kidney pathology scores, without

lowering BP, in the AngII-HTN model. We previously report-

ed that knockdown of Gstm1 in VSMCs in vitro resulted in

increased levels of superoxide.29 Our present in vivo studies

found that deletion of Gstm1 also resulted in increased renal

superoxide in both the Nx-CKD and AngII-HTN models.

There is no evidence that GSTM1 has SOD activity to metab-

olize superoxide. Moreover, deletion ofGstm1 did not result in

increased expression of Nox2 or Nox4 isoforms of NAD(P)H

oxidase, nor altered expression level of SOD in the AngII-HTN

model. These data suggest that GSTM1 might influence su-

peroxide metabolism indirectly. Because GSTM1 enzyme has

overlapping substrate specificities with other GST enzymes,

the increased superoxide levels inGstm1KOmice also suggests

that there is inadequate compensation by other GST en-

zyme(s) or pathway(s) that determine superoxide levels. Fur-

thermore, enzyme kinetic assays have demonstrated that

GSTM1 has activity against epoxides47

and several reactive aldehydes48–50 and, in

vivo, transgenic overexpression ofGstm1 in

the SHRSP rat decreases renal levels of ma-

londialdehyde.45 The multiple substrates

metabolized by GSTM1 suggest that their

metabolites and downstream effects may

be influenced by disease states. Identifica-

tion of reactive oxygen species regulated by

GSTM1 that are involved in kidney injury

in these models would be informative to

further elucidate the mechanisms.

In the Nx-CKD model, Gstm1 KO mice

displayed increased mortality, in addition

to worse HTN, oxidative stress, and kidney

injury. The reason for the poor survival of

these mice beyond 8 weeks after Nx is un-

clear. The increased ACR and glomerular and mesangial sur-

face areas in Gstm1 KOmice may reflect increased glomerular

HTN from GSTM1 deficiency, raising the question whether

GSTM1 deficiency influences single nephron GFR, preglo-

merular myogenic tone, and postglomerular vasodilation.

Furthermore, we report for the first time that GSTM1 is

normally expressed in podocytes, and that GSTM1 deficiency

increases podocyte migration in response to wound scratch in

vitro. The “motile” phenotype of podocytes in vitro is consid-

ered analogous to podocyte injury and effacement in vivo.40,51

The potential role of GSTM1 in glomerular hyperfiltration

and podocyte function in disease states will be a focus of future

studies.

In the AngII-HTN model, deletion of Gstm1 resulted in

worse kidney injury, but not an increase in mortality as in

the Nx-CKD model. Thus, further experiments were all con-

ducted using the AngII-HTN model. The kidney injury in the

AngII-HTN model was associated with increased expression

of genes involved in inflammation, particularly those ex-

pressed in macrophages, raising the possibility that GSTM1

may mediate macrophage inflammatory response in certain

disease states. This is consistent with findings by Alexis et al.,52

who reported that human volunteers with the GSTM1 null

genotype exposed to ozone had significantly increased expres-

sion of HLA-DR on airway macrophages and dendritic cells.

Furthermore, SRBP inhibited MIF tautomerase, and de-

creased renal inflammation in Gstm1 KO mice. CXCL-1 and

MCP-1 are not uniquely expressed in macrophages and neu-

trophils, but are also expressed in endothelial53 and renal ep-

ithelial cells.54 Our BM chimeras suggest that deletion of

Gstm1 determines renal inflammation in AngII-HTN mech-

anistically through a parenchymal-driven pathway rather than

via the hematopoietic cells. However, we cannot rule out that

Gstm1 deletion activates resident leukocytes in the kidney us-

ing the BM crosstransplantation approach.

Although deletion of Gstm1 increased kidney injury and

inflammation, dietary administration of SRBP in the mice

protected against renal injury and inflammation only in

Table 2. Association between cruciferous vegetable intake and kidney failure
stratified by GSTM1

HR (95% CI)

Low Intake Medium Intake High Intake P-Trend

Model 1

GSTM1 (0/0) Reference 0.58 (0.41 to 0.82) 0.41 (0.25 to 0.68) ,0.001

GSTM1 (0/1 or 1/1) Reference 0.73 (0.53 to 1.01) 0.88 (0.59 to 1.33) 0.45

Model 2

GSTM1 (0/0) Reference 0.68 (0.48 to 0.98) 0.49 (0.29 to 0.83) 0.005

GSTM1 (0/1 or 1/1) Reference 0.68 (0.49 to 0.94) 0.89 (0.59 to 1.36) 0.46

n (event). GSTM1(0/0), 4601 (159); GSTM1(0/1 or 1/1), 5554 (211).
Model 1 covariates: age, sex, race, center, genetic principal components. Model 2 covariates: model 1
plus eGFR, prevalent diabetes, HTN, coronary heart disease, smoking status, body mass index, leisure
physical activity, education levels, and total calorie intake. P-trend was obtained by using cruciferous
vegetable intake as a continuous variable in Cox regression. P value for GSTM1 and cruciferous veg-
etable intake interaction: model 1=0.02; model 2=0.03.
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Gstm1 KO mice. Similarly, the protective effect of cruciferous

vegetable consumption in lowering the risk of kidney failure in

ARIC participants was observed largely in those with

GSTM1(0/0) genotype. This modifying effect of GSTM1 is

consistent with that observed in lung cancer, illustrating the

pleiotropic effect of GSTM1. We have shown that GSTM1 de-

letionmodifies the effect of the renal risk variants in the apoL1

(APOL1) gene,55 suggesting that the modifying effects of this

deletion may extend even further. It is worth noting that

APOL1 genotype in the donor kidney, and not in the recipient,

determines outcomes in kidney transplantation.56 This raises

the question how APOL1 and GSTM1 interact in the kidney to

affect susceptibility to kidney injury and kidney disease

progression.

Taken together, these studies suggest that GSTM1 deletion

may be a modifier of a broad range of disease phenotypes. The

lack of phenotype in KOmice at 1 year of age is consistent with

the notion that GSTM1 deletion is a modifier of stressors. We

speculate that loss of GSTM1 enzyme can increase the accu-

mulation of toxic metabolites and reactive oxygen species,

thereby worsening disease progression; however, GSTM1 de-

ficiency can also increase the level of protective metabolites

from dietary intake in disease states, such as with sulfora-

phane, which activates the Nrf2 signaling pathway, thereby

inducing a wide variety of phase 2 detoxification en-

zymes.23,24 In line with this notion, in the Sulforaphane in

Treating Patients with Recurrent Prostate Cancer Trial, those

with the GSMT1 null genotype have a longer median half-life

(t1/2) of sulforaphane in the blood (2.6, range [2.0–5.5]

hours), compared with those with the active genotype (2.1,

range [1.8–2.9] hours) (https://clinicaltrials.gov/ct2/show/re-

sults/NCT01228084?sect=Xedc0156#outcome8). Another

study reported that bioavailability of free sulforaphane and

sulforaphane metabolites were increased in GSTM1 null sub-

jects compared with those with the active allele.25 Moreover,

we show in the mouse that SRBP can increase the expression

level of GSTM1 in WT mice, which may in turn further de-

crease the bioavailability of sulforaphane, thereby limiting its

beneficial effect of activating other antioxidants in kidney dis-

ease in WTmice. Furthermore, upregulation of phase 2 anti-

oxidants by sulforaphane could explain its effectiveness in KO

mice because there is increased ROS to scavenge even at base-

line (Figure 1B). Delineation of the substrates/molecules in

the sulforaphane-GSTM1 axis in kidney injury will be a focus

of future studies.

It should be noted that in this study, the directions of as-

sociation of GSTM1 deletion with kidney failure were consis-

tent with the previous smaller study3 in ARIC, whereas the

current effect sizes were smaller and not statistically signifi-

cant. The association between GSTM1 deletion and kidney

failure in humans may depend on the levels of protective

and toxic intracellular electrophiles that are ligands of

GSTM1. The levels of these electrophiles vary by environment

and study populations and thus the main effect of GSTM1

deletion may vary across populations.

Our data support a dual role of GSTM enzyme in the mod-

ulation of oxidative stress, inflammation, and protective me-

tabolites in kidney disease. Given the high prevalence of the

GSTM1 deletion, its population-attributable risk fractions on

kidney function decline and ESRD was estimated to be sizeable

at 38.4% in hypertensive black Americans.55Moreover, the risk

is not race-specific and has similar effects in white Americans.3

In the context of personalized and precision medicine, in-

creased consumption of cruciferous vegetables and/or sulfor-

aphane may be protective in those lacking GSTM1 who are

genetically most at risk.
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