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Abstract

GSTP1 is a member of the Glutathione-S-transferase (GST) family silenced by CpG island

DNA hypermethylation in 90–95% of prostate cancers. However, prostate cancers express-

ing GSTP1 have not been well characterized. We used immunohistochemistry against

GSTP1 to examine 1673 primary prostatic adenocarcinomas on tissue microarrays (TMAs)

with redundant sampling from the index tumor from prostatectomies. GSTP1 protein was

positive in at least one TMA core in 7.7% of cases and in all TMA cores in 4.4% of cases.

The percentage of adenocarcinomas from Black patients who had any GSTP1 positive TMA

cores was 14.9%, which was 2.5 times higher than the percentage fromWhite patients

(5.9%; P < 0.001). Further, the percentages of tumors from Black patients who had all TMA

spots positive for GSTP1 (9.5%) was 3-fold higher than the percentage fromWhite patients

(3.2%; P<0.001). In terms of association with other molecular alterations, GSTP1 positivity

was enriched in ERG positive cancers among Black men. By in situ hybridization,GSTP1

mRNA expression was concordant with protein staining, supporting the lack of silencing of

at least someGSTP1 alleles in GSTP1-positive tumor cells. This is the first report revealing

that GSTP1-positive prostate cancers are substantially over-represented among prostate

cancers from Black compared to White men. This observation should prompt additional

studies to determine whether GSTP1 positive cases represent a distinct molecular subtype

of prostate cancer and whether GSTP1 expression could provide a biological underpinning

for the observed disparate outcomes for Black men.
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Introduction

The pi class glutathione S transferase (encoded by the GSTP1 gene) is a member of the cyto-

solic superfamily of glutathione-S-transferases. These phase II detoxification enzymes catalyze

the conjugation of glutathione to diverse endogenous and exogenous electrophiles [1]. In the

prostate, GSTP1 is constitutively expressed at high levels in basal epithelial cells, variably

expressed in luminal epithelial cells, and epigenetically silenced in approximately 90 to 95% of

adenocarcinomas by somatic hypermethylation of its regulatory CpG island [2–5]. Hyper-

methylation of GSTP1 appears to occur early in prostatic carcinogenesis since it is already

present in approximately 70% of high-grade PIN lesions [6,7], the presumed precursor of most

invasive carcinomas, where it is silenced specifically in luminal epithelial cells [7,8]. Studies in

human prostate cancer cells suggest a role for GSTP1 as a caretaker gene whose loss increases

cell survival in response to protracted oxidative injury [9]. In mouse models of carcinogen

exposure induced cancers of the lung and skin, Gstp1/2 behaves as a tumor suppressor [10,11].

In a mouse model of early prostate cancer development induced by human MYC, Gstp1/2 also

functions as a tumor suppressor [12].

GSTP1 acts as a homodimer to catalyze reactions between reactive oxygen species, anti-can-

cer drugs or carcinogens, and glutathione, sometimes ‘detoxifying’ and at other times ‘toxify-

ing’ the substrates [13]. By contrast to silencing GSTP1, an induction of expression of GSTP1

protein is used to detect early cancer formation in response to carcinogenic exposure in the rat

liver [14]. Moreover, expression and overexpression of GSTP1 are common in several human

tumor types, where it has been implicated in promoting resistance to a number of chemothera-

peutic agents [15]. Although GSTP1 expression has been estimated to be maintained in 5–10%

of prostate cancer cases, little is known about the molecular and clinical features of these cases

and only a few studies have directly asked the question of the frequency of positive GSTP1

Immunohistochemical (IHC) staining in prostate cancer [16,17].

Black men are more likely to develop prostate cancer than White men, and are more likely

to have poor outcomes if diagnosed with the disease [18]. The reasons for the disparity are

multifaceted, including inequities in access to high-quality prostate cancer screening, detec-

tion, diagnosis, and treatment. In addition, there appear to be at least some biological differ-

ences in disease pathogenesis and malignant progression, potentially based on associations of

perceived race with genetic variation, or, as a result of different exposures. For example, when

compared to prostate cancers from predominantly White men, prostate cancers from Black

men contain fewer TMPRSS2-ERG fusions [19–22], fewer PTEN deletions [20–23], and more

SPOPmutations [21,22].

In this study we comprehensively surveyed the frequency of GSTP1 protein expression in

human clinical prostate cancers by IHC using tissue microarrays (TMAs). Our goal was to

begin to determine whether GSTP1-positive prostate cancer represents a distinct molecular

subtype, and, whether the prevalence of GSTP1-positivity differs between Black andWhite

men.

Materials andmethods

Study population

The study population consisted of 1673 patients who underwent radical prostatectomy (RRP)

at a single center between 1993 and 2019, with an age range from 40 to 75 years old and whose

prostatectomy tissue was arrayed across 45 TMA blocks. The cancers encompassed all Gleason

grade groups and a spectrum of pathological stages. For IHC staining for GSTP1, we used the

following TMA sets. TMA set 1 consists of prostatectomy tissue enriched for different Gleason
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grade groups and pathological stages from 476 cases operated on between 1997 and 2005

(N = 11 TMA blocks). TMA set 2 consists of prostatectomy tissue from 726 patients operated

on between 1993 to 2000 (N = 16 TMA blocks) [24]. TMA set 3 consists of prostatectomy tis-

sue from 343 Black andWhite men, operated on between 1993 and 2019 and matched on

Gleason score, pathological stage and date of surgery within 2 years (N = 9 TMA blocks) [25].

TMA set 4 is newly designed and consists of prostatectomy tissue from 353 men operated on

between 2007 and 2015 from a case-cohort design (N = 9 TMA blocks; detailed design to be

described in a separate publication). These TMAs were all constructed as described [24,26,27]

from the index tumor (highest grade) with a 3–4 fold sampling redundancy. To compare IHC

staining and the in situ hybridization assay for GSTP1mRNA, we used a novel TMA (TMA set

5), which consists of prostatectomy tissue from 31 patients operated on less than 1 year before

TMA construction in which TMA slides are stored at -20˚C, which improves RNA quality for

hybridizations [28]. All clinical and pathology data used for the study were obtained from

the pathology archives of the Johns Hopkins. The Johns Hopkins University School of

Medicine Institutional Review Board approved this study.

IHC staining

We analytically validated an automated IHC assay against human GSTP1 protein using well-

known cell lines and controls and human prostate cancer tissues using a mouse monoclonal

antibody (Cell Signaling Technologies, #3369) at 1:400 dilution on a Ventana DISCOVERY

ULTRA Autostainer using the DISCOVERY anti-HQ HRP kit as described [8]. Cell line FFPE

blocks were prepared and utilized as described [29,30]. LNCaP cells were negative and DU145

and PC3 prostate cancer cell lines were positive for GSTP1 protein as expected [2]. In a subset

of the above TMAs, we also performed IHC staining for ERG (rabbit recombinant monoclonal

antibody; ABCAM EPR3864, Cambridge, UK) and PTEN (rabbit monoclonal; Cell Signaling

Technologies, Danvers, MA), which were performed in an automated assay on the Ventana

DISCOVERY ULTRA using the DISCOVERY HQ+ Amp kit. Genetically validated cell line

controls were used for antibody specificity for ERG (VCAP cells are positive and PC3, LNCaP

and DU145 are negative) and PTEN (PC3 and LNCaP cells are negative and DU145 cells are

positive) [31,32]. Immunostaining for p63 was carried out using the mouse monoclonal anti-

body (clone 4A4, Biocare Medical, Concord,CA, USA) as part of a singleplex stain [33] or as

part of a cocktail [34] (PIN4 staining, Biocare Medical) on the Ventana DISCOVERY ULTRA

platform.

Slide scanning, image management and scoring

Whole TMA slides were scanned on a Hamamatsu Nanozoomer, and imported into Concen-

triq (from Proscia). Composite images were exported from Concentriq and imported into and

visualized in TMAJ [28]. For quality control of IHC staining in the TMA spots, we used the

fact that a high fraction of non-neoplastic stromal cells routinely stained positively for GSTP1.

We used these stromal cells as internal positive controls such that TMA cores that lacked any

staining in tumor cells, and all stromal cells, were regarded as non-evaluable and were not

included in the analyses. In another small subset of TMA cores, staining was very weak in

intensity in both the tumor cells and stromal cells and these were also considered equivocal in

terms of staining quality and were not included. Together, this poor quality staining and unin-

terpretable staining in weak cases comprised ~ 1% of tissue cores with carcinoma.

Scanned TMA core images were evaluated for the presence of carcinoma by two patholo-

gists with expertise in prostate cancer (I.V. and A.M.D.). Each TMA core containing carci-

noma was evaluated for GSTP1 staining positivity using a two-tiered scoring strategy in which
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any tumor cell staining above background levels (nuclear, cytoplasmic, or both) were consid-

ered positive. All others were considered negative. Cases in which there was positive cancer

cell staining for GSTP1 protein were categorized in two ways: any patient who had 1) any

TMA spot with some positive tumor cell staining or 2) all TMA spots with some positive

tumor cells staining; all other cases were considered GSTP1-negative.

In a subset of cases we also assessed ERG and PTEN to determine co-occurrence of GSTP1

positivity with ERG positivity and PTEN loss. ERG was considered positive for a given

patient’s tumor if any cancer cells on any TMA cores with cancer were positive and PTEN was

considered lost if any TMA cores contained any tumor cells with complete PTEN absence of

staining.

In situ hybridization for GSTP1mRNA

We developed a novel in situ hybridization assay for GSTP1 mRNA using ACD RNAscope,

which we analytically validated (Probe-Hs-GSTP1 Cat No. 453221, kit version 2.5 manual

assay according to manufacturer’s recommendations) using cell lines with known GSTP1

expression status for positive and negative controls as described (S1 Fig) [8,28]. Briefly, FFPE

tissue slides were baked at 60˚C for 1 hour followed by deparaffinization in 100% xylene twice

for 5 minutes each and two changes of 100% alcohol. The slides were treated with endogenous

peroxidase blocking pretreatment reagent and then incubated for 15 minutes in a boiling 1×

Pretreat 2 reagent (ACD) and then treated with protease digestion buffer (III, Cat. 322337) for

30 minutes at 40˚C. The slides were incubated with a RNAscope target probe as follows: for 2

hours at 40˚C, followed by signal amplification. 3,30-Diaminobenzidine (DAB) was used for

colorimetric detection for 10 minutes at room temperature. LNCaP, PC3 and DU145 prostate

cancer cells were maintained as described [30]. MDA-PCA-2b cells were maintained in F-12K

media containing 20% non heat-inactivated FBS, 25 ng/ml cholera toxin (Sigma cat. No.

C8052), 10 ng/ml mouse Epidermal Growth Factor (Corning cat. No. 354010), 0.005 mM

phosphoethanolamine (Sigma cat. No. P0503), 100 pg/ml hydrocortisone (Sigma cat. No.

H0135), 45 nM sodium selenite (Sigma cat# 9133) and 0.005 mg/ml human recombinant insu-

lin (Life Technologies cat# 12585–014) at 37˚C and 5% CO2. All cell lines were obtained from

ATCC (Manassas, VA). All cell lines were authenticated using short tandem repeat profiling

by the Genetic Resources Core Facility at The Johns Hopkins University School of Medicine.

Statistical analysis

Data were tabulated and statistical tests were performed using Stata 15 for Mac OS. The pri-

mary analysis for comparisons between groups used GSTP1 protein positivity status for each

patient, either any TMA core positive or all cores positive (Tables 2–8). Tests for differences in

proportions for any TMA core or all TMA cores positive for GSTP1 protein between Black

andWhite men, between ERG positive and negative men, and between PTEN absent and

PTEN present men were performed with the Pearson Chi2 test. Tests for trends for the propor-

tion of men who were GSTP1 protein positive across Gleason grade groups and pathological

stages were performed using the Cuzick’s nonparametric trend test across ordered groups.

Results

We applied an analytically validated automated IHC assay to evaluate GSTP1 protein expres-

sion [8] in a series of TMAs constructed from patients with clinically localized primary pros-

tatic adenocarcinomas. A total of 5,757 TMA cores containing prostatic adenocarcinoma from

1,673 patients were evaluable for GSTP1 protein scoring by IHC. These consisted of 1,197
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cores from 336 patients that self-identified as Black (mean age = 58.4; SD 6.6) and 4,560 TMA

cores from 1,337 patients that self-identified as White (mean age = 59.3; SD 6.5) (Table 1).

As expected, carcinoma cells in most prostatic adenocarcinomas were completely negative

for GSTP1 protein (92.3%; Table 2). In a subset of cases, however, some or all cancer cells

stained positively for GSTP1. While some cases were uniformly positive for GSTP1, in other

cases containing GSTP1 positive tumor cells, we often observed heterogeneity in staining in

terms of both cell number and staining intensity. This variability occurred among cancer cells

at times within a given TMA core, between a man’s TMA cores, and between men. Fig 1 dem-

onstrates representative images of these patterns of staining. Overall, 7.7% of cases contained

GSTP1 positive cancer cells in a subset of TMA cores, and 4.5% had GSTP1 positive cancer

cells in all TMA cores.

The percentage of adenocarcinomas from Black patients who had any GSTP1 positive can-

cer-containing TMA cores was 14.9%, which was 2.5 times higher than the percentage of cases

with any GSTP1 positive cancer-containing cores fromWhite patients (5.9%; P< 0.001)

(Table 2). Further, the percentages of tumors from Black patients who had all TMA spots with

cancer cells staining positive for GSTP1 (9.5%) was 3-fold higher than the percentage of

tumors fromWhite patients (3.2%; P<0.001) (Table 2). We confirmed that the number of

evaluable TMA cores with carcinoma was similar among tumors from Black andWhite men,

and also ran sensitivity analysis restricted to men with the same number of evaluable cores and

similar results were obtained.

Cases with any or all TMA cores with cancer cells staining positive for GSTP1 occurred

across all Gleason grade groups and stages, and the higher percentage of cases from Black

patients positive for GSTP1 was apparent among all grade groups except in grade group 5

(Table 3) and except in stage group 3 (Table 4). In Black but not White patients, the percent-

age of cases with any core positive was non-significantly decreased with increasing Gleason

grade group (Table 3) and significantly decreased with increasing pathological stage

(Table 4).

A subset of TMAs (N = 16 TMA blocks) were stained for ERG protein by IHC, which

tightly correlates with TMPRSS2-ERG gene fusions [35,36]. TMPRSS2-ERG gene fusions are

the most common form of ETS gene family member fusions in prostate cancer and are mutu-

ally exclusive with other ETS family member fusions and a number of other somatic molecular

alterations in prostate cancer, such as SPOPmutations or SPINK overexpression [37].

Table 1. Total number of patients and TMA spots with carcinoma.

Race No. of patients No. of evaluable TMA cores with carcinoma

Black 336 1197

White 1337 4560

Total 1673 5757

https://doi.org/10.1371/journal.pone.0241934.t001

Table 2. GSTP1 protein staining in cancer cells in Black andWhite patients.

Any cores positive All cores positive

Race No Yes Total P Value No Yes Total P Value

Black 286 (85.1%) 50 (14.9%) 336 304 (90.5%) 32 (9.5%) 338

White 1,258 (94.1%) 79 (5.9%) 1,337 1,294 (96.8%) 43 (3.2%) 1,339

Total 1,544 129 1,673 < 0.001 1,598 75 1,673 < 0.001

N in each cell represents number of patients.

https://doi.org/10.1371/journal.pone.0241934.t002
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Therefore, prostate cancers harboring ERG gene fusions are considered a distinct molecular

subtype of prostate cancer. In this TMA subset, the percentage of tumors from Black patients

with any TMA core positive for ERG was significantly lower than for tumors fromWhite

patients, consistent with prior reports [19] (Table 6).

Fig 1. Patterns of GSTP1 protein staining.Medium power views of TMA spots containing adenocarcinoma with examples of all tumor cells being
GSTP1-negative (A), all tumor cells being GSTP1-positive (B), and a spot with heterogeneous mosaic staining with some cells staining positively and some
negatively (C). In all examples, there is abundant stromal cell staining that is most apparent in (A) in between tumor nests. Original magnification x 100. (D)
Higher power view of boxed regions in (C).

https://doi.org/10.1371/journal.pone.0241934.g001
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When not considering race, the percentage of cases with any TMA spot or all TMA spots

with cancer cells staining positive for GSTP1 was lower in those who were ERG+ than ERG-

(Table 5). This same pattern was observed when examining White patients only (Table 6, any

TMA spot positive). In Black patients, the opposite pattern was observed; the percentage of

any TMA spot positive for GSTP1 expressing cancer was higher in men who were ERG posi-

tive than ERG negative. The percentage of patients with ERG positive cancers that were also

GSTP1 positive was 23.1% in Black men, but only 5.1% in White men, a difference that was

statistically significant (Table 6, P = 0.001). In contrast, the percentage of patients with ERG

Table 3. GSTP1 protein staining by Gleason grade groups in Black andWhite patients.

Black White

Any cores positive Any cores positive

Grade group No Yes Total P Value No Yes Total P Value

1 (GS 6) 68 (77.3%) 20 (22.7%) 88 (100%) 230 (93.1%) 17 (6.9%) 247 (100%)

2 (GS 3+4 = 7) 97 (86.6%) 15 (13.4%) 112 (100%) 448 (94.7) 25 (5.3%) 473 (100%)

3 (GS 4+3 = 7) 43 (89.6%) 5 (10.4%) 48 (100%) 287 (95.7%) 13 (4.3%) 300 (100%)

4 (GS 8) 24 (82.8%) 5 (17.2%) 29 (100%) 150 (93.2%) 11 (6.8%) 161 (100%)

5 (GS 9–10) 54 (91.5%) 5 (8.5%) 59 (100%) 143 (91.7%) 13 (8.3%) 156 (100%)

Total 286 (84.9%) 50 (14.8%) 336 (100%) 0.039 1,258 (94.0%) 79 (5.9%) 1,337 (100%) 0.50

All cores positive All cores positive

Grade group No Yes Total P Value No Yes Total P Value

1 (GS 6) 74 (84%) 14 (15.9%) 88 (100%) 238 (96.3%) 9 (3.6%) 247 (100%)

2 (GS 3+4 = 7) 106 (94.6%) 6 (5.4%) 112 (100%) 460 (97.3%) 13 (2.8%) 473 (100%)

3 (GS 4+3 = 7) 44 (91.7%) 4 (8.3%) 48 (100%) 294 (98.0%) 6 (2%) 300 (100%)

4 (GS 8) 24 (82.8%) 5 (17.2%) 29 (100%) 152 (94.4%) 9 (5.6%) 161 (100%)

5 (GS 9–10) 56 (94.9%) 3 (5.1%) 61 (100%) 150 (96.2%) 6 (3.9%) 156 (100%)

Total 304 (90.5%) 32 (9.5%) 338 (100%) 0.21 1294 (96.8%) 43 (3.2%) 1,337 (100%) 0.46

N in each cell represents number of patients.

https://doi.org/10.1371/journal.pone.0241934.t003

Table 4. GSTP1 protein staining by pathological stage in Black andWhite patients.

Black White

Any cores positive Any cores positive

Stage No Yes Total P Value No Yes Total P Value

1 129 (78.7%) 35 (21.3%) 164 459 (93.1%) 34 (6.9%) 493

2 87 (89.7%) 10 (10.3%) 97 507 (96.0%) 21 (4.0%) 528

3 69 (93.2%) 5 (6.8%) 74 287 (92.3%) 24 (7.7%) 311

Total 285 (85.1%) 50 (14.9%) 335 <0.004 1253 (94%) 79 (5.9%) 1332 0.045

All cores positive All cores positive

Stage No Yes Total P Value No Yes Total P Value

1 143 (87.2%) 21 (12.8%) 164 476 (96.6%) 17 (3.5%) 493

2 91 (93.8%) 6 (6.2%) 97 515 (97.5%) 13 (2.5%) 528

3 69 (93.2%) 5 (6.8%) 74 298 (95.8%) 13 (4.2%) 311

Total 303 (90.5%) 32 (9.5%) 335 0.139 1289 (96.8%) 43 (3.2%) 1332 0.373

Stage groups: 1 = “Organ Confined”—T2N0; 2 –“Extraprostatic Extension”—T3aN0; 3 = Seminal Vesicle Invasion or Pelvic Lymph Node Metastasis—T3BN0 or any N1

(AJCC 2007 staging criteria). N in each cell represents number of patients.

https://doi.org/10.1371/journal.pone.0241934.t004
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negative cancers that were GSTP1 positive was more similar in Black (12.9%) andWhite

(9.4%) patients (Table 6, P = 0.38).

A subset of TMAs (N = 16) was also stained by IHC for PTEN, which is a known tumor

suppressor in prostate cancer, whose loss is associated with disease progression [23]. Prior

work has also found a lower fraction of prostatic carcinomas from Black patients with PTEN

loss than carcinomas fromWhite patients [20,21], which we observed here (22.5% PTEN loss

for Black patients and 34.9% PTEN loss for White patients). When not considering race, the

percentage of patients with any GSTP1-positive TMA spot appeared to be lower in men with

any PTEN loss than with PTEN intact (6.6% compared with 10.3%), but this difference was

not statistically significant (Table 7). However, stratifying by race, the percentage of any TMA

spot with cancer cells staining positive for GSTP1 was comparable in those with PTEN loss

and PTEN intact in Black men and inWhite men (Table 8). The percentage of patients who

had both PTEN loss and were GSTP1 positive was 12.0% in Black men, but only 5.6% in White

men; this difference was not statistically significant (Table 8, P = 0.24). These percentages

were similar to those in those who had both PTEN intact and were GSTP1 positive, with

16.5% in Black men and 8.1% inWhite men; this difference was statistically significant

(Table 8, P = 0.029).

Rare cases of prostate cancer have been reported that are strongly positive for nuclear p63

staining [33,38–40], and these cases tend to express GSTP1, and at times lack GSTP1 GpG

island methylation [33]. We asked whether GSTP1 positive cases in the current study were

ever positive for p63 nuclear staining. P63 IHC staining was available for 22 of the cases across

6 of the TMA blocks that stained positively for GSTP1 that have also been stained in our labo-

ratory for p63; none of these cases (0/22) were positive for nuclear p63 staining. We conclude

that, while many p63-positive cancers are also positive for GSTP1 [33], most GSTP1-positive

cancers are not p63-positive.

To test whether samples with GSTP1 positive protein staining also contained GSTP1

mRNA expression, we developed an ACD RNAscope in situ hybridization assay. We tested the

Table 6. GSTP1 protein staining by ERG status in Black andWhite patients.

ERG Positive ERG Negative

Race Race

GSTP1 any TMA spot positive Black White Total P Value� Black White Total P Value

No 20 (76.9) 169 (94.9%) 189 (92.6) 74 (87.1%) 164 (90.6%) 238(89.5%)

Yes 6 (23.1%) 9 (5.1%) 15 (7.4%) 0.001 11 (12.9%) 17 (9.4%) 28 (10.5%) 0.38

Total 26 178 204 85 181 266

https://doi.org/10.1371/journal.pone.0241934.t006

Table 5. GSTP1 protein staining by ERG status overall.

ERG expression

GSTP1 any TMA spot positive Negative Positive Total P Value

No 238 (89.5%) 189 (92.6%) 427

Yes 28 (10.5%) 15 (7.4%) 43 0.24

Total 266 204 470

GSTP1 all TMA spots positive

No 247 (92.9%) 197 (96.6%) 444

Yes 19 (7.1%) 7 (3.4%) 26 0.08

Total 266 204 470

https://doi.org/10.1371/journal.pone.0241934.t005
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hybridization reaction on cell lines and found that, as expected, PC3 cells and DU145 cells

were positive and LNCaP cells were negative [2] (Fig 2). MDA-PCa-2b cells, which were

derived from an African American patient, were negative for GSTP1mRNA (Fig 2) and pro-

tein (S1 Fig). In normal-appearing human prostate tissue, GSTP1 protein is consistently highly

expressed in basal cells, with much lower and variable expression in normal appearing luminal

cells. Furthermore, the expression is highly elevated in many of the intermediate luminal cells

present in the atrophic epithelium of proliferative inflammatory atrophy [7,41]. Using stan-

dard slides from RRP specimens we found a similar pattern of hybridization signals for the

GSTP1 ACD RNAscope probe set. There were also strong signals found in regions of the ure-

thra as well as ejaculatory ducts, which is consistent with prior studies on GSTP1 protein [42]

(Fig 2). Since RNAscope assays perform less robustly on older prostate cancer specimens [28],

we performed in situ hybridization for GSTP1mRNA and IHC using a “recent case” TMA

consisting of an array from 31 RRP cases (TMA set 5). We found 2 cases positive for GSTP1

protein by IHC (2/31 = 6.5%) and the same cases were also positive for GSTP1mRNA; all

cases staining negatively for GSTP1 protein were also negative for GSTP1mRNA, giving a

100% concordance. We also performed IHC and in situ hybridization for GSTP1mRNA on a

number of standard slides from prostatectomy specimens and found an example that was het-

erogeneous for GSTP1 protein in the tumor. Fig 3 shows a region from this case that shows

tight concordance between GSTP1 protein and mRNA expression.

Discussion

In this study, we used a large number of primary untreated prostate cancer cases from prosta-

tectomies (N = 1673) to estimate the percentage of prostatic adenocarcinomas that are positive

for GSTP1 protein by IHC. We found an overall rate of any positive staining in cancer foci of

7.7%. Interestingly, we also found that GSTP1-positive carcinomas were often heterogeneous

for GSTP1 protein (41%). In situ hybridization for GSTP1mRNA showed that the increased

protein in the GSTP1-positive cases likely occurred through transcriptional upregulation, sug-

gested by the tight correlation between the protein and mRNA levels. For the first time, we

report that GSTP1-positive cases are significantly more common in prostatic adenocarcino-

mas from Black patients compared with White patients (2.5–3 fold).

Table 7. GSTP1 protein staining by PTEN loss overall.

PTEN status

GSTP1 any TMA spot positive Loss (any) Intact Total

No 141 (93.4%) 287 (89.7%) 428

Yes 10 (6.6%) 33 (10.3%) 43

Total 151 320 471

P = 0.19.

https://doi.org/10.1371/journal.pone.0241934.t007

Table 8. GSTP1 protein staining by PTEN loss in Black andWhite patients.

PTEN Loss (any) PTEN Intact

Race Race

GSTP1 any positive Black White Total P Value GSTP1 any positive Black White Total P Value

No 22 (88%) 119 (94.4%) 141 No 71 (83.5%) 216 (91.9) 287

Yes 3 (12%) 7 (5.6%) 10 Yes 14 (16.5%) 19 (8.1%) 33

Total 25 126 151 0.24 Total 85 235 320 0.029

https://doi.org/10.1371/journal.pone.0241934.t008
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Given the difference in the percentage of GSTP1 positive cases by race, the current findings

raise the question of whether GSTP1 positive cases represent a distinct molecular subtype of

this disease. Interestingly, we found that the increase in GSTP1-positive cancers in Black men

was greater in ERG-positive cases. This is of interest because prostate adenocarcinomas from

Black men harbor ERG gene rearrangements less frequently than those fromWhite men. In

terms of PTEN, there was a similar increase in the percentage of GSTP1-positive cases regard-

less of PTEN status in Black patients.

Genomics studies of prostate cancers over the last several years have revealed the long tail

of molecular alterations that can lead to cancer and influence disease progression and drug

Fig 2. In situ hybridization for GSTP1mRNA in cell lines (A-D) and benign prostate (E-G). EJ duct lumen indicates ejaculatory duct lumen.

https://doi.org/10.1371/journal.pone.0241934.g002

Fig 3. Concordance between in situ hybridization and IHC for GSTP1 in a heterogeneous prostate cancer case.

https://doi.org/10.1371/journal.pone.0241934.g003
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resistance [43–48]. These long tail events include low frequency germline and/or somatic

molecular alterations involved in DNA repair (e.g., MMR defects caused by 1 of 4 different

genes, BRCA2, ATM and CDK12). Other low frequency events considered important include

FOXA1mutations, IDH1/2mutations, and mutations in a number of genes that affect epige-

netic chromatin modifications. Given the large breadth of molecular alterations in prostate

cancer, additional studies with larger numbers of patients are required to determine whether

GSTP1 positive cases represent a distinct molecular subtype of prostate cancer.

In terms of disease aggressiveness, the percentage of men whose tumors were GSTP1- posi-

tive tended to decrease with increasing grade and stage in Black men, but not in White men

(Tables 3 and 4). Thus, the increased frequency of GSTP1-positive cancers in Black versus

White men occurred in low and intermediate grade and stage cancers only (Tables 3 and 4).

In terms of patient outcomes, in a series of 640 cases stained by IHC, there was no prognos-

tic significance in univariate analysis for GSTP1 status [16]. Additional studies are underway

to determine whether GSTP1 positive cases differ in terms of rates of biochemical recurrence,

metastatic disease and deaths due to prostate cancer. Further, it will be of interest to determine

whether GSTP1 status is related to response to therapies such as androgen deprivation, radia-

tion, or chemotherapy and whether there are differences in the percentage of cases that are

GSTP1 positive in metastatic castration sensitive and castration resistant prostate cancers. A

recent study reported an association of BMI1 expression to the propensity of metastatic disease

in prostate cancer in African-American men [49] and it will be interesting to correlate GSTP1

expression with that of BMI1 in future studies, including how each may contribute to the

development of metastatic disease.

In terms of prostate cancer etiology, major risk factors are ancestry, family history and age.

In terms of environmental exposures, at present, the fraction of prostate cancers attributable to

known exposures remains quite low [50]. A limitation of our current study is that we have not

determined whether men with prostate cancer that are GSTP1 positive, whether they be from

Black or White men, have had different exposures than men with prostate cancers that are

GSTP1 negative. Additional studies from population-based cohort studies with extensive pre-

diagnosis exposure information are required to address this important issue and the potential

racial disparity in prostate cancer burden. Also, a further limitation is that in our study we

used self-identified race, which is not a biological measure; thus, future studies to include gen-

otyping measures of percent African ancestry could perhaps help in determining whether

GSTP1 expression status may be different as a result of genetic differences and/or environmen-

tal exposures or both.

To determine whether there is a different etiology for prostate cancers developing in Black

versus White patients, gene expression studies can be instructive. A number of studies [21,51–

53], albeit not all [54], have reported increases in inflammatory cytokine signaling in tumors

from men of African descent. While inflammatory signaling and altered inflammatory cell

infiltrates in the tumor microenvironment may occur during any and all temporal phases of

cancer development and progression, we have previously postulated that chronic long stand-

ing inflammation may lead to prostate cancer most likely via lesions we termed proliferative

inflammatory atrophy [41,55,56]. Interestingly, in regions of PIA, there appears to be an

induction of GSTP1 in luminal cells, which we refer to as intermediate luminal cells [41,56,57];

with progression to PIN or adenocarcinoma accompanied by CpG island hypermethylation

and loss of expression [7]. In terms of GSTP1 positive prostate cancer, it is possible that some

cases arise after induction of GSTP1 in luminal cells and without silencing the gene. Mar-

tignano et al. found a strong correlation with GSTP1 CpG island hypermethylation and

GSTP1 protein status by IHC [17]. Another limitation of our study is that at present we do not

know whether the expression of GSTP1 protein in the positive cases correlates with, or is
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driven by, a lack of GSTP1 CpG island hypermethylation. Additional studies are underway in

our laboratory to determine the CpG methylation status of GSTP1 alleles in cases with positive

staining.

Finally, the finding that GSTP1-positive prostate cancer subset is substantially over-repre-

sented among prostate cancers from Black compared to White men could be of importance

from the standpoint of treatment of lethal prostate cancer, providing a potential biological

underpinning, at least in part, for the observed disparate outcomes for Black men. In breast

cancer, the presence or absence of GSTP1 expression predicts response to cytotoxic chemo-

therapy, particularly to the taxanes docetaxel and paclitaxel [58–61]. Forced expression of the

enzyme in GSTP1-negative breast cancer cells confers docetaxel resistance [58]. In addition,

an MCF-7 clone selected for taxane-resistance exhibited activation of GSTP1 expression [62].

Thus, the over-representation of GSTP1-positive prostate cancer in Black men may render

them less responsive to taxane chemotherapy, which is the preferred chemotherapy for

advanced, lethal metastatic castration resistant prostate cancer [5].

Conclusion

In summary, we systematically examined GSTP1 protein expression in a large number of pri-

mary prostatic adenocarcinomas and found an overall rate of positivity of 7.7%, and a higher

percentage of cases staining positive in Black men compared with cases fromWhite men (2.5–

3 fold). A significant difference in the percentages of GSTP1 positive cases in Black men was

present only in ERG-positive cases, as compared with ERG-negative cases. These findings

should stimulate additional studies regarding whether GSTP1 positive cases are a unique

molecular and clinico-pathological subtype of human prostate cancer, with potential implica-

tions for disease etiology, racial disparities and therapeutic resistance mechanisms.

Supporting information

S1 Fig. GSTP1 IHC in prostate cancer cell lines. IHC was performed in the cell lines indi-

cated. PC3 and DU145 cells are positive and LNCaP and MDA-PCa-2b are negative.
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