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Abstract

One of the main difficulties in developing domain-specific languages is the
use of deterministic parsing technologies in language workbenches. These
deterministic parsers do not naturally support modularity, and impose re-
strictions on defining the grammar of a language. For example, LL(k) parsers
cannot deal with left recursion or ambiguities, which have to be removed
by rewriting the grammar. These modifications usually lead to a gram-
mar definition which is not readable and may cause maintenance problems.
More importantly, the parse trees from a modified grammar may be signif-
icantly different from the ones of the original, ambiguous grammar. This
may cause problems in processing parse trees, for example, for mapping to
EMF models.

In this thesis, we present a new language workbench based on the GLL
parsing algorithm. GLL is able to parse the full class of context-free gram-
mars without any limitation and thus inherently supports modularity. Be-
ing a generalized parser, GLL produces a parse forest containing all the
ambiguities. Our disambiguation method is based on pattern matching and
rewriting within the resulting parse forest. One of the motivations for our
disambiguation mechanism is solving hard parsing problems such as lan-
guage embeddings and extensions. In addition, we present an error report-
ing mechanism for GLL-based parsers, an Eclipse plugin for developing new
languages, and facilities for the mapping of ambiguous, complex concrete
syntax to EMF models.
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Chapter 1

Introduction

Language workbenches [20] are tools that facilitate the development of domain-
specific languages (DSLs). These tools provide an environment for editing
the syntax of DSLs and can even generate a development environment for
DSLs. In addition to syntax editing, many language workbenches also pro-
vide means for disambiguation, type checking, parse tree processing, and
mapping to meta-modeling frameworks such as EMF [5].

The first step in language processing is parsing, and the choice of pars-
ing technology significantly influences a language workbench’s capabilities
and usage. One of main difficulties in developing domain-specific languages
is the use of deterministic parsing technologies in language workbenches.
These deterministic parsers do not naturally support modularity, and im-
pose restrictions on defining the grammar of a language. For example, LL(k)
parsers cannot deal with left recursion and ambiguities, which have to be
removed by rewriting the grammar. These modifications usually lead to
a grammar definition which is not readable and may lead to maintenance
problems. More importantly, the parse trees from a modified grammar may
not be as natural as the ones of the original ambiguous grammar. This
hinders the processing of a parse tree, for example, for mapping to arbitrary
EMF models.

Furthermore, deterministic parsers cannot be used to solve hard parsing
problems, such as language embeddings and extensions, at least not easily.
First, the class of deterministic context-free languages is not closed under
union [22], meaning that the union of two deterministic languages might not
be deterministic. Therefore, even if one designs LL(k) or LR(k) syntax for
two languages, there is no guarantee that the resulting language of combining
them be deterministic. Second, different languages may share tokens, which
may lead to ambiguities in language compositions. These ambiguities can
not be easily resolved by deterministic parsers.
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Current language workbenches can be divided in two categories. In the first
group there are Xtext [13] and EMFText [6], which are based on ANTLR [1],
a deterministic LL(k) parsing technology. EMFText and Xtext have the
mentioned problems for deterministic parsers, thus they are not suitable
for creating an environment for language extensions, for example. How-
ever, they provide good support, within the limitations of LL(k) parsing,
for binding concrete syntax to EMF. The second category is composed of
ASF+SDF [34] successors. These tools are Rascal [11] and Spoofax [12]
which are based on SGLR [38], a generalized parsing technique. As gener-
alized parsers support the full class of context-free grammars, these tools
are powerful enough for language experimentation and building parsers for
embedded languages, but they provide no support for EMF mapping.

During the last 30 years, more efficient implementations of generalized parsers
have become available. Since the algorithm formulated by Tomita [32] there
have been a number of generalized LR parsing (GLR) implementations,
such as GLR [29], a scannerless variant (SGLR) [38] and Dparser [2]. John-
stone and Scott developed a generalized LL (GLL) parser [31] in which the
function call stack in a traditional recursive descent parser is replaced by a
structure similar to the stack data structure (Graph Structured Stack) used
in GLR parsing. GLL parsers are particularly interesting because their im-
plementations are straightforward and efficient.

In this thesis we present Gtext, a prototype of a language workbench based
on GLL and Term Rewriting. Gtext uses a Java implementation of GLL
as its underlying parsing technology, and provides mappings to EMF. The
GLL parsing algorithm is relatively new, and there is currently no standard
disambiguation mechanism for selecting the desired derivation from a set of
derivations. A great part of this work is dedicated to developing a generic
disambiguation mechanism for GLL parsers. The disambiguation mecha-
nism is based on term rewriting within the parse forest produced from a
GLL parser, without modifications in the parser. As we show in Chapter 6,
the disambiguation mechanism can be used to deal with complex ambigu-
ities, thus making Gtext a suitable tool for language experimentation and
developing parsers for embedded languages.

The research questions we answer in this thesis are as follows:

1. How can one select a derivation from a set of ambiguous derivations
produced by a GLL parser? i.e., how to disambiguate a parse forest
produced by GLL.

2. How to report parse errors from GLL parsers?

3. Can our disambiguation mechanism, together with GLL, be used to
solve complex ambiguities arising in programming languages and lan-
guage embeddings?
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4. How can GLL be integrated into the Eclipse platform [3] to build
GLL-based Integrated Development Environments (IDEs)?

This rest of this thesis is organized as follows.

Chapter 2, Preliminaries, presents a set of preliminary topics, providing a
technical basis for the rest of this thesis. The preliminary topics include
an overview of context-free grammars, the GLL parsing algorithm, and the
Tom language.

Chapter 3, MEBNF Syntax Formalism, presents a modular EBNF formal-
ism, MEBNF, for describing the syntax of context-free grammars. MEBNF
is the basis for our parser generator presented in Chapter 8.

Chapter 4, Error Reporting in Generalized LL Parsers, describes an error
reporting mechanism for generated GLL parsers.

Chapter 5, Disambiguation by Rewriting within the Parse Forest, the core
part of this thesis, presents our disambiguation mechanism, which is based
on term rewriting within GLL’s parse forest, in detail.

Chapter 6, Disambiguation by Example, presents a number of complex am-
biguities in programming languages and island grammars [26]. Island gram-
mars are particularly suitable for implementing parsers for language embed-
dings.

Chapter 7, Experiments, presents three case studies for the evaluation of
our disambiguation mechanism.

Chapter 8, JGLL Parser Generator, describes the architecture and imple-
mentation of our Java-based GLL parser generator, JGLL.

Chapter 9, The Eclipse Plugin, is dedicated to the integration of GLL to
the Eclipse platform.

Chapter 10, EMF Model Generation, incorporates the EMF mapping intro-
duced in previous work [24] to Gtext. In this chapter, we show how to map
ambiguous grammars written in EBNF to meta-models.

Chapter 11, Future Work, discusses the current issues in this work, and
propose research paths for future work.

Chapter 12, Conclusions, provides a conclusion to this work.
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Chapter 2

Preliminaries

2.1 Context-free Grammars

A context-free grammar (CFG) consists of a set N of nonterminals, a set
T of terminals, a set of grammar rules of the form A ::= α where A ∈ N
and α is a string in (T ∪ N)∗, and a specified start symbol, S ∈ N. The
symbol ϵ denotes the empty string. Rules with the same left hand side can
be written as a single rule using the alternation symbol, A ::= α1 | . . . | αt.
The strings αj are the alternates of A.

A grammar Γ defines a set of strings of terminals, its language, as fol-
lows. A derivation step, has the form γAβ⇒γαβ where γ, β ∈ (T ∪ N)∗

and A ::= α is a grammar rule. A derivation of τ from σ is a sequence
σ⇒β1⇒β2⇒ . . .⇒βn−1⇒τ , also written σ

∗⇒τ . A derivation is left-most if
at each step the left-most nonterminal is replaced. The language defined by
Γ is the set of u ∈ T∗ such that S

∗⇒u. A grammar is ambiguous if there is
a string u for which there is more than one left-most derivation S

∗⇒u.

The role of a parser for Γ is, given a string u ∈ T∗, to find (all) the derivations
S

∗⇒u. In our case the derivations will be recorded as trees. A derivation tree
in Γ is an ordered tree whose root node is labeled with the start symbol,
whose interior nodes are labeled with nonterminals and whose leaf nodes
are labeled with elements of T ∪ {ϵ}. The children of a node labeled A
are ordered and labeled with the symbols, in order, from an alternate of A.
The yield of the tree is the string of leaf node labels in left to right order.
A grammar Γ is ambiguous if and only if there are two or more derivation
trees in Γ with the same yield.

The first set of the symbol X is the set of all tokens which can appear as
the first token derivable from X. The first set can be computed from the
grammar as follows:
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• If X is a terminal, then first(X) = {X}.

• Let Y := X1X2...Xn be a production rule. Then, first(X1) − {ϵ} is
in first(Y ), and if X1

∗⇒ϵ, first(X2)−{ϵ} is also in first(Y ) and so
on. In the general case, if Y := X1X2...Xj−1Xj ...Xn, then first(Xi),
1 ≤ i ≤ j − 1, expect for ϵ are in first(Y ). If X1X2...Xj−1

∗⇒ϵ,
first(Xj)− {ϵ} is also in first(Y ).

• If X ∗⇒ϵ, then ϵ is in the first(X).

The follow set of a nonterminal X determines the set of terminals which
can immediately appear after X in sentential forms derivable from the start
symbol. The follow set can be computed as:

• Let S be the start symbol of the grammar, then $, denoting the end
of input symbol, is in follow(S).

• For the production rule A ::= αBβ, in which α is a list of zero or more
symbols and β is a list of one or more symbols, first(β) except for the
empty symbol, ϵ, is in follow(B). Moreover, if first(β) contains ϵ,
then follow(A) is in follow(B).

• For the production rule A ::= αB, follow(A) is in the follow(B).

The test set of a nonterminal X is the same as the first(X), and if
ϵ ∈first(X), then follow(X) is also in test(X). The test set of a
nonterminal is used by parsers to select an alternate of the nonterminal
based on the current token from the input.

2.2 Generalized LL Parsing

Top down parsers whose execution closely follows the structure of the un-
derlying grammar are attractive, particularly because they make grammar
debugging easier. GLL is a top down parsing technique which is fully general,
allowing even left recursive grammars, which has worst-case cubic runtime
order and which is close to linear on most ‘real’ grammars. In this section
we give a basic description of the technique, a full formal description can be
found in [31].

A GLL parser effectively traverses the grammar using the input string to
guide the traversal. There may be several traversal threads, each of which
has a pointer into the grammar and a pointer into the input string. For each
nonterminal A there is a block of code corresponding to each alternate of A.
At each step of the traversal, (i) if the grammar pointer is immediately before
a terminal we attempt to match it to the current input symbol; (ii) if it is
immediately before a nonterminal B then the pointer moves to the start of
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the block of code associated with B; (iii) if it is at the end of an alternate of A
then it moves to the position immediately after the instance of A from which
it came. This control flow is essentially the same as for a classical recursive
descent parser in which the blocks of code for a nonterminal X are collected
into a parse function for X with traversal steps of type (ii) implemented as
a function call to X and traversal steps of type (iii) implemented as function
return. In classical recursive descent, we use the runtime stack to manage
actions (ii) and (iii) but in a general parser there may be multiple parallel
traversals arising from nondeterminism; thus in the GLL algorithm the call
stack is handled directly using a Tomita-style graph structured stack (GSS)
which allows the potentially infinitely many stacks arising from multiple
traversals to be merged and handled efficiently.

Multiple traversal threads are handled using process descriptors, making the
algorithm parallel rather than backtracking in nature. Each time a traversal
bifurcates, the current grammar and input pointers, together with the top of
the current stack and associated portion of the derivation tree, are recorded
in a descriptor. The outer loop of a GLL algorithm removes a descriptor
from the set of pending descriptors and continues the traversal thread from
the point at which the descriptor was created. When the set of pending
descriptors is empty all possible traversals will have been explored and all
derivations (if there are any) will have been found.

We define a grammar slot to be a position immediately before or after any
symbol in any alternate and the grammar pointer points to a grammar slot.
We use the familiar LR(0)-style notation, X ::= x1 . . . xi ·xi+1 . . . xq denotes
the slot before the symbol xi+1. During a traversal, in the case where xi+1

is a nonterminal, the ‘return’ slot X ::= x1 . . . xi+1 · xi+2 . . . xq is added to
the GSS and the pointer is moved to some slot of the form xi+1 ::= ·δ.

Of course, there may be more than one such slot. The selector set associated
with xi+1 ::= ·δ is the set of terminals a such that there is some derivation
S

∗⇒vxi+1β⇒vδβ
∗⇒vau, where v, u ∈ T∗. (If β, δ ∗⇒ϵ then the end-of-string

symbol is also included in the selector set.) A slot is chosen only if the
current input symbol belongs to its selector set, but even so there may be
more than one choice of slot. Thus, when the traversal reaches the start
or the end of an alternate the possible traversal continuations are recorded
in context descriptors. These are 4-tuples (t, i, u, w) where t is the current
grammar position (slot), i is the current input pointer position, u is the
node on top of the current return-slot stack of the GSS and w is the root
of the current derivation subtree. Details of the creation and processing
of the descriptors by a GLL algorithm can be found in [31] and a more
implementation oriented discussion can be found in [30].

The output of a GLL parser is a representation of all the possible derivations
of the input in the form of a shared packed parse forest (SPPF), a union
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Figure 2.1: SPPF

of all the derivation trees of the input in which nodes with the same tree
below them are shared and nodes which correspond to different derivations
of the same substring from the same nonterminal are combined by creating
a packed node for each family of children. To make sure that descriptors
contain only one tree node, the root of the current subtree, the SPPFs
are binarized in the natural left associative manner, with the two left-most
children being grouped under an intermediate node, which is in turn then
grouped with the next child to the left, etc. It is this binarization that keeps
both the size of the SPPF and the number of descriptors worst-case cubic.

In detail, a binarized SPPF has three types of SPPF nodes: symbol nodes,
with labels of the form (x, j, i) where x is a terminal, nonterminal or ϵ and
0 ≤ j ≤ i ≤ n; intermediate nodes, with labels of the form (t, j, i); and
packed nodes, with labels for the form (t, k), where 0 ≤ k ≤ n and t is
a grammar slot. (A grammar slot is essentially an LR(0)-item, a formal
definition can be found in [31].) Terminal symbol nodes have no children.
Nonterminal symbol nodes, (A, j, i), have packed node children of the form
(A ::= γ·, k) and intermediate nodes, (t, j, i), have packed node children
with labels of the form (t, k), where j ≤ k ≤ i. A packed node has one or
two children, the right child is a symbol node (x, k, i), and the left child, if
it exists, is a symbol or intermediate node, (s, j, k). For example, for the
grammar S ::= abc | aA, A ::= bc we obtain the SPPF as shown in Figure
2.1. As is clear from this example, for ambiguous grammars there will be
more than one derivation.

2.3 Tom in a Nutshell

Tom [16, 27] is a language based on rewriting calculus and is designed to
integrate term rewriting and pattern matching facilities into general-purpose
programming languages (GPLs) such as Java, C, C++, Python or Caml.
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Tom relies on the Formal Island framework [17], meaning that the underlying
host-language does not need to be parsed in order to compile Tom constructs.

The basic functionality of Tom is pattern matching through the %match con-
struct. This construct can be seen as a generalization of the switch-case
construct of many GPLs. The %match construct is composed of a set of rules
where the left-hand side is a pattern, i.e., , a tree that may contain variables,
and the right-hand side an action, given by a Java block that may in turn
contain Tom constructs.

A second construct provided by Tom is the backquote (`) term. Given an
algebraic term, i.e., , a tree, a backquote term builds the corresponding data
structure by allocating and initializing the required objects in memory.

A third component of the Tom language is a formalism named Gom to
describe algebraic data structures by means of the %gom construct. This
corresponds to the definition of an inductive types in classical functional
programming. There are two main ways of using this formalism: the first
one is defining an algebraic data type in Gom and generating Java classes
which implement the data type. This is similar to the EMF [5], in which a
Java implementation can be generated from a meta-model definition. The
second approach assumes that a data structure implementation, for example
in Java, already exists. Then one can define an algebraic data type in
Gom and provide a mapping to connect the algebraic type to the existing
implementation.

Listing 2.1 illustrates a simple example of a Tom program. The program
starts with a Java class definition. The %gom construct defines an algebraic
data type with one module, Peano. The module defines a sort Nat with two
constructors: zero and suc. The constructor suc takes a variable n as a field.
Given a signature, a well-formed and well-typed term can be built using the
backquote (`) construct. For example, for Peano, `zero() are `suc(zero())
are correct terms, while `suc(zero(),zero()) or `suc(3) are not well-formed
and not well-typed, respectively.
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public class PeanoExample {

%gom {
module Peano
Nat = zero() | suc(n: Nat)

}

public Nat plus(Nat t1, Nat t2) {
%match(t1,t2) {
x,zero() -> { return `x; }
x,suc(y) -> {

return `suc(plus(x,y));
}

}
}

boolean greaterThan(Nat t1, Nat t2) {
%match(t1,t2) {
x,x -> { return false; }
suc(_),zero() -> { return true; }
zero(),suc(_) -> { return false; }
suc(x),suc(y) -> {

return `greaterThan(x,y); }
}}

public final static void main(String[] args) {
Nat N = `zero();
for(int i=0 ; i<10 ; i++) { N = `suc(N); }

}

Listing 2.1: An example of a Tom program

In the example of Listing 2.1, the plus() and greaterThan() methods are
implemented by pattern matching. The semantics of pattern matching in
Tom is close to the match that exists in functional programming languages,
but in an imperative context. A %match is parametrised by a list of subjects,
i.e., , expressions evaluated to ground terms, and contains a list of rules.
The left-hand side of the rules are patterns built upon constructors and new
variables, without any restriction on linearity (a variable may appear twice,
as in x,x). The right-hand side is a Java statement that is executed when
the pattern matches the subject. Using the backquote construct (`) a term
can be created and returned. Similar to the standard switch/case construct,
patterns are evaluated from top to bottom. In contrast to the functional
match, several actions (i.e., right-hand side) may be fired for a given subject
as long as no return or break is executed.

In addition to the syntactic matching capabilities illustrated above, Tom also
supports more complex matching theories such as matching modulo associa-
tivity, associativity with neutral element, and associativity-commutativity.
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Chapter 3

Modular EBNF (MEBNF)
Syntax Formalism

This chapter presents the MEBNF syntax formalism for defining context-
free grammars. MEBNF provides means for defining modular grammars in
EBNF. The version of the GLL algorithm we are currently using does not
natively support EBNF. Therefore, we perform an EBNF to BNF conver-
sion step prior to generating a GLL parser. In this chapter, we first give
an abstract syntax for EBNF, in Section 3.1, and its conversion to BNF, in
Section 3.2, with which our GLL parser generator works. We introduce the
concrete syntax of the MEBNF formalism in sections 3.3 and 3.4. We con-
clude this chapter by briefly discussing modularity in context-free grammars
and its implementation in MEBNF in Section 3.6.

3.1 An Abstract Syntax for EBNF

Listing 3.1 introduces an abstract syntax for EBNF. The abstract syntax is
implemented in Gom. For implementation details, the reader is referred to
Chapter 8. As can be seen, a context-free grammar, represented by Grammar,
consists of a name, a start symbol, a set of context-free rules, and a set of
lexical rules. Lists in Gom are defined with the * operator. For example,
concSymbol(Symbol*) is a constructor for defining a list of Symbols. The name
conc... is chosen to comply with Gom’s naming convention, and it stands
for a concatenation of types. This Gom module imports a Lexical module
containing the abstract syntax of lexical rules. We discuss the lexical syntax
in detail in Section 3.4.
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module EBNF
imports String char Lexical
abstract syntax

Grammar = Grammar(name:String, startSymbol:Symbol,
contextFreeRules:ContextFreeRuleList,
lexicalRules:LexicalRuleList)

ContextFreeRuleList = concContextFreeRule(ContextFreeRule*)

LexicalRuleList = concLexicalRule(LexicalRule*)

ContextFreeRule = ContextFreeRule(head:Symbol, body:SymbolList)

SymbolList = concSymbol(Symbol*)

Symbol = Nonterminal(name:String)
| Terminal(name:String)
| Star(symbol:Symbol)
| Plus(symbol:Symbol)
| Opt(symbol:Symbol)
| Alt(first:SymbolList, second:SymbolList)
| Group(symbols:SymbolList)

Listing 3.1: The algebraic definition describing the abstract syntax of EBNF

In the current version of Gom, a constructor’s parameters can only be types,
defined on the left hand side and not other constructors. This is the reason
that we defined a context-free rule as ContextFreeRule(head:Symbol, ...) and
not ContextFreeRule(head:Nonterminal, ...), although based on the definition in
Section 2.1, the head of a context-free rule can only be a nonterminal. In the
automatic translation of MEBNF’s concrete syntax to the abstract syntax
in 3.1, correct constructors are selected to instantiate a Symbol.

Different EBNF symbols are defined as follows:

• Star(s), Plus(s), Opt(s) denote, zero or more, one or more, zero or one,
occurrences of s, respectively, where s is a Symbol.

• Alt(l1, l2) denotes a choice between l1 and l2, where l1 and l2 are
instances of SymbolList, a list of symbols.

• Group(symbolList) groups a list of symbols, an instance of SymbolList.

3.2 EBNF to BNF Conversion

As mentioned before, the version of the GLL parsing algorithm we are cur-
rently using does not natively support EBNF. As part of the parser gener-
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ation process, we convert a grammar written in EBNF into an equivalent
BNF one. The conversion rules are as follows.

1. Replace a group (α), where α denotes a sequence of symbols, by a
nonterminal X, and add the rule X ::= α to the set of context-free
rules.

2. Replace context-free rules of the form X ::= α | β, where α and β
denote a sequence of symbols, by two rules: X ::= α and X ::= β.

3. Replace a symbol X∗ by a nonterminal Y , and add the production
rules Y ::= XY and Y ::= ϵ to the set of context-free rules.

4. Replace a symbol X+ by a nonterminal Y , and add the production
rules Y ::= XY and Y ::= X to the set of context-free rules.

5. Replace a symbol X? by a nonterminal Y , and add the production
rules Y ::= X and Y ::= ϵ to the set of context-free rules.

We demonstrate the above procedure by converting the production rule
S ::= (A∗ | B ( C | D ))+ E to its equivalent BNF. The steps are shown
in Table 3.1. Each row in the table shows the production rules at a step of
the conversion, the applicable rule, and the symbols being rewritten. The
result of each conversion step is shown in its next row. Note that in steps
two and three, two different actions are being performed at the same time.

The EBNF to BNF conversion produces intermediate nonterminals which
will appear in the parse tree. The presence of these nodes in the parse tree
leads to a derivation structure which does not directly correspond to the
underlying grammar. Figure 3.1 shows the resulting SPPF from parsing the
string "aaacc" using a parser for the following grammar:

S ::= A∗ B? C∗
A ::= a

B ::= b

C ::= c

In Figure 3.1, nodes with the labels A_∗, B_?, and C_∗ correspond to
the intermediary nodes of converting A∗, B?, and C∗, respectively. This
naming convention has been chosen to have similar nonterminal names in
EBNF and BNF.

After the parsing is finished, one can traverse the SPPF and remove the
intermediary EBNF nodes. Based on the lexical definition of Nonterminal
in Listing 3.3, the specific EBNF symbols, such as "*", "+", "?", "(", ")",
cannot appear in the name of a symbol node in the SPPF. Thus, any symbol
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# Production Rules Rule Action
0 S ::= (A∗ | B ( C | D ))+ E 1 (C|D) → X

1 S ::= (A∗ | B X)+ E 1 (A∗ | B X) → Y
X ::= C | D

2
S ::= Y+ E 2 expand C | D
X ::= C | D expand A∗ | B X

Y ::= A∗ | B X

3

S ::= Y+ E

3, 4

Y+ → W

X ::= C A∗ → Z

X ::= D

Y ::= A∗
Y ::= B X

4

S ::= W E

W ::= Y W

W ::= Y

X ::= C

X ::= D

Y ::= Z

Z ::= A Z

Z ::= ϵ

Y ::= B X

Table 3.1: A step-by-step example of EBNF to BNF conversion

node whose label contains one of these characters is an intermediary EBNF
node and should be removed. The removal is performed bottom-up and the
children of the removed node will be connected to its parent. In addition,
nodes having the label ϵ will be removed after the removal of intermediary
nodes. Note that EBNF intermediary nodes may be ambiguous, in which
case the node should be disambiguated before removal, see Section 5.4. This
removal process transforms the SPPF in Figure 3.1 into the SPPF in Figure
3.2.

The SPPF without intermediary EBNF nodes is particularly suitable for list
matching. Let us consider that we need to collect all the nodes labeled A
from the SPPF in in Figure 3.2. We achieve this by a single Tom pattern
as follows:
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S

A_* B_? C_*

A A_*

ε

C C_*

a A A_*

a A A_*

a

c C C_*

c ε

Figure 3.1: The SPPF resulting from the parsing of "aaacc" with intermediary
EBNF nodes.

S

A A A C C

a a a c c

Figure 3.2: The SPPF resulting from the parsing of "aaacc" without inter-
mediary EBNF nodes.

List<SPPFNode> getAs(SPPFNode node) {
List<SPPFNode> as = new ArrayList<SPPFNode>();
%match(node) {

SymbolNode("S", concNode(_*, a@SymbolNode("A"), _*)) -> {
as.add(`a);

}
}
return as;

}

The getAs() method in Listing 3.2 gets an SPPF node and returns its children
labeled “A”. The body of the match construct is executed for each “A” node.
Performing the same task for the SPPF in Figure 3.1, which contains the
intermediary EBNF nodes, requires much more effort and is slower.
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3.3 A Concrete Syntax for MEBNF

A syntax definition in MEBNF is comprised of four sections: the context-
free section defining context-free rules, the lexical section defining lexical
rules, the disambiguation section defining disambiguation rules, and the as-
sociativity and priority section defining the associativity and priorities of
arithmetic operators.

module MEBNF

import ContextFree
import Lexical
import Disambiguation
import AssociationAndPriority

start symbol Module

context-free syntax

Module ::= "module" ModuleName Import* StartSymbolSection? Section*

Import ::= "import" ModuleName Retract*

Retract ::= "retract" (ContextFreeRule | LexicalRule)*

StartSymbolSection ::= "start" "symbol" Nonterminal

Section ::= LexicalSection
| ContextFreeSection
| DisambiguationSection
| AssociationAndPrioritySection
| LayoutDefinitionSection

lexical syntax

ModuleName ::= Id
Nonterminal ::= Id
Id ::=[a-zA-Z][a-zA-Z0-9\-_]*

Listing 3.2: The starting rules of MEBNF’s concrete syntax

Listing 3.2 shows the starting rules of MEBNF’s concrete syntax, which
is written in MEBNF itself. A context-free grammar defined in MEBNF
starts with a module definition followed by imports and sections. The re-
tract keyword in a module definition is used to indicate the rules which
should not be imported from the module. The retract mechanism is, how-
ever, not implemented in the current version of MEBNF. As can be seen,
the MEBNF specification in Listing 3.2 imports four other modules: Con-
textFree, Lexical, Disambiguation, and AssociationAndPriority. In the rest of this
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section, we describe the syntax for defining context-free rules, imported from
the ContextFree module. The other imported modules are discussed in other
chapters, where the functionality of the modules are described.

module ContextFree

context-free syntax

ContextFreeSection ::= "context-free" "syntax" ContextFreeRule*

ContextFreeRule ::= Nonterminal "::=" Symbol* ("|" Symbol*)*

Symbol ::= Symbol "*"
| Symbol "+"
| Symbol "?"
| Keyword
| Nonterminal
| "(" Alt ")"

Alt ::= Alt "|" Alt
| Symbol+

lexical syntax

Nonterminal ::= Id
Keyword ::= String
Id ::=[a-zA-Z][a-zA-Z0-9\-_]*
String ::= ["]([^"\\]|[\\]["trnu\\])*["]

Listing 3.3: A concrete syntax for defining context-free rules in MEBNF

Listing 3.3 presents the concrete syntax for defining context-free rules. As
can be seen, a context-free rule consists of a head, denoted by Nonterminal,
and a body which is a sequence of symbols. Alternates of a nonterminal
can be separated by a "|", instead of repeating the nonterminal definition
for each alternate. For example, S ::= A B | C defines the nonterminal S with
two alternates. The first alternate consists of A B and the second one of C.
Note that the "|" operator defines an alternation between the longest group
of symbols surrounding it. In this example, if the user wants to express an
alternation only between B and C, the alternate Symbol ::= "(" Alt ")" should be
used, i.e., S ::= A (B | C). To sum up, "|" inside a group definition, i.e., inside
opening and closing parentheses, always denotes an alternation between the
two surrounding sequence of symbols, whereas "|" outside a group always
separates alternates for a nonterminal.

The grammar definition in Listing 3.3 is ambiguous. For example (A | B |
C) can be interpreted as either ((A | B) | C) or (A | (B | C)). This ambiguity
can be resolved by defining the "|" operator left associative, i.e., , selecting
((A | B) | C) over (A | (B | C)). Disambiguation by assigning associativity to
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operators is explained in detail in Section 5.3.

3.4 Lexical Syntax

In MEBNF every lexical definition is a regular expression which is defined
as follows:

• A character "c" is represented by itself.

• "." is a special character matching all characters.

• Special characters, which have a specific meaning in regular expres-
sions, should be escaped using a backslash. These characters are ".",
"[", "]", "̂", "-", and "\".

• In addition to special characters, whitespace characters should also be
escaped. The supported whitespace characters are "\ ", "\n", "\r", "\t".

• A character range is represented by c1-c2 where c1 and c2 are char-
acters, and c1 is before c2 in the unicode character ordering. This is
because the lexical definitions will be encoded into a Java Lexer imple-
mentation, and Java strings are represented in the unicode encoding.
An example of a character range is 1-9 denoting the characters from 1
to 9.

• A character class is defined as [r1r2...rn] where each ri is either a
character or a character range. A character class represents a choice
between its enclosing elements, i.e., one of its elements should match.
The character class is the smallest building block of in our lexical def-
inition. All characters or character ranges should be expressed inside
character classes.

• [^r1r2...rn] defines the negation of a character class, meaning that none
of ris should match.

• If α and β are regular expressions, αβ is a regular expression matching
the concatenation of α and β.

• If α and β are regular expressions, α|β is a regular expression matching
either α or β.

• If α is a regular expression, α∗ is a regular expression matching zero
or more αs.

• If α is a regular expression, α+ is a regular expression matching one
or more αs.

17



• If α is a regular expression, α? is a regular expression matching zero
or one α.

• If α is a regular expression, (α) is a regular expression denoting a
group of regular expressions containing α.

Some examples of regular expressions defined in the lexical syntax of MEBNF
are:

• [a-zA-Z][a-zA-Z0-9\-_]* matching a sequence of characters starting with
a letter followed by any number of letters, numbers, hyphen or under-
score. This lexical pattern corresponds to the definition of identifiers
in programming languages such as Java.

• [\ \r \n \t]+ matching a sequence of whitespace characters.

• [1-9][0-9]+[\.][0-9]+ matching a floating point number such as 102.34.

• ["]([^"\\]|[\\]["trn\\])*["]
matching a string. A string should start and end with a double quote
character. In between, all characters with the exception of " and "\"
may appear. The only characters which are allowed to be escaped are
explicitly defined: ", t, r, n, and \.

• [/][/][^\r \n]* matching a single line C-style comment. Based on this
pattern, all the characters appearing after two "/" are matched until a
newline character is encountered.

The Gom signature corresponding to the regular expression definition is
given in Listing 3.4. The constructor Any() corresponds to "." matching
any character. The constructor LexNonterminal is used to compose a lexical
definition from other lexical definitions.
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LexicalRule = LexicalRule(head:Symbol, pattern:RegularExpression,
exlcusions:RegularExpressionList)

RegularExpressionList = concRegularExpression(RegularExpression*)

RegularExpression = CharClass(list:CharClassTypeList)
| NotCharClass(notlist:CharClassTypeList)
| LexAlt(lhs:RegularExpression, rhs:RegularExpression)
| LexStar(re:RegularExpression)
| LexPlus(re:RegularExpression)
| LexOpt(re:RegularExpression)
| LexGroup(re:RegularExpression)
| LexNonterminal(name:String)
| Keyword(text:String)
| Concat(re1:RegularExpression, re2:RegularExpression)
| Any()

CharClassType = Char(c:char)
| Escape(c:char)
| CharRange(first:char, second:char)

CharClassTypeList = concCharClassType(CharClassType*)

Listing 3.4: The abstract syntax of MEBNF’s lexical definition

context-free syntax

LexicalSection ::= "lexical" "syntax" LexicalRule*

LexicalRule ::= Nonterminal "::=" RegularExpression LexicalExclusion?

LexicalExclusion ::= "-/-" "{" RegularExpression
("," RegularExpression)* "}"

RegularExpression ::= RegularExpression RegularExpression
| RegularExpression "|" RegularExpression
| RegularExpression "*"
| RegularExpression "+"
| RegularExpression "?"
| "(" RegularExpression ")"
| Nonterminal | Keyword | CharClass | "."

CharClass ::= "[" Not? Character+ "]"

Character ::= Char
| EscapedChar
| WordChar "-" WordChar
| Digit "-" Digit

Listing 3.5: MBNF’s concrete syntax for lexical definitions
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Listing 3.5 shows the concrete syntax of lexical definitions in MEBNF. As
can be seen, the definition is straightforward and closely follows the the def-
inition of regular expressions provided before. The concrete syntax provides
three more features than the standard regular expression definition given
before. These features are keywords, lexical exclusions, and the composition
of lexical definitions.

The basic regular expression definition needs separate character classes for
each character. This makes the definition of lexical rules for keywords dif-
ficult. For example, one should write class ::= [c][l][a][s][s] to express a
pattern matching the string "class". We provide a shorthand syntactic sugar
for keyword definition. With this new syntax, the lexical rule is written as
class = "class". In the abstract syntax of Listing 3.4, a keyword is identified
by the constructor Keyword(text:String).

The lexical exclusion mechanism excludes certain patterns to be matched.
The set of lexical exclusions is specified by the "-/-" operator. For example,
in the lexical definition Id ::= [a-zA-Z][a-zA-Z0-9\-_]* -/- {"class", "import"},
the recognition of "class" and "import" as an identifier is disallowed. Lexical
exclusions are described as regular expressions. When the lexer matches a
pattern, if a match has been found, none of the exclusions should match the
matched lexeme, otherwise the lexeme is discarded. The lexical exclusion
can be used as a powerful disambiguation mechanism which is described in
more detail in Section 5.

A lexical definition in MEBNF can be composed of other lexical definitions.
For example one may define the lexical definition for a floating number as
follows:

Float ::= NonZeroDigit Digit* [\.] Digit+
NonZeroDigit ::= [1-9]
Digit ::= [0-9]

The parser generator rewrites the composing definitions before generating
a lexer. For example, the final lexical definition for Float would be [1-9][0-
9]*[\.][0-9]+. In composing lexical definitions the head of a lexical definition
cannot appear as the first symbol in the body of a lexical definition. For
example, the definition Digit ::= Digit [\.] Digit is illegal. Moreover, lexical
definitions containing direct or indirect cycles are not allowed. Such defini-
tions should be moved to a context-free section as regular expressions are
not able to deal with such recursive constructs. It should also be mentioned
that the provided concrete syntax for lexical rules is ambiguous. In Sec-
tion 5.3, we show how to resolve the ambiguities by setting the operators’
associativity and priority.
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3.5 Layout

We distinguish a special kind of lexical rules and dedicate a separate sec-
tion, the layout section, to it. The term “Layout”, which is borrowed from
SDF [21], describes whitespace and comments. In MEBNF, layout symbols
are automatically added to the grammar. This frees the user of explicitly
adding whitespace and comment nonterminals to context-free rules. An ex-
ample of a layout definition is given in Listing 3.6. As can be seen, two
layout elements are defined. The first definition, Comment, corresponds to a
single-line C-comment comment, while the second definition corresponds to
whitespace characters.

layout syntax

Comment ::= [/][/][^\n\r]
Whitespace ::= [\ \n \r \t]+

Listing 3.6: An example of a layout definition section

Our parser generator inserts the nonterminal Layout, after each terminal and
before the start symbol of a grammar, before generating a parser for the
grammar. To add the Layout nonterminal before the start symbol, a nonter-
minal named Start is added to the grammar. The definition for the added
Start nonterminal is as follows:

Start ::= Layout S

where S is the actual start symbol of the grammar. The body of the Layout
nonterminal is composed of the lexical heads defined in the layout section.
For the example in Listing 3.6, the layout definition is as follows:

Layout ::= (Comment | WhiteSpace)*

3.6 Modularity

Modular grammars allow a separation of rules into several smaller modules.
A module can then import the context-free and lexical-rules from other
modules. Modularity in context-free grammars has many benefits. For
example, It allows the separation of concerns in grammar definitions and
facilitates reuse. However, the semantics of importing rules is not yet well
understood. In addition, should imported grammars have different layout
definitions, the resulting language might not be able to correctly recognize
all sentences of the resulting language.
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There are currently two approaches in importing context-free rules from
another module. The first approach changes the name of the imported
nonterminals to ensure unique names across modules, whereas the second
approach imports the nonterminals without rewriting, effectively a textual
import of rules. As an example, let us consider the following two grammars.

module M1
import M2

context-free syntax
E ::= E "+" E

module M2

context-free syntax
E ::= E "*" E

As can be seen, the module M1 imports the module M2. The results of this
importing, using both approaches, are shown below:

module M1

context-free rules
E ::= E "+" E
E ::= M2.E
M2.E ::= M2.E "*" M2.E

(a) with rewriting

module M1

context-free rules
E ::= E "+" E
E ::= E "*" E

(b) without rewriting

In the approach with rewriting, (a), an additional rule E ::= M2.E is added to
provide a bridge for reaching the imported rules. In this scheme, there is no
way to reach a nonterminal of the importing module from a nonterminal of
an imported module. As a result, for example, one cannot derive the string
1 + 2 * 3 + 4 using the the grammar in (a) because the nonterminal M2.E
cannot produce a "+". However, a derivation such as 1 * 2 + 3 * 4 is possible.
In the approach without rewriting, (b), both derivations are possible. The
approach without rewriting is more powerful as it can extend the grammar,
but it may also lead to unexpected results, as alternates of all nonterminals
with the same name will be merged. In some cases, two nonterminals with
the same in two different modules do not necessarily should be merged.

For this thesis, we use the import mechanism which imports all the reachable
nonterminals without changing the name of the imported nonterminals. In
this scheme, if a nonterminal, appearing in the body of a production rule in
the importing module, exists as the head of a production rules in an imported
module, all rules reachable from the imported nonterminal are imported.
Moreover, only the layout definition in the highest level importing module
is considered as the layout for the whole composed grammar. In the future,
we will provide a more sophisticated import mechanism, possibly using two
different import commands, corresponding to the two import mechanism, to
allow the user select how the rules for a nonterminal should be imported.
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Chapter 4

Error Reporting in
Generalized LL Parsers

Parser generators usually provide means for reporting syntax errors in gen-
erated parsers. However, error reporting in generated parsers is usually not
satisfactory. Error messages in a generated parser are derived from the syn-
tax of the language, and therefore cannot usually provide good hints on how
the error should be fixed. Good error messages often rely on the semantics
of a language, e.g., block and statement structures, and are manually added
to a parser. In this section, we primarily focus on reporting the location of
parsing errors from generated GLL parsers, without trying to provide hints
how the error should be fixed. Providing a mechanism to allow the user to
customize error messages, based on the semantics of a language, is outside
the scope of this thesis.

Detecting the exact location where a parse error is occurred is virtually
impossible, even in deterministic parsers. Anyone who has worked with
the LATEX typesetting system has experienced that the reported location
of an error is usually not where the error is actually occurred, rather the
reported location is where the input could no longer be matched. Deter-
ministic parsers have the viable-prefix property [14], meaning that as soon
as a prefix of the input has been read which cannot be completed to form
a sentence of the language, an error has occurred. In deterministic parsers,
the location where the parser cannot match further is reported to the user.
As a hint on how to fix an error, the expected token(s) at the error location,
derived from the first and follow sets, is also reported to the user.

Error reporting in generated generalized parsers is even more challenging. In
deterministic parsers, only one correct derivation can possibly exist. There-
fore, if at one point, the parsing cannot proceed, an error is reported to
the user. In contrast, in generalized parsers, many paths are explored in
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parallel, and failure in matching the input in one path does not necessarily
imply an error.

In GLL parsing, for selecting the location where the matching of input fails,
we use a heuristic similar to the viable-prefix. We record the locations where
the input could no longer be matched, and when the parsing fails, the loca-
tion with the longest input prefix is reported as the error location.

We record a possible error location in the execution of a GLL parser if one
of the following scenarios happen:

• The grammar pointer is immediately before a terminal we attempt to
match it to the current input symbol, but no match can be found,
i.e., the set of tokens returned from the lexer is empty.

• The grammar pointer is immediately before a nonterminal, but the
current input symbol does not belong to the test set of the nontermi-
nal.

• The grammar pointer is at the start symbol, but the current input
symbol does not belong to the test set of the start symbol’s alternates,
thus no alternate can be selected.

In each of these scenarios no descriptor is added to the descriptors set. If
before executing a parsing step in which one of these scenarios happen,
the descriptor set is already empty, then this location is a definitive error
location. However, if there are descriptors in the descriptors set, not adding
a descriptor at this step does not necessarily indicate an error, as the current
descriptors may lead to a successful parsing of the input. Nonetheless, we
add an error message in all cases, regardless of the state of the descriptors
set. This is to ensure we capture the error location with the longest input
prefix.

When one of these scenarios happen, a new error object containing the
current input location and the grammar pointer is created. If no error object
already exits, meaning that no error has occurred before, the newly created
error object is recorded as the current error object. If an error object already
exists, its location is checked against the location where the new error has
occurred. If the new location is farther than or equal to the location of
the current error object, the current error object is replaced by the new
one. Otherwise, if the new error occurs in a location before the location of
the current error object, the new error object is discarded. Based on this
procedure, at each point during the parsing, at most one error object exists.
If the parsing of an input fails, the location and grammar pointer of the
current error object will be reported to the user.

With this error reporting method, we always get the location of a parse error
when the parsing fails. However, the location may not be the best location
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for diagnosing the error. The benefit of this error reporting technique is
that it is fairly straightforward to implement. Based on our experience,
this approach produces fairly accurate results for the MEBNF grammar
introduced in Section 3.3. In the future, we should investigate the use of
more advanced heuristics for improving the error reporting.
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Chapter 5

Disambiguation by Rewriting
within the Parse Forest

A context-free grammar is ambiguous if it produces a sentence in more than
one way, leading to more than one left-most (or right-most) derivation. As
different derivations may have different meanings, at some point in lan-
guage processing, ambiguities should be resolved. The process of selecting
a derivation from a set of ambiguous derivations is called disambiguation.

Ambiguity detection in context-free grammars is undecidable [22]. However,
for specific kinds of ambiguities, there are known disambiguation solutions.
For example, for some grammars, one can eliminate the ambiguity by rewrit-
ing a grammar to an equivalent grammar, producing the same language. A
classic example of disambiguation by rewriting the grammar is the grammar
of arithmetic expressions. A grammar for arithmetic addition is shown in
Figure 5.1.

E ::= E + E

E ::= Digit

E ::= E + T | T
T ::= T F

F ::= Digit

Figure 5.1: A grammar for arithmetic addition

As can be seen in Figure 5.1, the original grammar on the left side can be
transformed to the grammar on the right side by applying the left-recursion
elimination and left factorization. More information on these transforma-
tions can be found in [14]. The transformed grammar is not ambiguous, but
it is difficult to read. More importantly, its parse trees are not as natural
as those of the original grammar.
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Nevertheless, disambiguation by rewriting a grammar is not applicable to
all cases, as for some grammars no unambiguous, equivalent grammar ex-
ists [22]. A grammar for which no equivalent unambiguous grammar exists
is called an inherently ambiguous grammar. Even for grammars which are
not inherently ambiguous, disambiguation by rewriting grammar rules is not
straightforward as there is no standard algorithm for that.

Disambiguation can also be achieved by modifying a parser to disallow the
creation of undesired derivations in the first place. This method of dis-
ambiguation is popular in deterministic parser generators. Deterministic
parsers require that there be at most one chance of action at each step.
Therefore, if at a step, multiple actions are possible, the parser should be
able to select one of the actions. The selection is usually based on some
heuristics embedded in the parser. For example, in Yacc [23], the rules for
associativity and priority of operators can be embedded within the gener-
ated parsers, so that the parser can resolve shift/reduce conflicts resulting
from operator ambiguities. In addition to the heuristics, more lookahead
symbols may also be employed to help the parser eliminate choices.

Modifying a parser to cope with ambiguities is usually complex, and the
modifications are not reusable for other ambiguity types. More importantly,
only resolving some well-known ambiguities, such as operator associativities
and priorities, is supported by conventional parser generators. For resolving
other complex ambiguities, often a parser should be hand-crafted, which
involves significant hacking. This approach is not accepted in a languages
workbench whose main purpose is to provide an environment for language
prototyping and experimentations. For this, the user should be provided
with a disambiguation mechanism which is generic and easy to apply.

Generalized parsers produce a parse forest containing all the ambiguities oc-
curred during the parsing. Packing all the ambiguities in a data structure, a
parse forest provides the user with the opportunity to traverse the produced
parse forest and select the desired derivation. An example of disambigua-
tion by filtering unwanted derivations in the parse forest is implemented in
SDF [21], which is based on Scannerless GLR [38]. SDF provides the prefer
and avoid [35] mechanisms to mark nodes in the parse forest which should
be kept or removed. These mechanisms, however, do not work in all cases
and may result in unpredictable results [28, 34, 36].

In this chapter we describe our disambiguation method which is based on
rewriting within the parse forest. In contrast to SDF, which provides mech-
anisms for filtering the parse forest based on top-level production rules, we
provide concrete syntax for describing complete tree structures. Many am-
biguities are not resolvable by merely examining the top-level production
rule under ambiguity nodes. The main motivation for our disambiguation
mechanism is building a generic, powerful disambiguation mechanism which
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is able to cope with complex ambiguities.

The rest of this chapter is organized as follows. First, we introduce pattern
matching and rewriting within GLL’s parse forest in Section 5.1. Then, in
Section 5.2, we provide concrete syntax, a wrapper for Tom, in order to
make the writing of patterns easier and more intuitive. Section 5.3 provides
a Yacc-like notation for assigning associativities and priorities to operators.
Section 5.4 is dedicated to the Tom implementation of the disambiguation
mechanism. Finally, in Section 5.5, we evaluate our disambiguation mecha-
nism as a term rewriting system.

5.1 Rewriting within the SPPF

As discussed in Section 2.2, an SPPF provides efficient means for repre-
senting ambiguities by sharing common subtrees. An ambiguity node in an
SPPF is a symbol or an intermediate node having more than one packed
node as children. For example, consider a simple grammar for arithmetic
addition defined in Listing 5.1.

context-free syntax
E ::= E "+" E | Digit

lexical syntax
Digit ::= [1-9]+

Listing 5.1: A simple grammar for arithmetic addition

For this grammar, the input string "1+2+3" is ambiguous. The corresponding
SPPF resulting from parsing this input is presented in Figure 5.2. For the
SPPF visualization in this chapter, packed nodes are represented by small
circles, intermediate nodes by rectangles, and symbol nodes by rounded
rectangles in which the name of the symbol node is written. Moreover, for
a more compact visualization, the nodes associated with the recognition of
layout are removed from the graphs in this section. The SPPF of Figure 5.2
contains an ambiguity which occurs below the first symbol node labeled E.

While an SPPF is built, intermediate nodes are added for binarization,
which is essential for controlling the complexity of GLL parsing algorithm.
Furthermore, the version of the GLL algorithm we are using creates packed
nodes even when there are no ambiguities. These additional nodes lead to
a derivation structure which does not directly correspond to the expected
abstract syntax of the grammar from which the SPPF has been created.

After the successful construction of an SPPF, one can traverse the SPPF
and remove all packed nodes which are not part of an ambiguity, i.e., the
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E

E

E

+

E

Digit: 1

+

E

Digit: 2

Digit: 3E

Figure 5.2: The complete SPPF resulting from parsing "1+2+3".

packed nodes which are the only child. The intermediate nodes which only
have one child, the ones which do not present an ambiguity, can also be
removed. When a node is removed, its children are attached to the parent
of the node. Care should be taken that the order of children in the parent
remains intact. By removing unnecessary packed and intermediate nodes,
the SPPF presented in Figure 5.2 can be reduced to the SPPF in Figure 5.3.

The removal of unnecessary intermediate and packed nodes is not applicable
to SPPFs containing cycles. An SPPF contains a cycle only if its underlying
grammar contains a cycle. Cycles do not affect the language produced by a
grammar and can be removed from the grammar. However, the automatic
removal of cycles may significantly alter the grammar, and is not supported
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in MEBNF. Moreover, the EBNF to BNF conversion may also introduce
cycles, for example, if there is a nonterminal X producing epsilon, i.e., X ::=
ϵ, and X∗ exists in the grammar. In the future, we shall notify the user of
the presence of cycles in a grammar and assist her in removing cycles from
the grammar.

E

E +

E

+ E

E

Digit: 1

E

Digit: 2 Digit: 3

Figure 5.3: The SPPF resulting from parsing "1+2+3" without unambiguous
intermediate and packed nodes.

For disambiguating an SPPF, we use the pattern matching and rewriting
facilities of Tom. Listing 5.2 defines an algebraic data type for SPPF using
Gom. The algebraic type defines a sort SPPFNode with three constructors,
corresponding to three node types present in an SPPF, and the sort NodeList
defining a list of nodes. The SymbolNode constructor creates a symbol node
with its name and list of the children. The attribute name is the name of
a terminal or nonterminal in the grammar. PackedNode and IntermediateNode
constructors create a packed or intermediate node by their list of children.
concNode constructs a list of SPPNode terms. The name concNode is selected in
compliance with Gom’s naming conventions, and it represents the concate-
nation of nodes as a list.

SPPFNode = SymbolNode(name:String, children:NodeList)
| PackedNode(children:NodeList)
| IntermediateNode(children:NodeList)

NodeList = concNode(SPPFNode*)

Listing 5.2: An algebraic type definition for the SPPF

The ambiguity shown in Figure 5.3 can be resolved by preferring the left-
associative derivation, i.e., the input "1+2+3" should be interpreted as (1+2)+3
and not as 1+(2+3).
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SymbolNode("E", concNode(z1*,
PackedNode(concNode(SymbolNode[name="E"],

SymbolNode[name="+"],
SymbolNode("E", concNode(SymbolNode[name="E"],

SymbolNode[name="+"],
SymbolNode[name="E"]))))

)), z2*)) -> { SymbolNode("E", concNode(z1*, z2*)); }

Listing 5.3: A rewrite rule in Tom for preferring the left-associative deriva-
tion.

Listing 5.3 shows a Tom rewrite rule resolving the ambiguity in Figure 5.3.
As can been seen, the packed nodes under the symbol node labeled E are
examined, and if there is a right-associative derivation, it will be removed.
The reason that we do not directly write a pattern to select the desired
derivation is that we do not know about other packed nodes under an ambi-
guity node. Rewriting a symbol node by selecting a packed node matching
the desired pattern may remove other packed nodes which should not be
removed. To have a generic disambiguation mechanism, we search for a
packed node matching the opposite pattern, e.g., right-associativity, which
we call the illegal pattern. The illegal patterns are not desired, regardless of
where they appear, and should be removed. In Listing 5.3, z1* and z2* match
other packed nodes which should be kept, while the packed node matching
the illegal pattern is rewritten to nothing, and hence removed.

For the arithmetic addition example, in Listing 5.1, inputs having more
than three digits have another derivation. For example, 1+2+3+4 can also be
interpreted as ((1+2)+(3+4)). This derivation, however, is automatically elimi-
nated, as it matches both the left and right associative patterns, considering
that (1+2) and (3+4) can be seen as single E.

E

E +

E

* E

E

Digit: 1

E

Digit: 2 Digit: 3

Figure 5.4: The SPPF resulting from parsing 1+2*3
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We extend the grammar of arithmetic expressions in Listing 5.1 by adding
the rule E ::= E "*" E. The resulting grammar is ambiguous, for example,
for the input 1+2*3, whose SPPF is shown in Figure 5.4. To resolve this
ambiguity, one can assign a higher priority to the "*" operator, preferring
the derivation 1+(2*3) to (1+2)*3. This means that a "*" should appear in a
deeper subtree in relation to a "+". The rewrite rule disambiguating this
example is shown in Listing 5.4. Note that for defining the precedence
relation between the "+" and "*" operators, one should consider all orderings
of the operators. Listing 5.4 shows the two different possible orderings. The
first pattern describes a priority relation in which the "+" operator appears
first, whereas in the second pattern, the "*" operator appears first.

SymbolNode("E", concNode(z1*,
PackedNode(concNode(SymbolNode[name="E"],

SymbolNode[name="*"],
SymbolNode("E", concNode(SymbolNode[name="E"],

SymbolNode[name="+"],
SymbolNode[name="E"])),

)), z2*)) -> {
SymbolNode("E", concNode(z1*, z2*)); }

SymbolNode("E", concNode(z1*,
PackedNode(concNode(SymbolNode("E", concNode(SymbolNode[name="E"],

SymbolNode[name="+"],
SymbolNode[name="E"])),

SymbolNode[name="*"],
SymbolNode[name="E"]

)), z2*)) -> {
SymbolNode("E", concNode(z1*, z2*)); }

Listing 5.4: A rewrite rule in Tom giving "*" a higher priority over "+"

So far, in the presented examples, we assumed that no layout definition is
present in the grammar. Should a grammar have layout definitions, one
should incorporate them in rewrite rules. This can be simply achieved by
putting a "_" after each terminal symbols in the patterns. "_" will match the
layout symbol after terminal symbols, see Section 3.5 for more information.
Considering the layout definition, the rewrite rule of Listing 5.3 is written
as in Listing 5.5.
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SymbolNode("E", concNode(z1*,
PackedNode(concNode(SymbolNode[name="E"],

SymbolNode[name="+"], _,
SymbolNode("E", concNode(SymbolNode[name="E"],

SymbolNode[name="+"], _,
SymbolNode[name="E"]))))

)), z2*)) -> { SymbolNode("E", concNode(z1*, z2*)); }

Listing 5.5: The rewrite rule for preferring the left-associativity by taking
the layout definition into account

The rewrite rules presented so far can only remove one packed node matching
an illegal pattern. As described before, an ambiguous node has more than
one packed node. Each rewrite rule matching a packed node reduces the
number of packed nodes by one. To fully disambiguate an ambiguity node,
a rewrite rule should be applied as long as it can be matched. The disam-
biguation is successful if only one packed node remains. Then, the children
of the remaining packed node replace the packed node. This replacement
resolves the ambiguity.

If a rewrite rule cannot disambiguate a node, other available rules should be
applied. The disambiguation process fails if after applying all the available
rewrite rules, still more than one packed nodes is present under an ambi-
guity node. The disambiguation process should be applied bottom up to
disambiguate the whole SPPF. In many cases, resolving an ambiguity in a
higher level in an SPPF depends on first resolving the ambiguities in deeper
levels of the SPPF, i.e., subtrees of an ambiguous node in a higher level are
ambiguous themselves. By performing the disambiguation bottom up, it is
ensured that the subtrees of an ambiguous nodes are not ambiguous, thus
can uniquely be specified by a tree pattern.

The successful disambiguation of an SPPF transforms it to a tree only con-
sisting of symbol nodes. Packed and intermediate nodes which are not part
of an ambiguity node are removed before applying a rewrite rule, as discussed
at the beginning of this chapter. Ambiguous intermediate nodes, having
more than one packed node, are removed when they are disambiguated, as
part of disambiguating higher level ambiguity nodes. Packed nodes which
are part of an ambiguity node are removed one by one by disambiguation
rules. The remaining packed node under an ambiguity node is replaced by its
children as the last step of disambiguating a node. After all the ambiguities
are resolved, no intermediate or packed node can exist under disambiguated
nodes. To give the SPPF a unified shape, we traverse the SPPF, now a tree,
from the root and remove the rest of packed and intermediate nodes.

The procedure for removing unnecessary packed and intermediate nodes,
regardless of where they appear, is as follows:
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1. Remove the packed node under a non-ambiguous symbol node. The
children of the packed node are attached to the symbol node.

2. Remove the packed node under a non-ambiguous intermediate node.
The children of the packed node are attached to the intermediate node.

3. Remove intermediate nodes which are not ambiguous. The children of
an intermediate node are attached to its parent (a packed node).

5.2 Concrete Syntax for Disambiguation Rules

Expressing disambiguation rules using the algebraic terms is tedious for the
user because there are many technical aspects the user should be aware of.
For example, the user should explicitly create a list of symbol nodes using
the concNode constructor. To overcome these obstacles, we present a higher
level syntax for writing disambiguation rules. In the syntax, the user only
focuses on the name of symbol nodes in an SPPF, rather than their full
algebraic representation.

In principle, the user can write a disambiguation rule removing more than
one packed node at once. We, however, do not allow such a rewrite rule
in the simplified syntax. In the syntax, the user can either specify that
a single packed node matching an illegal pattern should be rewritten to
nothing, i.e., to be removed, or a packed node should be preferred over
another sibling packed node. We call the former type of rule a remove rule
and the latter type a prefer rule.

The user can always write a remove or prefer rule for an ambiguity node.
In an SPPF, ambiguity nodes always contain more than two packed nodes,
otherwise there would have not been an ambiguity in the first place. Fur-
thermore, subtrees under the sibling packed nodes are different, otherwise
there would would have not been different packed nodes. Given these two
facts, there are always two packed nodes with different subtrees available
under an ambiguity node, and the user can write a remove rule, describing
which one is illegal, or a prefer rule, describing which one is preferred.

Considering this, the simplified syntax is as follows:

• An ambiguous symbol node is specified as [P1] or [P1], [P2], where P1
and P2 are packed nodes. The former case corresponds to a remove
rule, whereas the latter case describes prefer rule. For prefer rules, the
order in which P1 and P2 appear, or how many other packed nodes are
before, after, or in between does not matter.

• PackedNode(concNode(t1, t2, ..., tn)), a packed node whose children are t1, t2, ..., tn
is written as [t1, t2, ..., tn], where each ti describes a symbol node. In-
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side a packed node, the order of children should be explicitly stated.
Moreover, the user does not need to specify the layout nodes, as they
are automatically matched.

• SymbolNode("E",_) or SymbolNode[name="E"], a symbol node whose children
are not important, is represented by E, its name.

• SymbolNode("E", concNode(t1, t2, ..., tn)) where t1, t2, ..., tn are the subterms of
the SymbolNode, is written as E(t1, t2, ..., tn). In other words, the name of
a symbol node becomes the root of the tree.

• _ matches any symbol node while _* matches any sequence of symbol
nodes.

In this syntax, no packed node can appear below another packed node. The
reason is that the deepest ambiguity node has packed nodes as only its direct
children, while the rest of the nodes in its subtrees are symbol nodes. Sub-
trees under the deepest ambiguous node are either not ambiguous, or haven
been previously disambiguated, as the disambiguation process is performed
bottom up.

context-free syntax

DisambiguationSection ::= "disambiguation" "rules" Rules*

Rule ::= "remove" PackedNode
| "prefer" PackedNode "," PackedNode

PackedNode ::= "[" (SymbolNode | Any) ("," (SymbolNode | Any) )* "]"

SymbolNode ::= SymbolName
| SymbolName "(" ( SymbolNode | Any) ("," (SymbolNode | Any) )* ")"

lexical syntax

Any ::= [_][*]?
Name ::= String

Listing 5.6: The MEBNF specification for disambiguation rewrite rules

Listing 5.6 illustrates the MEBNF grammar that defines the disambiguation
rewrite rules. As can be seen, a disambiguation rule can be either a remove
or prefer rule. A remove rule describes a packed node which should be
removed, rewritten to nothing, while a prefer rule prefers the first packed
node to the second one, i.e., if both packed nodes are found, the one which
is not preferred is eliminated. With the simplified notation, the rewrite rule
in Listing 5.5 can be written as:

remove [E, "+", E(E, "+", E)]
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5.3 Binary and Unary Operators

As we have seen in the above examples, some natural grammars for bi-
nary any unary operator expressions are ambiguous. For disambiguation,
the user can directly write disambiguation rules, as shown in Section 5.1.
However, due to the large number of associativity and priority combinations
between operators, it is tedious for the user to manually write all the com-
binations. In addition, as the need for disambiguating binary and unary
operators often occurs in practice, a Yacc-like notation for defining the as-
sociativity and priority between operators can be helpful. In this section,
we provide a concrete syntax for describing the associativity and priority
between the operators, and explain how each combination is translated into
the disambiguation rules.

5.3.1 Concrete Syntax for Operator Associativities and Pri-
orities

context-free syntax

PriorityGroup ::= "{" (AssociativityGroup (">" AssociativityGroup)*)? "}"
AssociativityGroup ::= (Modifier ":")?

OperatorRule ("," OperatorRule)*
OperatorRule ::= BinaryOperatorRule

| LeftUnaryOperatorRule
| RightUnaryOperatorRule

BinaryOperatorRule ::= Head "::=" Operand Operator? Operand
LeftUnaryOperatorRule ::= Head "::=" Operator Operand
RightUnaryOperatorRule ::= Head "::=" Operand Operator
Operator ::= String | Id

lexical syntax
Head ::= Id
Operand ::= Id
Modifier ::= "left" | "right"

Listing 5.7: Concrete syntax for the associativity and priority of operators

Listing 5.7 provides a concrete syntax for describing the associativity and
priority of operators. As can be seen, a PriorityGroup defines a set of priority
rules for a nonterminal head. Each priority group is composed of a number
of associativity groups. An associativity group defines the associativity for
each rule and between the rules it contains. For example, to give the "*"
operator a higher priority than the "+" operator in the grammar of arithmetic
expressions, we write:
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{
left: E ::= E "*" E >

left: E ::= E "+" E
}

The example above defines a priority group containing two associativity
groups. The priority is determined by the greater-than sign, separating as-
sociativity groups. The type of associativity is identified by Modifier. In case
the modifier is not specified, no associativity is applied to the associativity
group. In the example above, both associativity groups are left-associative.

The classic notion of associativity is defined for only one binary operator.
We, however, generalize this notion to more than one operator, to be able
to disambiguate expressions containing operators of the same priority. For
example, the user can write left: E ::= E "+" E, E ::= E "*" E to express that
+ and * are left-associative in respect to each other. Under the hood, for
each pair of left-associative binary operators, four Tom rules are generated.
One for each operator and one for each ordering of the operators. Note that
if the user wants to give an operator a different associativity than the one
given for a associativity group the operator belongs to, the operator should
be moved to a separate associativity group.

We provide two more examples for illustrating the usage of the associativity
and priority syntax. The first example, which is a grammar for arithmetic
expressions, is shown in Listing 5.8.

context-free syntax

E ::= E "+" E
| E "-" E
| E "*" E
| E "/" E
| "-" E
| E "^" E
| Digit

Listing 5.8: A grammar for arithmetic expressions

The associativity and priority of operators in Listing 5.8 is shown in List-
ing 5.9.
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associativity and priority

{
right: E ::= E "^" E >

E ::= "-" E >

left: E ::= E "*" E,
E ::= E "/" E >

left: E ::= E "+" E,
E ::= E "-" E

}

Listing 5.9: The associativity and priority of arithmetic operations

Listing 5.9 defines four associativity groups. The first group gives the power
operator right associativity. This production rule has the highest priority
as well. The second group has a rule defining the unary negation operator.
This rule cannot be left or right associative, thus no modifier is given. The
purpose of defining the negation rule in a separate group, without providing
an associativity modifier, is only to give it a different priority. The third
group defines the priorities of the multiplication and division operators, both
left associative themselves and in respect to each other. The same holds for
the fourth group, which has the lowest priority. Using the associativities and
priorities defined in Listing 5.9, the expression 1--2*3^-4^5*3 is interpreted as
1-((-2)*(3^(-(4^5)))*3), whose parse tree is shown in Figure 5.5.

The second example of using associativity and priority rules is resolving the
ambiguities in MEBNF’s lexical syntax defined in Listing 3.5. The ambiguity
is caused by the alternates of RegularExpression. The associativity and priority
of the operators involved in the ambiguity is specified Listing 5.10.

{
RegularExpression ::= RegularExpression "*",
RegularExpression ::= RegularExpression "+",
RegularExpression ::= RegularExpression "?"

>
left: RegularExpression ::= RegularExpression RegularExpression
>
left: RegularExpression ::= RegularExpression "|" RegularExpression
}

Listing 5.10: Context-free priorities for RegularExpression

As shown in Listing 5.10, the operators "*", "+", and "?" should have a
higher priority than "|" or the concatenation operator in RegularExpression
::= RegularExpression RegularExpression. The priority relationship implies
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E

E - E

Digit: 1 E * E

E * E Digit: 3

- E E ^ E

Digit: 2 Digit: 3 - E

E ^ E

Digit: 4 Digit: 5

Figure 5.5: The parse tree resulting from parsing 1--2*3^-4^5*3"

that the expression XY ∗, for example, should be interpreted as X(Y ∗) and
not (XY )∗. The same holds for the "+" and "?" operators. In addition, the
concatenation operator is defined as left-associative, so that the the regular
expression XY Z is interpreted as (XY )Z and not as X(Y Z). The same hold
for the "|" operator. Finally, "|" has a lower priority than the concatenation
operator. As a result, the regular expression X Y | Z should be interpreted
as (XY ) | Z and not as X(Y | Z).

5.3.2 Translation to Disambiguation Rules

In this section we give a formal description of the translation of associativity
and priority rules to disambiguation rules, which are eventually translated
to Tom rules. A production rule describing a binary, left-unary, and right-
unary rule is of the form A ::= A x A, A ::= x A, and A ::= A x, respectively,
where A is a nonterminal, and x is either a terminal, nonterminal. For
binary rules, x can be ϵ, defining a concatenation operator. The supported
operators and their translation to disambiguation rules are as follows:

• left: A ::= A x A, the left associativity of a binary operator is translated
to: remove [A, x, A(A, x, A)].
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• left: A ::= A x A, A ::= A y A , the left associativity of two binary
operators is translated to: remove [A, x, A(A, y, A)] and remove [A, y,
A(A, x, A)]. Note that both operators are left-associative themselves,
i.e., the previous rule applies to both operators.

• right: A ::= A x A, the right associativity of a binary operator is trans-
lated to remove [A(A, x, A), x, A].

• right: A ::= A x A, A ::= A y A, the right associativity of two binary
operators is translated to: remove [A(A, x, A), y, A] and remove [A(A,
y, A), x, A]. Note that both operators right-associative themselves,
i.e., the previous rule applies to both operators.

• A ::= A x A > A ::= A y A, the priority between two binary operators,
where x has a higher priority than y is translated to: remove [A, x, A(A,
y, A)] and remove [A(A, y, A), x, A].

• A ::= x A > A ::= A y A, the priority between a left-unary operator and a
binary operator, where the left-unary operator has a higher priority,
is translated to: remove [x, A(A, y, A)].

• A ::= A y A > A ::= x A, the priority between a binary operator and a
left-unary operator, where the binary operator has a higher priority,
is translated to: remove [A(x, A), y, A)].

• A ::= A x > A ::= A y A, the priority between a right-unary operator and a
binary operator, where the right-unary operator has a higher priority,
is translated to: remove [A(A, y, A), x].

• A :: A y A > A ::= A x, the priority between a binary operator and a
right-unary operator, where the binary operator has a higher priority,
is translated to: remove [A, y, A(A, x)].

5.4 Implementation

In Section 5.1 we described our disambiguation mechanism without explor-
ing the implementation details. Our Java implementation of GLL is not
aware of Tom and creates SPPF nodes as pure Java objects. Creating SPPF
nodes as Tom terms is difficult, if not impossible. Tom terms are immutable,
meaning that after the construction, they can no longer change. A change
in a term , in fact, returns a new term. In SPPF construction, however, chil-
dren are often added to a node without any specific order, which updates the
parent node. In addition, there are always many references to SPPF nodes,
from GSS for example. Implementing SPPF nodes as immutable objects
implies that each time a new child is added to an SPPF node, all references
should be updated, and in fact, a complete new SPPF should be created.
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Although Tom uses maximum sharing and has a memory efficient strategy
for creating a new term from an existing term, updating all the references
is neither efficient nor easy.

Nevertheless, for pattern matching using Tom, we need to provide a bridge
between SPPF nodes as Java objects and the Gom type defined in List-
ing 5.2. As a first approach we consider the conversion of an SPPF to
a Tom term after the SPPF construction has finished. The conversion is
straightforward, and as Tom provides maximum sharing of subterms, the
storage of a converted Tom term is memory efficient. The problem is the
traversal and rewriting strategies, as Tom terms are trees, and not graphs.
When a subterm is being rewritten, the subterm is only rewritten in the
current traversing path. If the subterm is shared by other nodes in another
path, the other node still has a pointer to the original subterm.

As an Example, consider the SPPF in Figure 5.6 (a), in which both nodes B
and C share the node D. From Tom’s point of view, the SPPF is seen as in
Figure 5.6 (b). Let us now consider the rewrite rule D → E. Applying the
rule to the node D under B results in the SPPF in Figure 5.6 (c). As can
be seen, the rewriting has only taken place in the current path, and other
node, node C, maintains its original subterm. Rewriting a node in all paths
is not feasible as the number paths in SPPFs containing many ambiguity
nodes is exponential.

A

B C

D

(a) Memory view

A

B C

D D

(b) Tom view

A

B C

E D

(c) After rewriting

Figure 5.6: Different SPPF representations

The first approach, converting an SPPF after parsing is finished, is only
suitable for small SPPFs or SPPFs containing few ambiguities. This makes
it virtually unusable in real-world settings. A second approach is to keep the
SPPF as Java objects and use a Tom mapping to view the Java structure
as a Tom term. The price paid here is performance, as Java’s List type
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is not as efficient as Gom’s generated List type in pattern matching and
rewriting. The difference in performance was, however, not noticeable in
the whole disambiguation process. The Tom mapping for SPPF is given in
Appendix B.

Using a mapping for SPPF, one cannot simply rewrite a term as before, and
should manipulate the matched node manually. This is to avoid creating
immutable objects. For example, the rewrite rule in Listing 5.3 is changed
to the rule in Listing 5.11. As can be seen, instead of creating a new term,
the setChildren method of the matched node, identified by node@, is called in
the body of the rule. The last point about the Tom mapping is that Tom
strategies do not just simply work with mapping. To be able to use strategies
with mapping, an specific Introspector should be used. An introspector is a
Java object providing Tom strategies with the access to children of a term
through a standard interface. The introspector for SPPF is provided in
Appendix C.

node@SymbolNode("E", concNode(z1*,
PackedNode(concNode(SymbolNode[name="E"],

SymbolNode[name="+"],
SymbolNode("E", concNode(SymbolNode[name="E"],

SymbolNode[name="+"],
SymbolNode[name="E"]))))

)), z2*)) -> { `node.setChildren(`concNode(z1*, z2*)); }

Listing 5.11: A rewrite rule in Tom for preferring the left-associative deriva-
tion

The disambiguation rules and patterns presented so far assume that unnec-
essary packed and intermediate nodes are removed from an SPPF. Moreover,
it is assumed that the EBNF to BNF conversion has been performed before
the pattern matching. Performing these transformations, both removing
unnecessary nodes and EBNF to BNF conversion, on an SPPF contain-
ing ambiguities may not be efficient. Due to many shared subtrees under
ambiguous nodes, transforming an ambiguous SPPF may lead to the expo-
nential worst case complexity. To overcome this, the removal of unnecessary
and intermediary EBNF nodes is performed only under the direct subtrees
of the deepest ambiguity node prior to pattern matching. By performing the
disambiguation bottom up, we ensure that the transformations are applied
only on trees, without sharing, in linear time. To sum up, the disambigua-
tion process is as follows:

1. Find the deepest ambiguity node. An ambiguity node is a symbol or
intermediate node having more than one packed node as children.

2. Remove unnecessary packed and intermediate nodes under the am-
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biguous packed nodes. Unnecessary packed nodes are the packed nodes
which do no represent an ambiguity, i.e., are the only child. Unnec-
essary intermediate nodes are the intermediate nodes which are not
ambiguous, i.e., have only one packed node as child.

3. Perform the EBNF to BNF conversion on the subtree under the am-
biguous node. Note that no ambiguous intermediary EBNF node may
appear here as the deepest ambiguity node is currently being pro-
cessed.

4. Mark the transformed nodes so that these nodes are not checked
for transformation while resolving ambiguities in higher levels of the
SPPF.

5. Select a rewrite rule and apply it as long as it can match a packed node.
If a rewrite rule cannot be applied anymore, go to the next rewrite
rule. After applying all the available rewrite rules only one packed
node should be remained, otherwise the disambiguation process fails.

6. If the disambiguation process is successful, replace the remained packed
node with its children. The disambiguation process continues bottom
up in an attempt to disambiguate the whole SPPF.

5.5 Disambiguation as a Term Rewriting System

In this section, we introduce the notion of a term rewriting system (TRS)
in an informal way, and then examine our disambiguation mechanism as a
TRS. A detailed, formal account can be found in [19].

A term rewriting system is a set of terms and their subterms, T , and a set of
rewrite rules applying on the terms (and their subterms). Terms are usually
defined using a signature, e.g., by a formalism such as Gom. A rewrite rule
is a function from T to T and is written as ti → tj , stating that the term ti
can be rewritten to tj . A TRS is terminating if the rewriting of terms (and
their subterms) using the set of rules can not infinitely continue, i.e., at
one point no rewrite rule can be applied on a term anymore. A term which
can no loner be rewritten is called a normal form. A TRS is confluent, if
after applying the rules in any arbitrarily order, the same normal form is
produced. More formally, if t is a term, and t

∗⇒u and t
∗⇒w, where ∗⇒ denotes

rewriting in zero or more steps, and u and w are in normal forms, then the
TRS is confluent if and only if u = w.

Our disambiguation mechanism can be considered as a TRS, where each
SPPF is a term, and disambiguation rules are its rewrite rules. As discussed
before, there are two types of rules: remove rules, written as remove(P ),
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rewriting a packed node matching the pattern P to nothing, and prefer rules,
prefer(Pi, Pj), preferring the packed node matching Pi over the packed node
matching Pj .

The TRS corresponding to the disambiguation of an SPPF is terminat-
ing. In a fully built SPPF, there are at most n2 symbol and intermediate
nodes, each having at most n packed nodes [31]. Considering the worst
case, in which all symbol and intermediate nodes except for the leaves are
ambiguous, there are at most n2 − n ambiguity nodes. The number of dis-
ambiguation rewrite rules is also finite, thus in the disambiguation, a finite
number of rewriting will be performed. Moreover, each rewrite rule which
matches a packed node decreases the size of the SPPF, removing one packed
node. Unsuccessful rewrite rules, which cannot match a packed node, leave
the SPPF intact. However, there are a finite number of rewrite rules, and
if they cannot disambiguate an ambiguity node, the disambiguation process
prematurely terminates. In a successful disambiguation, ambiguity nodes
are disambiguated one by one, until there is no disambiguation node, and
the process terminates. In an unsuccessful disambiguation, at least one am-
biguity node cannot be disambiguated, which terminates the whole process.

If only remove rules are used in disambiguation, the process is confluent.
The reason is that the removal rules act independently of each other, thus
the order in which they are applied does not matter. In a successful dis-
ambiguation of a rule, each packed node should be removed by one of the
remove rules, regardless of in which order they are applied. In an unsuccess-
ful disambiguation, at least one of the packed nodes cannot be matched. In
both cases, the final result is the same.

However, if there are prefer rules, the disambiguation may not be confluent.
We demonstrate this by the following example grammar:

S ::= A | B | C
A ::= a

B ::= a

C ::= a

The SPPF corresponding to parsing a single "a" is shown in Figure 5.7.

Let us consider three patterns named A, B, and C matching symbol nodes
with the same name, and the rewrite rules prefer(A,B) and prefer(B,C). If,
first, prefer(A,B) is applied on the SPPF in Figure 5.7, node B is eliminated
and node A remains. As no rules can be applied anymore, the disambigua-
tion fails. However, if first prefer(B,C) is applied, node B remains, and then
by applying prefer(A,B), node A remains. This disambiguates the SPPF.
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S

C A B

a

Figure 5.7: An ambiguous SPPF

As shown by this example, the lack of transitivity may lead to successful
disambiguation in some orderings of applying rules, but not in some others.

Let us again consider the three patterns, A, B, and C, from the previous
example and the rewrite rules prefer(A,B), prefer(B,C), and prefer(C,A).
There is a circular relationship between these patterns. Applying the rules
prefer(A,B) and prefer(C,A) will result in a derivation tree containing C,
but applying prefer(C,A) and prefer(B,C) will result in a derivation tree
containing B. This counter example shows that a circular relationship be-
tween patterns may lead to different final trees.

Our current conclusion is that if prefer rules are not antisymmetric, not tran-
sitive, or there is a circular relationship between them, the disambiguation
may not be confluent, but we cannot say with certainty when the disam-
biguation is confluent, if ever. We shall extend these theoretical analysis in
the future.
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Chapter 6

Disambiguation by Example

In this chapter we illustrate the applicability of our disambiguation mecha-
nism, by applying it on complex examples. We provide examples of ambigu-
ities in programming languages and island grammars, and show how these
ambiguities can be resolved. This chapter shows how hard ambiguity cases
can be resolved by our method, thus answering the third research question
in Chapter 1.

6.1 Complex Ambiguities in Programming Lan-
guages

The examples presented in this section are taken from the SDF Disambigua-
tion Medkit [37].

6.1.1 Postfix Expressions with Guarded Children

context-free syntax

E ::= E "+" E
| E "(" E ")"
| "e"

Listing 6.1: A grammar for postfix expressions

Consider the grammar of postfix expressions in Listing 6.1. For this gram-
mar, the input string e+e(e+e) is ambiguous whose associated SPPF is shown
in Listing 6.1. The first derivation, (e+e)"(" (e+e) ")" the one under the left
packed node, is not desired because e+e before the opening parenthesis is
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reduced to E. Based on this pattern E(E,E) should bind stronger than E + E.
We resolve the ambiguity by defining the illegal pattern as follows:

remove [ E(E, "+", E), "(", E, ")"]

E

E

( E )E +

E

E

E + Ee e

e e

Figure 6.1: The SPPF resulting from parsing e+e(e+e)

6.1.2 Overloaded Commas

Consider the expression grammar in Listing 6.2. For this grammar, the
input f(e,e) is ambiguous whose associated SPPF is shown in Figure 6.2. As
can be seen, the list of arguments, i.e., e,e, can be recognized in two different
ways: as a list of comma-separated Es derived from ( E ("," E)* )? or through
the binary operator E "," E. The former derivation should be preferred to the
latter.

context-free-syntax

E ::= E "," E
| "f" "(" ( E ("," E)* )? ")"
| "e"

Listing 6.2: A grammar for expression languages with overloaded commas

A naive way of resolving the ambiguity in Figure 6.2 is to disallow the
presence of a subtree E(E, ",", E) inside f() by the following rewrite rule:

remove ["f"(_*, E(E, ",", E), _*]

Although this rewrite rule works for the input f(e,e), it does not work for an
input with more "e"s such as f(e,e,e). The reason is that some ambiguities
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E

f ( )

E , E

E

e e

Figure 6.2: The SPPF resulting from parsing f(e,e)

happen in deeper nodes, thus the pattern will not apply. To match the
deeper ambiguity nodes we should write the pattern without considering f.
In deeper ambiguity nodes, however, both derivations E ",", E and E (","
E)* are valid, but if they both occur under an ambiguous node, one of them
should be removed. This ambiguity can be resolved by a preference rewrite
rule which selects a derivation from E ("," E)* over the one from E "," E:

prefer [_*, E(E, ",", E), _*], [_*, E, ",", E, _*]

In this example, some packed nodes may have additional children before or
after the described pattern. To capture them, we add _* before and after
the actual pattern.

6.1.3 The Dangling Else Ambiguity

Listing 6.3 shows a grammar for conditional statements. This grammar illus-
trates a classic ambiguity happening in most programming languages. The
ambiguity, which is called “the dangling else” ambiguity, occurs in nested
if-then-else statements, where the inner else can be either interpreted as be-
longing to the inner if or to the outer if. For example, consider the statement
"if expr then if expr then other else other". The SPPF resulting from parsing
this example is shown in Figure 6.3.
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E::= "expr"
S ::= "if" E "then" S+

| "if" E "then" S+ "else" S+
| "other"

Listing 6.3: A grammar for conditional statements

S

if E then S

else S

S

expr if E then S

expr other other

Figure 6.3: The dangling else ambiguity

As can be seen from Figure 6.3, the else statement under the left packed node
belongs to the inner if, wheres the else statement under the right packed node
belongs to the outer if. The left and right packed nodes correspond to the
derivations "if expr then (if expr then other else other)" and "if expr then (if
expr then other) else other", respectively. Selecting one of these two derivations
depends on the semantics of a programming language. For example, in Java,
the derivation which binds an else to the closest if statement is selected. The
rewrite rule for this selection is shown in Listing 6.4.

prefer ["if", E, "then", S],
["if", E, "then", S, "else", S]

Listing 6.4: Resolving the dangling else ambiguity

The rewrite rule states that if under an ambiguous node, under one packed
node, there is an if-then statement, while under another one there is an
if-then-else statement, the packed node containing the if- then should be
preferred. The presence of if-then implies that the else part is recognized as
a part of S, hence it is matched with an inner if statement.

The grammar of conditional statements defined in Listing 6.3 contains an-
other ambiguity which is related to the length of the recognized then part.
For example, consider the input "if expr then if expr then other other", whose
corresponding SPPF is depicted in Figure 6.4.
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S

if E then

expr S

S

S

if E then S

expr other other

Figure 6.4: The ambiguity in the then part

As can be seen from Figure 6.4, the left packed node corresponds to a deriva-
tion in which the last statement, S, is recognized as part of then, i.e., "if expr
then (if expr then (other other))". In contrast, the right packed node corre-
sponds to two separate statements, in which the last S constitutes the second
statement, i.e., "if (expr then (if expr then) other) other". The ambiguity in
Figure 6.4 can be resolved by the rewrite rule shown in Listing 6.5.

prefer [S("if", E, "then", S), _*],
[S("if", E, "then", S, _*)]

Listing 6.5: Resolving the ambiguity of the then part

The rewrite rule in Listing 6.5 indicates that if under an ambiguity node
there is a packed node containing only one if statement, while under another
packed node, the first child is an if statement followed by some other nodes,
the packed node containing only one if statement should be preferred. Using
the rules in Listings 6.4 and 6.5 we can disambiguate complicated, nested
if-then-else statements.

6.1.4 Syntactic Overloading Between Identifiers and Key-
words

In languages without reserved keywords, an ambiguity may occur between
the identifier and keywords of the language when an identifier takes one
of the keywords as its value. As an example, consider the grammar in
Listing 6.7.
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context-free syntax

S ::= "return" E;
| E "(" (E ("," E)*)? ")"

E ::= "(" E ")"
| Identifier

Listing 6.6: A grammar for showing the ambiguity in syntactic overloading

The SPPF corresponding to the parsing of "return (x)" is shown in Figure 6.5.
As can be seen under the left packed node, return is recognized as E, while
under the right packed node, it is recognized as a keyword "return". The
ambiguity in Figure 6.5 can be resolved by a rewrite rule preferring the
recognition of keywords, see Listing 6.7.

S

E ( E )

return E

Identifier: return Identifier: x

Figure 6.5: The SPPF corresponding to the parsing of "return (x)"

prefer ["return", E]
[E, "(", E, ")"]

Listing 6.7: preferring the keyword return to identifiers

Using pattern matching for resolving this type of ambiguity allows more
freedom than having reserved keywords. For example, the keyword "return"
may be used in other places, but it will be rejected only if there is an
ambiguity with recognizing a "return" E rule.

MEBNF also allows keyword restriction through lexical exclusions mecha-
nism. Using lexical exclusions, keywords can be excluded from being re-
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ported by the lexer to the parser as their recognized types. For example, in
the example in Listing 6.7, one can exclude the recognition of "return" as an
"Identifier" as follows:

lexical syntax

Identifier ::= [a-zA-Z_][a-zA-Z0-9_\-]* -/- { "return" }

Using the lexical exclusions leads to a faster parser, as the ambiguity is
prevented in the first place. However, lexical exclusions reduce the freedom
in choosing identifier names.

6.2 Ambiguities in Island-Grammar based languages

Island grammars [26, 33] are a method for describing the syntax of a lan-
guage, concentrating only on relevant constructs. An island grammar con-
sists of two sets of context-free rules. Rules for islands describing the relevant
language constructs which should be fully parsed, and rules for water which
describe the rest of the input which we are not concerned with. One of the
applications of island grammars is in the parsing of embedded languages,
where the embedded language and host language constructs are captured as
island and water, respectively.

To illustrate the use of our disambiguation mechanism in island grammars
for parsing embedded languages, we define a simple island grammar which
extends general-purpose programming languages. This island grammar,
which is a simplified version of Tom’s match construct, is shown in List-
ing 6.8. The complete island grammar of Tom is presented in Appendix
D.

context-free syntax

Program ::= Chunk*
Chunk ::= Water | Island
Island ::= "%match" "(" Chunk* ")"

lexical syntax

Water ::= Identifier | Integer | String | Char | SpecialChar
Identifier ::= [a-zA-Z_]+[a-zA-Z0-9\-_]*
Integer ::= [0-9]+
String ::= ["]([^"\\]|[\\]["trnu\\])*["]
Char ::= ['].['] | ['][\\] [btnfr"'\\] [']
SpecialChar ::= [; : + \- * / = & | < > ! % ? @ \[ \] \^ { } \. $ # ~]

Listing 6.8: The starting rules of an island grammar
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As shown in Listing 6.8, the production rule defining Program contains Chunk*,
meaning that other Match and host-language constructs can be nested inside a
Match construct. In defining an island grammar, the overlaps and boundaries
between the water and island tokens should be recognized. Therefore, we
define fine-grained water tokens being as small as the building blocks of the
supported host languages.

A water definition such as Water ::= [^ \n \r \t]+, which defines water as
a sequence of non-whitespace characters, is inadequate in recognizing the
boundaries. For example, consider the input "%match(x)". Given the lexical
definition for Water, no match construct can be recognized. The lexer reports
a sequence of "match", "(", and "x)" tokens to the parser. After consuming
the first parenthesis, the parser asks for a Water, but the lexer returns the
whole chunk of text until the next whitespace or the end of line character,
creating the token "x)". As no closing parentheses left, the parsing fails. For
more information about the interaction between the parser and lexer, the
reader is referred to Chapter 8.

In addition, the island grammar presented in Listing 6.8 is designed to be
host-language agnostic, although it may not possible to completely achieve
it. For being host-agnostic, the water definition should be flexible and cap-
ture the different varieties of tokens appearing in different supported host
languages. For example, SpecialChar contains the union of all different sym-
bols which appear in the host languages supported by our island grammar.

6.2.1 The Island-Water Ambiguity

The SPPF corresponding to the parsing of "%match(x)" is shown in Figure 6.6.
As can be seen, an ambiguity has been occurred between the recognition of
an island, under the right packed node, and a set of water, under the left
packed node. We call this ambiguity the island-water ambiguity happening
in almost all island grammars. If the ambiguity contains more than one
water element, the ambiguity occurs under a node labeled "Chunk_*", which is
in fact an intermediary node resulting from the EBNF to BNF conversion.
For more information on the EBNF to BNF conversion, see Section 3.2.
The conversion, however, does not affect the writing of patterns, as pat-
terns describe tree structures under packed nodes and not their parent, the
ambiguous node.

The ambiguity in Figure 6.6 can be resolved by the rewrite rule in Listing 6.9.
As can be seen, the rewrite rule prefers the packed node having a complete
island to another packed node whose first child is a water element. Using this
simple rule, we are able to resolve all the island-water ambiguities involving
more than one water. In case an ambiguity occurs between an island and a
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Program

Chunk_*

Chunk Chunk Chunk

Chunk

Chunk Chunk

Water: % Water: match Water: (

Water: x

Water: ) Island

%match ( )

Figure 6.6: The island-water ambiguity

single water, the disambiguation rule would be: prefer[Island], [Water]. Note
that in this case the ambiguity occurs under a node labeled Chunk.

prefer [Chunk(Island)],
[Chunk(Water), _*]

Listing 6.9: Resolving the island-water ambiguity

6.2.2 The Island-Island Ambiguity

Figure 6.7 shows the SPPF resulting from the parsing of input "match(x))".
The rewrite rule of Listing 6.9 has already been applied to the SPPF, thus
the island-water ambiguities are resolved.

As can be seen from Figure 6.7, an ambiguity has been occurred between a
collection of islands and water elements under two packed nodes. We call
this type of ambiguity the island-island ambiguity. Resolving the island-
island ambiguity is difficult, mainly because it depends on the semantics
of the language. For example, in Figure 6.7, the derivation under the left
packed node is preferred since it has well-balanced parentheses under its
island. Unfortunately, one cannot use our disambiguation syntax to check
the well-balancedness property. For this, a simple Tom program should be
written to manually check this. See Section 5.4 for details on how to attach
a handwritten Tom specification into the disambiguation process.

For this specific island-island ambiguity, one can also rewrite the grammar
to avoid the ambiguity. The idea is that we enforce the well-balancedness of
parentheses in the grammar itself. For this, the definition of Chunk* will be
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Program

Chunk_*

Chunk Chunk Chunk

Island Water: )

%match ( Chunk )

Water: x

Island

Chunk )

Water: )

Figure 6.7: The island-island ambiguity

changed to Chunk* ::= Water | "(" Water ")" | Island, and parentheses are removed
from the lexical definition of water. By these modifications, parentheses can
only be recognized as part of an island or "(" Water ")". With the new
grammar the input "%match())" does not yield any parses as parentheses are
not well-balanced in the water parts, but an input such as "%match() f()"
can be correctly parsed, without introducing island-island ambiguities. The
rewriting of the grammar approach is more limiting than pattern matching,
as it enforces more restriction on water elements.

A third way of selecting a derivation in the island-island ambiguity is to use
a heuristic. For this example, one can select the largest formed island, thus
selecting the derivation under the second packed node. The parser of the
host language will eventually complain about the unbalanced parenthesis.
This way, the island grammar’s parser does not assume anything about
the host language, and the check for well-balancedness of parentheses is
delegated to the host language’s parser

A second usage of island grammars is in reverse engineering, especially the
fact extraction from source code. Listing 6.10 gives an island grammar
definition for extracting integer definitions and assignments from C code.
The lexical definitions for Water, Integer, and Identifier is the same as in 6.8.
The example is taken from [36].
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context-free syntax

Program ::= Chunk*

Chunk ::= Water | Island

Island ::= "const" "int" Identifier
| Identifier "=" Integer

Listing 6.10: An island grammar for integer definitions and assignments

The SPPF corresponding to the parsing of "const int x = 1" is given in
Figure 6.8. The rewrite rule of Listing 6.9 has already been applied to the
SPPF, thus the island-water ambiguities are resolved. As shown in [36],
SDF’s prefer mechanism fails to resolve the island-water ambiguities in this
example.

Program

Chunk_*

Chunk Chunk Chunk Chunk Chunk Chunk

Water: const Water: int Island

Identifier: x = Integer: 1

Island Water: = Water: 1

const int

Figure 6.8: The island-island ambiguity resulting from parsing "const int x =
1"

As can be seen from Figure 6.8, under the left packed node, "x = 1" is
recognized as an island, while under the right packed node "const int x" is an
island. Again, the disambiguation of this island-island ambiguity depends on
the semantics. Here, we simply prefer an assignment over a definition. The
rewrite rule implementing this preference is shown in Listing 6.11. Using
this rewrite rule the ambiguity in Figure 6.8 can be resolved.

prefer [_*, Chunk(Island(Identifier, "=", Integer)), _*],
[_*, Chunk(Island("const", "int", Identifier)), _*]

Listing 6.11: Resolving the island-water ambiguity in Figure 6.11
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Chapter 7

Experiments

In this chapter we present the result of applying our disambiguation mech-
anism to three case studies. The first case is the grammar of arithmetic
expressions in Listing 5.8 and its associativity and priority relationships in
Listing 5.9 as disambiguation rules. The reason for selecting this grammar
was that it is fairly ambiguous, and more importantly, and we can eas-
ily control the number of ambiguities by increasing the size of input. The
second case is mCRL2 [10], a formal language for analysis of behavior of
systems. mCRL2 is a very ambiguous language, due to its many operators.
The last case is Tom, an embedded language within Java and other general-
purpose programming languages, providing advanced pattern matching and
tree traversal functionalities. The reason for selecting Tom was to evaluate
our disambiguation mechanism on island grammars. Tom has also been used
to implement the disambiguation mechanism in this thesis.

7.1 Arithmetic Expressions

For conducting the experiments on the grammar of arithmetic, we generated
random arithmetic expressions of different sizes and recorded the disam-
biguation results. The size of the generated examples ranges from 6 to 340
tokens, and in total 50 examples were executed. Moreover, the associativity
and priority rules were translated into 30 removal disambiguation rules.

Table 7.1 summarizes the obtained disambiguation results. The data is
divided into 10 categories, each represented by the average value for the
metrics. As can be seen, inputs with an average size of 20 are almost imme-
diately parsed and disambiguated. Even with 50 tokens, the total time for
parting and disambiguation is acceptable. Longer expressions are extreme
cases and rarely happen in practice.
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Input size Parsing Time Disambiguation Time (#)Ambiguity Nodes
20 153 70 47
53 514 866 334
88 1102 1455 944
124 1444 3663 1851
157 1852 7136 3001
198 2685 12733 4799
233 3614 18727 6597
263 4633 27816 8366
297 6278 42290 10814
329 8102 58310 13052

Table 7.1: The average disambiguation results. Times are in milliseconds
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Figure 7.1: The parsing and disambiguation times for arithmetic expressions

The parsing and disambiguation times are plotted in Figure 7.1. As can be
seen, as the size of input increases, and as result the number of ambiguity
nodes, the disambiguation time increases. In the future, we will present
a theoretical analysis of the complexity of our disambiguation mechanism.
Moreover, one of the reasons that the parsing time is relatively low is that
the grammar only has seven production rules, without any layout rules.
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7.2 mCRL2

The second case study is the grammar of mCRL2. The EBNF grammar
of mCRL2 can be found at mCRL2’s website [10]. The grammar is rather
large, with a significant number of operators. Converting the priority and
associativity rules has resulted in about 600 Tom rules. Besides, there were
a number of “Postfix Expressions with Guarded Children”, see Section 6.1.1,
ambiguities which have been manually resolved by rewrite rules. Another
important point about the grammar of mCRL2 was the presence of unary
operators with a prefix or postfix, i.e., A ::= α x A or A ::= A x α, where
α is a sequence of grammar symbols, and x, the operator is is a terminal
or nonterminal. The current translation technique in Section 5.3.2 cannot
be used to generate rules for such rules. Therefore, the rules concerning the
priority of unary and binary operators with a prefix or postfix are written
manually. The complete set of disambiguation rules for mCRL2 can be
found in Appendix E.
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Figure 7.2: The parsing and disambiguation times for mCRL2

We have parsed and disambiguated all mCRL2 files present in the the source
release of the software. In total 93 files have been parsed, ranging from 3
to 8037 tokens. Moreover the number of ambiguity nodes in the mCLRL2
example files ranges from zero to 897, with an average of 95 ambiguity nodes.
The result of this experiment is plotted in Figure 7.2. As can be seen the
disambiguation time for mCRL2 files is constant.
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7.3 Tom

The last case study is parsing the island grammar of Tom. The island
grammar is presented in Appendix F. Using the island grammar and its
disambiguation rules, we are able to parse most of the Tom programs from
the tom-examples package. This package, which is shipped with a source
distribution of Tom, contains more than 400 examples (for a total of 70,000
lines of code) showing how Tom is used in practice. The size of these ex-
amples varies from 24 lines of code (679 characters) to 1,103 lines of code
(30,453 characters).

The parsed examples which have a size of about 10,000 characters can be
parsed and disambiguated in less than one second, and the disambiguation
time of an instance is always lower than its parsing time. Moreover, from
what we have observed, the parsing time for Tom instances is linear. For
this study, we only focused on the core Tom examples, about 300 files. The
other examples were related to XML processing and were not considered.
The result of parsing the Tom examples is shown in Figure 7.3.
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Figure 7.3: The parsing and disambiguation times for Tom
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Chapter 8

JGLL Parser Generator

In this chapter we present JGLL, a parser generator for generating GLL-
based Java parsers. JGLL, written in Java and Tom, uses Gom-generated
data types. This provided us with a declarative way of performing differ-
ent transformation tasks using Tom. JGLL generates parsers, which are
based on an improved version of the GLL parsers presented in [24]. The
improvements include optimization in data structures and faster lexing.

The rest of this chapter is organized as follows. Section 8.1 presents the ar-
chitecture of JGLL. Next, in Section 8.2, we describe the interaction between
the parser and lexer in generated parsers. We also demonstrate how gener-
ated parsers can deal with the overlapping between tokens and tokens with
different types. We conclude this chapter by explaining the improvement in
the lexer implementation.

8.1 Architecture

The architecture of JGLL parser generator is shown in Figure 8.1. As can
be seen, A GLL parser is generated in six steps. The input to these steps is
an MEBNF specification for a language L, and the output is a GLL parser
for language L. The function of each step is described as follows:

1. EBNF Parser is a GLL parser for parsing MEBNF specifications. It
parses the provided syntax of a language and produces an SPPF. If the
syntax is not correct, an error message indicating the position where
the error happened is shown to the user, and the parser generation
process terminates.

2. SPPF2EBNF is a Tom specification translating the produced SPPF
from the previous step to an EBNF term, as shown in 3.1. The SPPF
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corresponding to parsing an MEBNF specification may be ambigu-
ous. The disambiguation is performed in this step. Furthermore, an
MEBNF specification has more information than context-free rules:
lexical rules are translated into regular expressions. disambiguation
rules and priorities into Tom rules, and EMF annotations into Java
classes which process annotations. See Chapter 10 for more informa-
tion on EMF integration.

3. LoadModules loads the imported modules from the loaded EBNF
term produced in the previous step. If a module is already loaded, it
will be reused. Otherwise, the process goes to Step 1, and the module
is loaded. When all the modules are loaded, modularity rules are
applied, and a EBNF term from all the loaded modules is produced.
As explained in Section 3.6, currently, all reachable nonterminals are
added to the importing module, without considering module names.

4. EBNF2BNF converts an EBNF specification to its equivalent BNF
specification. The conversion is performed according to Section 3.2.
Note that there is no explicit signature for BNF. An EBNF term
is transformed into another EBNF term without specific EBNF con-
structs. See Section 3.1 for more information.

5. BNFUtil extracts first and follow sets, among other required infor-
mation, from the provided BNF term. These information are fed into
parser generator.

6. Parser Generator generated a Java parser and related components,
such as lexer and disambiguation rules, using the provided information
from Step 2 and 5. The generated parsers are in pure Java, and thus
there is no dependency to Tom.

8.2 Parsing with a separate Lexer

Our GLL implementation uses a separate lexer, which is very simple and is
driven by the parser. The lexer returns all possible token types seen at a
particular point of the input. The token types are explicitly requested by
the parser, and they may overlap. Being a top-down parser, GLL traverses
the rules of a grammar, and at each grammar position, decides whether
the tokens received from the lexer are relevant. This check is performed
by testing the received tokens against the first and follow sets of alternates.
All the relevant tokens at a position are consumed, and irrelevant ones are
simply ignored. With this strategy, GLL parsers with a separate lexer are
able to detect the overlapping between tokens and tokens with multiple
types. These features are essential in parsing embedded languages.
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EBNF2BNF BNFUtil

EBNF Parser

SPPF

SPPF2EBNF LoadModules

Parser 
Generator

First sets
Follow sets

EBNF term

Load Modules

EBNF term

BNF term

Regular expressions
Disambiguation rules

Figure 8.1: The architecture of the JGLL parser generator

As an example, consider the rules from Listing 6.8, which describes the
starting rules of an island grammar. The generated parsing code for choosing
between an Island or Water is shown in Listing 8.1.

1 private void parse_Chunk_Label() {
2 i f (test(lexer.get(ci, "%match"))) {
3 add(Water_Label, cu, ci, SPPFNode.DUMMY);
4 }
5 i f (test(lexer.get(ci, "Water"))) {
6 add(Island_Label, cu, ci, SPPFNode.DUMMY);
7 }
8 label = 0;
9 }

Listing 8.1: A Java function associated with

The test method in Listing 8.1 checks whether the set of tokens returned by
the lexer is not empty. The first parameter of this method,ci, denotes the
current input position, and the second parameter is the token type. The add
method creates a descriptor for processing a grammar label. In Listing 8.1,
if the first if at Line 2 evaluates to true, the grammar label corresponding
to Water, Water_Label is added to the set of descriptors. Similarly, at Line 6,
the label for processing Island is added.

Let us consider the input %match. When the parser executes the parse_Chunk_Label
method, it requests two different token types: the keyword %match and Water.
As Lexer can match both token types, returning %match and %, respectively,
both island and water nonterminals will be processed. This example shows
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how overlapping between tokens can be recognized using a separate lexer.

For showing how a GLL parser with a separate lexer treats tokens with differ-
ent types, we use the grammar in Listing 8.2, which defines an if statement.
In this grammar, keywords are not reserved.

context-free syntax

Program ::= S*
S ::= "if" E "then" S
S ::= E "=" E

lexical syntax

E ::= [a-z]+

Listing 8.2: A grammar for if statements without reserved keywords

The input "if if then then = if" can be successfully parsed, without introducing
any ambiguity. The parse tree corresponding to this string is shown in
Figure 8.2. Other parses, in which the second "if" has been interpreted as
the beginning of an if statement, were unsuccessful.

S

if E: if then S

E: then = E: if

Figure 8.2: Parse tree for "if if then then = if"

GLR parsers cannot deal with such cases without additional help. For ex-
ample, in the Schrödinger’s Token method [15], it is shown how to modify
the lexer to report the type of a token with multiple types as the Schrödinger
type, which is in fact a meta type representing all the actual types. When
the parser receives a Schrödinger’s token, for each of its actual types, parsing
will be continued in parallel.

Scannerless GLR parsers [38] can successfully deal with this example. In
scannerless parsing, there is no explicit lexer present, so the parser directly
works on the character level. This has the advantage of giving the parser
the opportunity to decide about the type of a token based on the context
in which the token’s characters appear. Scannerless parsing is a powerful
paradigm for dealing with tokens with multiple types and overlapping, but
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there are some disadvantages to this approach. First, because the parser
works on the character level, the size of the parse forest is bigger. Second,
in recognizing sequence of characters as a token, ambiguities may occur. For
example, the string "if" can be interpreted as two tokens, "i" and "f", or a
single token "if". These ambiguities should be explicitly addressed. Using
GLL with a separate lexer, one does not require any specific treatment for
tokens which overlap or have different types. Our parser implementation is
as powerful as a scannerless parser, and at the same time, has the benefits
of a separate lexer.

8.3 Lexer Implementation

The original implementation of [24] used Java’s regular expression library as
the underlying implementation of the lexer. Our early investigations showed
that the lexer is a performance bottleneck. The reason is that Java’s regular
expressions is an NFA-based library, and as NFA-based regular expressions
use backtracking for matching a pattern, the matching may become very
slow. We replaced Java’s regular expression with dk.brics.automaton [25] regu-
lar expression library, which is a DFA-based. DFA-based regular expressions
do not provide features such as capturing groups, which are also not needed
for a lexer, but they can match a pattern linear in the length of a string,
independently of the complexity of the pattern. This led to a considerable
performance gain in the whole parsing process.

8.4 Attaching Custom Disambiguation Rules

In Section 6.2, we mentioned that one can resolve the island-island ambiguity
by using a custom Tom program. In this section, we show how to do this.
Listing 8.3 shows the Java code for parsing and disambiguating an input.
The parser in line 1 refers to an instance of a GLL parser. If parsing the
provided input was successful, i.e., the returned SPPF from the parse method
was not null in line 3, the disambiguation phase starts. Disambiguation rules
can be added to a BottomUpDisambigutor instance, as shown in Line 10 and 11. In
this example, two disambiguation rules are added. The disambiguate method,
in line 14, tries to disambiguate the SPPF using the provided rules. If the
rules could not successfully disambiguate an SPPF, an exception is thrown.
Otherwise, if the disambiguation was successful, the SPPF will only contain
symbol nodes. A non-ambiguous SPPF can be processed by any Java or
Tom programs.
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1 SymbolNode sppf = parser.parse(input);
2
3 i f (sppf == null) {
4 ParseError parseError = parser.getParseError();
5 System.out.println(parseError);
6 System.exit(1);
7 }
8
9 BottomUpDisambiguator disambiguator = new BottomUpDisambiguator();

10 disambiguator.addDisambiguationRule(new DisambiguationRule1());
11 disambiguator.addDisambiguationRule(new DisambiguationRule2());
12
13 try {
14 disambiguator.disambiguate(sppf);
15 } catch (DisambiguationFailure e) {
16 e.printStackTrace();
17 }

Listing 8.3: Needed steps for parsing and disambiguation

A custom disambiguator can be added to the disambiguator instance. To do
this, the user should implement the DisambiguationRule interface, shown in
Figure 8.4. The interface provides a single method, apply which takes an
SPPF node and disambiguates the subtree under it. This interface can be
implemented using pure Java or a combination of Java and Tom.

1 public interface DisambiguationRule {
2 public void apply(SPPFNode node);
3 }

Listing 8.4: The DisambiguationRule interface
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Chapter 9

The Eclipse Plugin

Modern IDEs such as IntelliJ IDEA [9] and Eclipse [3] provide sophisti-
cated environments for editing the source code of Java, and other general-
purpose programming languages. These environments provide editors capa-
ble of syntax highlighting, code completion, and live error reporting. Most
domain-specific languages, however, do not enjoy such tooling, as creating
similar environments for domain-specific languages is very expensive. It is,
therefore, desirable to generate such editing environment with a set of stan-
dard features, such as syntax highlighting, from a DSL’s specification. The
generated editor can be used as the basis for a full-fledged IDS for the DSL.

In this chapter we show how to create an Eclipse-based editor from a gen-
erated MEBNF grammar. The editor is based on the IDE Meta-Tooling
Platform (IMP) [18, 8]. IMP provides an automated, yet customizable
platform for creating Eclipse-based IDEs. In the rest of this chapter we first
introduce IMP in Section 9.1 and how it facilitates IDE development. Then,
in Section 9.2, the integration of GLL and IMP is explained. We conclude
this chapter by demonstrating some screenshots from an IDE for MEBNF.

9.1 IMP

IMP is an Eclipse project aiming at making the creation of IDEs for custom
languages easier. The ultimate goal of IMP is to provide a similar environ-
ment to Eclipse Java Development Tools (JDT) [4] for DSLs. IMP produces
an Eclipse plugin project with a set of IDE services, each providing a facility
such as syntax highlighting, code folding, and many other features found in
popular IDEs. IDE services rely on the Abstract Syntax Tree (AST) of a
language. IMP makes few assumptions about the type of AST nodes and
treat them as instances of Java java.lang.Object classes. This provides great
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flexibility in attaching custom parsers and AST node types.

The core part of an IMP plugin is a ParseController. A parser controller
implements a parse method which receives an string as input and returns
the root of the produced AST. The parse method is called by IMP at each
update of the editor, and the text in current active editor is provided as
input. Furthermore, a ParserController implements a getTokenIterator method
providing an iterator for the leaves of a parse tree. The produced AST or
iterator is then passed to different IDE services for further processing. After
the processing, IMP updates the UI components to reflect the changes.

From the set of IMP IDE services, we implemented the following IDE ser-
vices. The actual implementation of these services using a GLL parser is
presented in Section 9.2.

• Token Colorer or syntax highlighter provides the editor with infor-
mation to color a piece of text based on its token type. This service
uses the token iterator from the ParserController.

• Tree-Model Builder and Label Provider creates a labeled tree
from the AST. The labeled tree can, for example, be used in the outline
view, giving an overview of the structure of a program.

• Text Folding provides the editor with information to collapse a block
of code. An example is to fold Java methods in JDT.

9.2 Integrating GLL and IMP

In this section we discuss the technical details of integrating GLL parsers
with IMP. The examples in this section are from an editor for the MEBNF
syntax, i.e., an editor for editing MEBNF specifications.

9.2.1 Implementation of Parser Controller

Listing 9.1 shows a parse controller implementation for MEBNF. The class
extends ParseControllerBase which is provided by IMP as a base class for parse
controllers. The parse method, line 6, receives the input as an argument,
parses the input, and then disambiguates the resulting SPPF. If a parse er-
ror occurs, i.e., sppf == null, the handleSimpleMessage from the provided handler
object is called. This results in showing the error message in the editor win-
dow. As a produced SPPF may be ambiguous, it is disambiguated before
returning the root of the SPPF. If disambiguation fails, e.g., the correspond-
ing disambiguation rule is not present, an error is shown to the user, see line
20.
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1 public class MEBNFParseController extends ParseControllerBase {
2
3 private MEBNFParser parser;
4 private BottomUpDisambiguator disambiguator;
5
6 public Object parse(String input, IProgressMonitor monitor) {
7
8 SymbolNode sppf = parser.parse(input);
9

10 i f(sppf == null) {
11 ParseError error = parser.getParseError();
12 handler.handleSimpleMessage(error.toString(), error.getInputIndex(),
13 error.getInputIndex(), 0, 0, 0, 0);
14 return null;
15 }
16
17 try {
18 disambiguator.disambiguate(sppf);
19 } catch(DisambiguationFailure e) {
20 handler.handleSimpleMessage(e.toString(), e.getInputIndex(),
21 e.getInputIndex(), 0, 0, 0, 0);
22 }
23 fCurrentAst = sppf;
24 return sppf;
25 }
26
27 public Iterator<SymbolNode> getTokenIterator(IRegion region) {
28 i f(fCurrentAst == null) {
29 return null;
30 }
31 return SPPFUtil.getTerminalIterator((SPPFNode) fCurrentAst);
32 }

Listing 9.1: A parser controller implementation for MEBNF

The getTokenIterator method returns an java.util.Iterator instance from the
set of tokens. The set of tokens is calculated by SPPFUtil which is a Tom
program. Listing 9.2 shows how the getTokenIterator method is implemented.
As can be seen, a TopDown strategy is employed to gather all SPPF nodes
having no children, Line 13.

69



public static Iterator<SymbolNode> getTerminalIterator(SPPFNode node) {
List<SymbolNode> terminals = new ArrayList<SymbolNode>();
try {

`TopDown(GetTerminals(terminals)).visitLight(node, new SPPFIntrospector());
} catch (VisitFailure e) {

e.printStackTrace();
}
return terminals.iterator();

}

%strategy GetTerminals(list:List) extends Identity() {
visit SPPFNode {

s@SymbolNode(name, concNode()) -> { list.add(`s); }
}

}

Listing 9.2: Getting the token iterator using Tom

9.2.2 Token Coloring

Token coloring is done through the ITokenColorer interface, provided by IMP.
A language-specific class should implement the getColoring method of the
ITokenColorer interface in order to provide coloring rules for the tokens of the
language.

1 TextAttribute keywordAttribute = new TextAttribute(
2 display.getSystemColor(SWT.COLOR_DARK_MAGENTA),
3 null, SWT.BOLD);
4
5 TextAttribute commentAttribute = new TextAttribute(
6 display.getSystemColor(SWT.COLOR_DARK_GREEN),
7 null, SWT.NORMAL);
8
9 public TextAttribute getColoring(IParseController controller, Object o) {

10 i f (o == null) { return null; }
11
12 SymbolNode token = (SymbolNode) o;
13
14 i f(keywords.contains(token.getSymbolName())) {
15 return keywordAttribute;
16 }
17 i f("Comment".equals(token.getSymbolName())) {
18 return commentAttribute;
19 }
20 return super.getColoring(controller, token);
21 }

Listing 9.3: Token coloring for MEBNF’s keywords
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Listing 9.3 shows how this method is implemented for MEBNF’s keywords.
Line 1 and 5 declare text attributes specifying font properties such as color
and type. The implementation of the getColoring method begins at Line
9. The provided Object parameter to this method is the token to be colored.
The tokens are obtained through the MEBNFParseController in Listing 9.1.
Line 14 and 17 check the token type, by calling the method getSymbolName, and
select a text attribute accordingly. If no match is found, the default text
attribute is returned from Line 20.

9.2.3 Tree-Model Builder and Label Provider

IMP’s tree-model builder provides means for creating a tree model from the
AST. This tree, augmented by a label provider assigning a label to each node
of the tree-model, can be used to create an outline view for the source code.
An outline view provides a tree user interface for navigating the structure
of code. For example, in JDT, the outline view gives and overview of the
methods, constructors, and fields defined in a class.

A tree model in IMP is specified by instances of ModelTreeNode. A ModelTreeNode
is a simple Java object defining a tree node holding an AST node and keep-
ing references to its parent and children. To implement a tree model, the
AST should be traversed and the desired parts be added to a tree model.
For example, the Tom program in Listing 9.4 creates a tree model from
MEBNF’s lexical and context-free sections.

ModelTreeNode root = new ModelTreeNode(node);

%match(node) {

SymbolNode("Section",
concNode(_*, section@SymbolNode[name="ContextFreeSection"], _*)) -> {

ModelTreeNode m = new ModelTreeNode(`section);
root.addChild(m);

}

SymbolNode("Section",
concNode(_*, section@SymbolNode[name="LexicalSection"], _*)) -> {

ModelTreeNode m = new ModelTreeNode(`section);
root.addChild(m);

}

Listing 9.4: Creating tree models from MEBNF’s AST

In Listing 9.4, node refers to a SPPF node having the label Section, cor-
responding to the Section nonterminal in Listing 3.2. A ModelTreeNode named
root holding the root node of AST. The match construct, matches the SPPF
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nodes, and if a node labeled ContextFreeSection or LexicalSection is found, a new
ModelTreeNode holding the matched section is created. The newly created child
tree model object is added to the root node as a child.

9.2.4 Text Folding

The text folding service is provided by IMP’s FolderBase class. To provide
language-specific text folding, the sendVisitorToAST method of the Folder class
should be implemented. In the implemented method, AST nodes associated
with foldable blocks should be passed to makeAnnotation(). Listing 9.5 shows
how to add make MEBNF’s sections foldable. The provided ast is the root
of AST. In this example, we only need to examine direct children of the root
node. Therefore, a simple for loop suffices. For complex, nested text folding,
one should examine deeper nodes in the AST.

1 public class MEBNFFoldingUpdater extends FolderBase {
2
3 protected void sendVisitorToAST(HashMap<Annotation, Position> newAnnotations,
4 List<Annotation> annotations, Object ast) {
5
6 for (SPPFNode child : ((SPPFNode) ast).getChildren()) {
7
8 SymbolNode node = (SymbolNode) child;
9 i f(node.getSymbolName().equals("Section")) {

10 makeAnnotation(node);
11 }
12 }
13 }
14 }

Listing 9.5: Making MEBNF’s sections foldable

9.3 An IDE for MEBNF

In this section we show a number of screenshots from an IMP-based Eclipse
plugin for MEBNF. Figure 9.1 shows an overview of the plugin. As can be
seen, the plugin provides syntax highlighting, an outline, and text folding.
In the figure, the Declaration node in the outline view is selected, and as a
result, the Declaration nonterminal in the editor is highlighted. In addition,
the annotations associated with the alternates of Statement are folded.

Error messages appear in the editor as a parse error occurs. For example,
Figure 9.2 shows a parse error caused by inserting a character t after the
definition of the Program nonterminal.
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Figure 9.1: An overview of an IMP-based Eclipse plugin for MEBNF.

Figure 9.2: Error messages appear in the editor as soon as a parse error
occurs

73



Chapter 10

EMF Model Generation

One of the initial goals of this project was to provide a mapping from parse
trees to EMF models. The first effort lead to the thesis “mlBNF: A syntax
formalism for domain-specific languages” [24]. The thesis describes a syntax
formalism for defining domain-specific languages, in BNF, and provides a
mapping to EMF models through annotations. Two shortcomings of mlBNF,
no EBNF support and no disambiguation mechanism, have been addressed
in this work. Together with the Eclipse plugin introduced in Chapter 9,
we provide a viable alternative to the state of the art tools in the area of
metamodeling and concrete syntax, such as XText [13] and EMFText [6].

In this chapter, we introduce a revised version of the annotations in [24]
for defining the mappings to EMF. The annotations, resembling attribute
grammars, define how an SPPF should be evaluated to create corresponding
EMF models. The revised annotations and an example of how they can
be used is given in Section 10.1. The EBNF support and disambiguation
mechanism impose difficulties in the evaluation of annotations. We conclude
this chapter by discussing these implementation challenges in Section 10.2.

10.1 Concrete Syntax for Annotations

For defining a mapping from an SPPF to EMF models, we provide the
concrete syntax of MEBNF, shown in Listing 3.3, with an annotation facility.
For this, an Annotations nonterminal is added to each context-free rule. In
addition, a separate import type, for importing meta-models, and a label
for symbols of the grammar is provided. The labels are used during the
evaluation of annotations to access a specific part of the parse tree. The
resulting grammar from these changes is shown in Listing 10.1.
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Import ::= "import" ModuleName Retract*
| "import" "meta-model" NameSpace "=" URI

ContextFreeRule ::= Nonterminal "::=" Symbol* Annotations?
("|" Symbol* Annotations?)*

Annotations ::= "{" (Annotation ("," Annotation)*)? "}"

Symbol ::= (Label ":")? Nonterminal

Listing 10.1: Augmenting the MEBNF concrete syntax with annotation
support

The rules defining an Annotation itself are given in Listing 10.2. As can be
seen, each alternate of a nonterminal can be annotated with one of the six
provided annotation types. An annotation starts with its name, followed by
a set of parameters, denoted by Name.

context-free syntax

Annotation ::= Class | Attribute | Reference | DataType | Enum | Propagate

Class ::= "class" "(" Name ( "::" Name )+ ")"
Attribute ::= "attribute"
"(" (LiteralAttribute | ReferenceAttribute | EnumAttribute) ")"
LiteralAttribute ::= Name "," String
ReferenceAttribute ::= Name "," Name
EnumAttribute ::= Name "," Name "::" Name ( "::" Name )* "#" Name
Reference ::= "reference" "(" Name "," Name ")"
DataType ::= "type" "(" Name ("::" Name)+ ")"
Enum ::= "enum" "(" Name "::" Name ( "::" Name )* "#" Name ")"
Propagate ::= "propagate" "(" Name ")"

lexical syntax

Name ::= Id

Listing 10.2: Concrete syntax for defining annotations
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1 import meta-model expr = 'http://arithmetics/1.0/'
2 import meta-model ecore = 'http://www.eclipse.org/emf/2002/Ecore'
3
4 E ::= lhs:E "+" rhs:E
5 {
6 class(expr::BinaryExpression),
7 reference(leftHandSide, lhs),
8 reference(rightHandSide, rhs),
9 attribute(operator, expr::BinaryOperators::ADDITION)

10 }
11 | lhs:E "-" rhs:E
12 {
13 class(expr::BinaryExpression),
14 reference(leftHandSide, lhs),
15 reference(rightHandSide, rhs),
16 attribute(operator, expr::BinaryOperators::SUBTRACTION)
17 }
18 | lhs:E "*" rhs:E
19 {
20 class(expr::BinaryExpression),
21 reference(leftHandSide, lhs),
22 reference(rightHandSide, rhs),
23 attribute(operator, expr::BinaryOperators::MULTIPLICATION)
24 }
25 | lhs:E "/" rhs:E
26 {
27 class(expr::BinaryExpression),
28 reference(leftHandSide, lhs),
29 reference(rightHandSide, rhs),
30 attribute(operator, expr::BinaryOperators::DIVISION)
31 }
32 | "-" expr:E
33 {
34 class(expr::UnaryExpression),
35 reference(expression, expr),
36 attribute(operator, expr::UnaryOperators, MINUS)
37 }
38 | lhs:E "^" rhs:E
39 {
40 class(expr::BinaryExpression),
41 reference(leftHandSide, lhs),
42 reference(rightHandSide, rhs),
43 attribute(operator, expr::BinaryOperators::EXPONENTIATION)
44 }
45 | number:Number
46 {
47 class(expr::IntegerExpression),
48 attribute(value, number)
49 }
50
51 Number ::= Digit { type(ecore::EBigInteger) }

Listing 10.3: EMF mapping annotations for arithmetics expressions
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Listing 10.3 shows the EMF mapping for the grammar of arithmetic expres-
sions, shown in Listing 5.8. In lines 3 and 4, two meta-models are imported.
Imported meta-models have a namespace, which can be used to refer to them
in annotations. The imported meta-models, the Arithmetics meta-model,
shown in Figure 10.1, and the standard Ecore EMF meta-model, is used to
instantiate EMF models.

Figure 10.1: The Arithmetics meta-model

In lines 4-50, the alternates of E are defined. The first alternate contains
three annotations. The class annotation in line 6 is used to instantiate
the class BinaryExpression from the Arithmetics meta-model, indicated by the
meta-model’s namespace, expr before ::. In lines 8 and 9, reference annota-
tions are used to instantiate references of an instance of the BinaryExpression
class. Reference annotations take two parameters. The first parameter is a
meta-model reference identifier, and the second one is a symbol label. The
meta-model reference identifier is used to refer to a reference of a meta-class.
The symbol label is used to indicate the part of the parse tree corresponding
to the alternate of a context-free rule. This part of the tree should be tra-
versed and evaluated. The meta-model reference will then be instantiated
with the result of this traversal. For the reference annotation in line 7, the
leftHandSide reference from the BinaryExpression class is instantiated with
the value of the traversal of the tree corresponding to lhs.

The attribute annotation in line 10 is used to instantiate the operator attribute
of an instance of the BinaryExpression class. There are three kinds of at-
tribute annotations. 1) Enumeration attribute annotations, instantiating an
attribute of a class instance with an enumeration value, literal attribute an-
notations, instantiating an attribute with a literal value, and 3) reference
attribute annotations, instantiating an attribute with the result of a traver-
sal. The attribute annotation in line 10 is an example of an enumeration
attribute annotation. The literal Addition of the BinaryOperators enumeration
is assigned to the operator attribute of the BinaryExpression class. An example
of a reference attribute annotation is given in line 48.
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Line 51 shows the usage of a datatype annotation, denoted by type. Datatype
annotations indicate that the result of evaluation of a tree is casted to the
indicated data type. In this case, the literal value of a Number is casted to
a EBigInteger, which is a standard Ecore datatype. As a result, the value
attribute of an instance of an IntegerExpression, as defined in lines 45-59,
is instantiated with an instance of EBigInteger. The enum and propagate
annotations are not discussed here. For more information on how to use
these annotations, see [24]. Moreover, as another example, an ambiguous
version of the Pico language grammar, written in EBNF, and its mapping
to EMF is provided in Appendix D. The pico example has also been used
in [24]. Therefore it can be used for comparing the new and old versions of
mappings to EMF.

10.2 Implementation

As explained in Section 2.2, the SPPF keeps the information related to
grammar positions in packed nodes. These information are essential in re-
trieving the labels and annotations of nodes for the conversion of an SPPF
to an EMF model. In our disambiguation mechanism, we remove the packed
nodes and intermediate nodes which are not part of an ambiguity node. This
removal leads to the loss of position information in an SPPF. To overcome
this, we move the grammar position information from the packed nodes,
which should be removed, to appropriate symbol nodes.

A packed node can be removed only if its the only child. If a packed node has
packed node siblings, it is part of an ambiguity node, and will be removed
after disambiguation. When a packed node is removed, its grammar position
information is added to its parent symbol node. This information is used
later to add retrieve the labels and annotations for the symbol nodes.

In principle, the label of a symbol node is retrieved using the position infor-
mation of its parent, while the annotation information come from its child.
We, however, move the position information of a packed node to its parent,
and not its child. The reason is that symbol nodes may be shared and we
cannot simply push down the position information to all the children. This
leads a symbol node having multiple positions. After ambiguities are re-
solved, and a correct derivation has been chosen, we can retrieve the labels
of a symbol node using the information from its parent. In an unambiguous
SPPF, only some ϵ nodes can be shared. Moreover, we remove the ϵ nodes
during while removing intermediary EBNF nodes, see Section 3.2. As a
result, in an unambiguous SPPF, each symbol node has only one parent.
Furthermore, the annotations are retrieved from the position information of
a symbol node itself.
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Another important implementation note is how to treat intermediary EBNF
nodes. These nodes, similar to any other symbol node, contain the position
information after the removal of unnecessary packed and intermediate nodes.
Therefore, while removing the EBNF intermediary nodes, in Section 3.2, the
position information should be pushed down to their children, so that their
corresponding labels and annotations can be retrieved.

After the label and annotation information are added to symbol nodes of
an unambiguous SPPF, one can traverse the SPPF, using Java or Tom, and
generate models using these information. The generation of models from an
annotated SPPF is basically the same as in [24].
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Chapter 11

Future Work

In this chapter we discuss how the work presented in this thesis can be
extended in the future. Each section discusses a possibility of improving
this work, or introduces a new idea for future research, based on what have
already been done.

11.1 Extending the syntax of disambiguation rules

The presented syntax for disambiguation rules in Section 5.2 can be extended
to support more complicated patterns. The following extensions to this
syntax is desirable.

• EBNF style modifiers, such as ?, ∗, + for matching specific numbers
of terminals and nonterminals.

• A depth search operator for matching pattens in arbitrary depth of an
SPPF.

• A not follow operator, disallowing a specific sequence of terminals and
nonterminals in an SPPF.

11.2 A Framework for Parsing Language Embed-
dings

Parsing language embeddings and extensions poses a considerable challenge
from the parsing point of view. One of our goals in developing GText, and
its disambiguation mechanism, was to provide an environment to facilitate
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experimenting with hard, ambiguous grammars, such as grammars of lan-
guage embeddings. In this thesis we showed how to parse Tom, using island
grammars, and disambiguate it, using term rewriting within the SPPF. In
the future, this approach should be tested on other language combinations,
such as Java+SQL and Java+XML. The ultimate goal is to provide a generic
framework for language extensions. Using GLL to parse layout-sensitive
languages, which is another difficult parsing topic, is another possibility for
future work.

11.3 Embedding Precedence and Associativity Rules
Inside the Parser

Grammars with recursive binary and unary operators, such as the grammar
of mCRL2, considerably slow down the performance of parsing. For these
specific ambiguities, which often occur in practice, we should try to perform
the disambiguation while parsing, and disallow the accumulation of am-
biguity nodes in the first place. One possible approach for disambiguating
binary and unary operators while parsing is to use more look ahead symbols,
i.e., implementing GLL(k) parsers. It is, however, not clear how more look
ahead symbols will affect the complexity of GLL. Another possible approach
is to internally transform the grammar of binary operators to an equivalent
unambiguous grammar. This approach will produce different parse trees
than expected by the user. Therefore, one should provide a mechanism
to transform parse trees corresponding to unambiguous grammars into the
parse trees of the original ambiguous grammar.

11.4 Improving the Modularity in MEBNF

As discussed in Section 3.6, both modularity paradigms, importing with and
without considering the namespace, have their own shortcomings. While im-
porting by considering module names allows two nonterminals with the same
name in two modules be totally separated, it does not allow grammar ex-
tension. On the other hand, importing without preserving the namespace,
may lead to unexpected results, as the production rules of all nonterminals
with the same name will be merged. A better approach may be the combi-
nation of these two import mechanisms, using separate import commands.
Improving the modularity mechanism is of high priority in future work.
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11.5 Performance Improvements

Our GLL implementation is not thoroughly optimized. Specifically, the
SPPF construction phase has shown performance problems while construct-
ing parse forests for fairly ambiguous grammars, e.g., for the grammar of
mCRL2 which uses a considerable number of binary and unary operators.
Moreover, we have not yet tested our GLL implementation with consider-
ably large grammars, e.g., the grammar of Java. Such large grammars will
likely cause performance problems, as their SPPF will grow very large. An
important part of future work will be the optimization of our GLL imple-
mentation.

11.6 Error Recovery for GLL Parsers

Chapter 4 introduces a simple error reporting mechanism, which works fairly
well. The current mechanism can report the location of a parse error and
the grammar pointer where the error occurred. The mechanism, however,
provides no help in recovering from the error. A possible research path for
the future can be the development of error recovery mechanisms for GLL
parsers. In addition, a study should be conducted on the use of complex
heuristics in detecting the location of parse errors.

11.7 Improving the Eclipse Plugin for MEBNF

The Eclipse plugin presented in Chapter 9 is just a proof of concept, and
not much effort has put into making it usable for production use. More-
over, some essential features such as hyperlinking and building is missing.
With hyperlinking, the user can, for example, jump to a nonterminal def-
inition by clicking on the nonterminal name in the body of a context-free
rule. In addition, hyperlinking should support modularity, e.g., clicking
on a nonterminal, defined in another module, should open the module and
show the nonterminal definition. A building service for MEBNF can com-
pile the parsed MEBNF files and provide semantic errors, e.g., reporting
nonterminals which do not have a definition.

A next step after completing the Eclipse plugin for EMBNF would be the
automatic generation of Eclipse plugins for MEBNF grammars. A default
set of features such as syntax highlighting and error reporting should be
provided. In addition, the generated plugin should be easily customizable,
so that the user can augment the generated plugin with language-specific
features.
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11.8 Parse Tree Visualization in Eclipse

In order to make the process of developing languages easier, a parse tree
visualization should be integrated into the Eclipse plugin for MEBNF. Cur-
rently, we generate a GraphViz dot [7] file from an SPPF and then manually
generate a graph from the dot file. This process is slow, and more impor-
tantly, the produced graph is a large image, thus cannot be rearranged or
filtered. It will be a very useful feature to provide an Eclipse-based SPPF
visualization tool, capable or filtering nodes, e.g., removing layout nodes,
showing ambiguity nodes, and rearranging SPPF nodes.

11.9 Scala Support

As shown in Section 8.4, the SPPF mapping in Appendix B can be used to
write arbitrary disambiguation or SPPF processing code in Tom. Tom is
a very powerful term rewriting and pattern matching language. However,
it is not a major language and not many developers know Tom. Moreover,
the tooling for Tom is far from perfect. Scala, a Java Virtual Machine
language, provides identical term rewriting features to Tom, and is becoming
a mainstream language. It will be essential for the widespread usage of our
workbench to provide Scala support, next to Tom and Java support, for
SPPF processing.
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Chapter 12

Conclusions

In this thesis we presented Gtext, a language workbench based on GLL and
term rewriting. Gtext is composed of three main components. The first
component is the JGLL parser generator, introduced in Chapter 8, being
used to generate Java-based GLL parsers. JGLL is based on the presented
context-free syntax formalism, MEBNF, introduced in Chapter 3. The sec-
ond component is the Eclipse plugin, presented in Chapter 9, providing an
environment for editing MEBNF grammars. In the future, we plan to gen-
erate Eclipse plugins with a basic set of features, such as syntax highlight-
ing, from an MEBNF specification. The third component of our language
workbench is the mapping of concrete syntax to EMF models, through the
annotations introduced in Chapter 10.

The main research question in this thesis was how to disambiguate an SPFF,
produced by a GLL parser. In Chapter 5 we introduced our disambigua-
tion mechanism which is based on rewriting within the parse forest, without
modifications in the parser. We provided real-world hard cases which can
be disambiguated with our technique in Chapter 6. To validate our disam-
biguation mechanism, we used three case studies in Chapter 7. The results
of these case studies suggest that our disambiguation mechanism is suitable
for ‘real’ languages with a reasonable number of ambiguities. With further
optimizations in the parser, and embedding the priority and associativity
rules within the parser, we expect to obtain performance improvements in
the future.

Gtext, as presented in this thesis, is a prototype of a language workbench,
and there is still a long way to prepare it for production use. Nevertheless,
this thesis provided the basis for developing a language workbench based on
GLL. With work that will be done in the future, we hope that one day we
introduce Gtext as a mainstream language workbench.
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Appendix A

MEBNF’s Concrete Syntax

module MEBNF

import Annotations
import Disambiguation
import Basics

start symbol Module

context-free syntax

Module ::= "module" ModuleName Import* StartSymbolSection? Section*

Import ::= "import" ModuleName Retract* | "import" "meta-model" NameSpace "=" URI

Retract ::= "retract" (ContextFreeRule | LexicalRule)*

Section ::= LexicalSection | ContextFreeSection | DisambiguationSection

StartSymbolSection ::= "start" "symbol" Nonterminal

ContextFreeSection ::= "context-free" "syntax" ContextFreeRule*

ContextFreeRule ::= Nonterminal "::=" Symbol* ("|" Symbol*)*

Symbol ::= Symbol "*"
| Symbol "+"
| Symbol "?"
| Keyword
| Nonterminal
| "(" Alt ")"

Alt ::= Alt "|" Alt
| Symbol+

LexicalSection ::= "lexical" "syntax" LexicalRule*

LexicalRule ::= Nonterminal "::=" RegularExpression LexicalExclusion?

LexicalExclusion ::= "-/-" "{" RegularExpression
("," RegularExpression)* "}"
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RegularExpression ::= RegularExpression RegularExpression
| RegularExpression "|" RegularExpression
| RegularExpression "*"
| RegularExpression "+"
| RegularExpression "?"
| "(" RegularExpression ")"
| Nonterminal | Keyword | CharClass | "."

CharClass ::= "[" Not? Character+ "]"

Character ::= Char
| EscapedChar
| WordChar "-" WordChar
| Digit "-" Digit

lexical syntax

Label ::= Id
ModuleName ::= Id
Name ::= Id
URI ::= ['][^']*[']
Char ::= . -/- {[\\], [\-], [\ ], [\t], [\r], [\n], [\[], [\]], [\^], [\.]}

Nonterminal ::= Id -/- { "lexical", "context-free", "syntax",
"module", "import",
"start", "retract", "symbol" }

Keyword ::= String
EscapedChar ::= [\\][\\ \- \ t r n \[ \] \^ \.]
WordChar ::= [a-zA-Z]
Not ::= [\^]

layout syntax

Whitespace ::= [\ \t \n \r]+
Comment ::= [/][/][^\r\n]*

Listing A.1: The MEBNF module

module Annotations

import Basics

start symbol Annotation

context-free syntax

Annotation ::= Class | Attribute | Reference | DataType | Enum | Propagate

Class ::= "class" "(" Name ( "::" Name )+ ")"

Attribute ::= "attribute"
"(" (LiteralAttribute | ReferenceAttribute | EnumAttribute) ")"

LiteralAttribute ::= Name "," String

ReferenceAttribute ::= Name "," Name

EnumAttribute ::= Name "," Name "::" Name ( "::" Name )* "#" Name

Reference ::= "reference" "(" Name "," Name ")"
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DataType ::= "type" "(" Name ("::" Name)+ ")"

Enum ::= "enum" "(" Name "::" Name ( "::" Name )* "#" Name ")"

Propagate ::= "propagate" "(" Name ")"

lexical syntax

Name ::= Id

Listing A.2: The Annotations module

module Disambiguation

import Basics

start symbol DisambiguationSection

context-free syntax

DisambiguationSection ::= "disambiguation" "rules" Rules*

Rule ::= "remove" PackedNode
| "prefer" PackedNode "," PackedNode

PackedNode ::= "[" (SymbolNode | Any) ("," (SymbolNode | Any) )* "]"

SymbolNode ::= SymbolName
| SymbolName "(" ( SymbolNode | Any) ("," (SymbolNode | Any) )* ")"

lexical syntax

Any ::= [_][*]?
SymbolName ::= String | Id

Listing A.3: The Disambiguation module

module Priorities

import Basics

start symbol PrioritiesSection

context-free syntax

PrioritiesSection ::= "associativity" "and" "priority" Group*

Group ::= "{" (AssociativityGroup (">" AssociativityGroup)*)? "}"

AssociativityGroup ::= (Modifier ":")? OperatorRule ("," OperatorRule)*

OperatorRule ::= BinaryOperatorRule | LeftUnaryOperatorRule | RightUnaryOperatorRule
BinaryOperatorRule ::= Head "::=" Operand Operator? Operand
LeftUnaryOperatorRule ::= Head "::=" Operator Operand
RightUnaryOperatorRule ::= Head "::=" Operand Operator

Operator ::= String | Id

lexical syntax
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Head ::= Id
Operand ::= Id
Modifier ::= "left" | "right"

Listing A.4: The Priorities Module

module Basics

context-free syntax

lexical syntax

Id ::=[a-zA-Z][a-zA-Z0-9\-_]*
Digit ::= [0-9]+
String ::= ["]([^"\\]|[\\]["trnu\\])*["]

Listing A.5: The Basics module
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Appendix B

Tom mapping for SPPF

%include {int.tom}

%typeterm SPPFNode {
implement { nl.tue.win.set.jgll.sppf.SPPFNode }
is_sort(t) { $t instanceof nl.tue.win.set.jgll.sppf.SPPFNode }
equals(t1,t2) { ($t1.equals($t2)) }

}

%op SPPFNode SymbolNode(name:String, children:NodeList) {
is_fsym(t) { ($t instanceof nl.tue.win.set.jgll.sppf.SymbolNode) }
get_slot(name,t) { ((SymbolNode)$t).getSymbolName() }
get_slot(children,t) { ($t.getChildren()) }

}

%op SPPFNode PackedNode(children:NodeList) {
is_fsym(t) { ($t instanceof nl.tue.win.set.jgll.sppf.PackedNode) }
get_slot(children,t) { ($t.getChildren()) }

}

%op SPPFNode IntermediateNode(children:NodeList) {
is_fsym(t) { ($t instanceof nl.tue.win.set.jgll.sppf.IntermediateNode) }
get_slot(children,t) { ($t.getChildren()) }

}

%typeterm NodeList {
implement { java.util.List<nl.tue.win.set.jgll.sppf.SPPFNode> }
is_sort(t) { $t instanceof java.util.List<?> }
equals(l1,l2) { $l1.equals($l2) }

}

%oplist NodeList concNode(SPPFNode*) {
is_fsym(l) { ($l!= null) && ($l instanceof java.util.List<?>) }
make_empty() { new java.util.LinkedList<nl.tue.win.set.jgll.sppf.SPPFNode>() }
make_insert(o,l) { concListAppend($o,$l) }
get_head(l) { $l.get(0) }
get_tail(l) { concListgetTail($l) }
is_empty(l) { ($l.size()==0) }

}

private static <T> java.util.List<T> concListAppend(T o, java.util.List<T> l) {
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java.util.List<T> res = new java.util.LinkedList<T>(l);
res.add(0,o);
return res;

}

private static <T> java.util.List<T> concListgetTail(java.util.List<T> l) {
java.util.List<T> res = new java.util.LinkedList<T>(l);
res.remove(0);
return res;

}
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Appendix C

An Introspector for SPPF
mapping

1 package nl.tue.win.set.jgll.sppf;
2
3 import tom.library.sl.Introspector;
4
5 public class SPPFIntrospector implements Introspector {
6
7 @Override
8 public Object getChildAt(Object o, int i) {
9 return ((SPPFNode) o).getChildren().get(i);

10 }
11
12 @Override
13 public int getChildCount(Object o) {
14 return ((SPPFNode) o).getChildren().size();
15 }
16
17 @Override
18 public Object[] getChildren(Object o) {
19 return ((SPPFNode) o).getChildren().toArray();
20 }
21
22 @SuppressWarnings("unchecked")
23 @Override
24 public Object setChildAt(Object o, int i, Object child) {
25 return o;
26 }
27
28 @SuppressWarnings("unchecked")
29 @Override
30 public Object setChildren(Object o, Object[] children) {
31 return o;
32 }
33 }
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Appendix D

An Ambiguous Pico
Grammar in EBNF

module Pico

import meta-model pico = 'http://pico/1.0/base'
import meta-model ecore = 'http://www.eclipse.org/emf/2002/Ecore'

start symbol Program

context-free syntax

Program ::= "begin" "declare" (declarations:Declaration ("," declarations:Declaration)*)? ";" statements:Statement* "end"
{

class(pico::Program),
reference(declarations, declarations),
reference(statements, statements)

}

Declaration ::= id:PicoID ":" type:PicoType
{

class(pico::Declaration),
attribute(name, id),
attribute(type,type)

}

PicoType ::= "string" { enum(pico::Types#Natural) }
| "natural" { enum(pico::Types#MyString) }

Statement ::= id:PicoID ":=" expr:Expr ";"
{

class(pico::AssignStatement),
attribute(name,id),
reference(expression,expr)

}

| "while" "(" condition:Expr ")" "do" body:Statement* "end"
{

class(pico::LoopStatement),
reference(condition,condition),
reference(body,body)
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}

| "if" "(" condition:Expr ")" "then" if:Statement* "end"?
{

class(pico::ConditionalStatement),
reference(condition,condition),
reference(trueBranch,if)

}

| "if" "(" condition:Expr ")" "then" if:Statement* "else" else:Statement* "end"?
{

class(pico::ConditionalStatement),
reference(condition,condition),
reference(trueBranch,if),
reference(falseBranch,else)

}

Expr ::= natcon:PicoNatCon
{

class(pico::pico_expressions::NaturalExpression),
attribute(value,natcon)

}
| strcon:PicoStrCon

{
class(pico::pico_expressions::StringExpression),
attribute(value,strcon)

}
| id:PicoID

{
class(pico::pico_expressions::VariableReference),
attribute(name,id)

}

| lhs:Expr operator:Plus rhs:Expr
{

class(pico::pico_expressions::BinaryExpression),
attribute(operator,operator),
reference(lhs,lhs),
reference(rhs,rhs)

}

| lhs:Expr operator:Minus rhs:Expr
{

class(pico::pico_expressions::BinaryExpression),
attribute(operator,operator),
reference(lhs,lhs),
reference(rhs,rhs)

}

| lhs:Expr operator:Concat rhs:Expr
{

class(pico::pico_expressions::BinaryExpression),
attribute(operator,operator),
reference(lhs,lhs),
reference(rhs,rhs)

}
| "(" expr:Expr ")"

{
propagate(expr)

}
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Plus ::= "+" { enum(pico::pico_expressions::Operators#Addition) }

Minus ::= "-" { enum(pico::pico_expressions::Operators#Subtraction) }

Concat ::= "||" { enum(pico::pico_expressions::Operators#Concatenation) }

PicoID ::= Id { type(ecore::EString) }
PicoStrCon ::= StrCon { type(ecore::EString) }
PicoNatCon ::= NatCon { type(ecore::EIntegerObject) }

lexical syntax

Id ::= [A-Za-z][A-Za-z0-9]*
NatCon ::= [0-9]+
StrCon ::= ["]([^"\\]|[\\]["trnu\\])*["]

layout syntax

Whitespace ::= [\ \t \n \r]+
MultilineComment ::= [/][*]([^*]|[*]+[^/*])*[*]+[/]
SingleLineComment ::= [/][/][^\r\n]*

disambiguation rules

prefer ["if", "(", Expr, ")", "then", _*],
["if", "(", Expr, ")", "then", _*, "else", _*]

prefer [Statement("if", "(", Expr, ")", "then", Statement), _*],
[Statement("if", "(", Expr, ")", "then", Statement, _*)]

associativity and priority
{
left: Expr ::= Expr Concat Expr >
left: Expr ::= Expr Minus Expr, Expr ::= Expr Plus Expr
}
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Figure D.1: A metamodel for Pico
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Appendix E

Disambiguation rules for
mCRL2

disambiguation rules

remove [ProcExpr("sum", VarsDeclList, ".", ProcExpr), ".", ProcExpr]

remove ["sum", VarsDeclList, ".", ProcExpr(ProcExpr, "+", ProcExpr)]

remove [ProcExpr("sum", VarsDeclList, ".", ProcExpr), "|", ProcExpr]

remove [ProcExpr("sum", VarsDeclList, ".", ProcExpr), "@", DataExprUnit]

remove [DataExpr(DataExpr, _, _, DataExpr), "(", DataExprList, ")"]

remove [DataExpr("lambda", VarsDeclList, ".", DataExpr), _*]

remove [ProcExpr(DataExprUnit, "->", ProcExpr), ".", ProcExpr]

remove [ProcExpr(DataExprUnit, "->", ProcExpr), "@", DataExprUnit]

remove [ProcExpr(ProcExpr, "+", ProcExpr), "@", DataExprUnit]

remove [ProcExpr(ProcExpr, ".", ProcExpr), "@", DataExprUnit]

remove [ProcExpr(DataExprUnit, IfThen, ProcExpr), ".", ProcExpr]

remove [DataExprUnit, "->", ProcExpr(ProcExpr, "+", ProcExpr)]

remove [DataExprUnit, IfThen, ProcExpr(ProcExpr, "+", ProcExpr)]

remove [ DataExpr("!", DataExpr), "(", DataExprList, ")" ]

remove [ DataExpr("-", DataExpr), "(", DataExprList, ")" ]

remove [ DataExpr("#", DataExpr), "(", DataExprList, ")" ]

remove [ProcExprNoIf("sum", VarsDeclList, ".", ProcExprNoIf), ".", ProcExprNoIf]

remove [DataExpr(DataExpr, _, _, DataExpr), "whr", AssignmentList, "end"]
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remove ["exists", VarsDeclList, ".", DataExpr(DataExpr, "(", DataExprList ,")")]

remove ["exists", VarsDeclList, ".", DataExpr(DataExpr, ">", DataExpr)]

remove ["exists", VarsDeclList, ".", DataExpr(DataExpr, "+", DataExpr)]

remove ["forall", VarsDeclList, ".", DataExpr(DataExpr, "+", DataExpr)]

remove ["forall", VarsDeclList, ".", DataExpr(DataExpr, ">", DataExpr)]

remove [ DataExprUnit("!", DataExprUnit), "(", DataExprList, ")" ]

associativity and priority

{
DataExpr ::= "!" DataExpr,
DataExpr ::= "-" DataExpr,
DataExpr ::= "#" DataExpr >

left: DataExpr ::= DataExpr "*" DataExpr,
DataExpr ::= DataExpr "." DataExpr >

left: DataExpr ::= DataExpr "/" DataExpr,
DataExpr ::= DataExpr "div" DataExpr,
DataExpr ::= DataExpr "mod" DataExpr >

left: DataExpr ::= DataExpr "+" DataExpr,
DataExpr ::= DataExpr "-" DataExpr >

left: DataExpr ::= DataExpr "++" DataExpr >

left: DataExpr ::= DataExpr "<|" DataExpr >

right: DataExpr ::= DataExpr "|>" DataExpr >

left: DataExpr ::= DataExpr "<" DataExpr,
DataExpr ::= DataExpr "<=" DataExpr,
DataExpr ::= DataExpr ">=" DataExpr,
DataExpr ::= DataExpr ">" DataExpr,
DataExpr ::= DataExpr "in" DataExpr >

left: DataExpr ::= DataExpr "==" DataExpr,
DataExpr ::= DataExpr "!=" DataExpr >

right: DataExpr ::= DataExpr "&&" DataExpr >

right: DataExpr ::= DataExpr "||" DataExpr >

right: DataExpr ::= DataExpr "=>" DataExpr
}

{
DataExprUnit ::= "!" DataExprUnit >
DataExprUnit ::= "-" DataExprUnit >
DataExprUnit ::= "#" DataExprUnit
}

{
left: ProcExpr ::= ProcExpr "|" ProcExpr >

right: ProcExpr ::= ProcExpr "." ProcExpr >
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left: ProcExpr ::= ProcExpr "<<" ProcExpr >

right: ProcExpr ::= ProcExpr "||" ProcExpr,
ProcExpr ::= ProcExpr "||_" ProcExpr >

left: ProcExpr ::= ProcExpr "+" ProcExpr
}

{
left: ProcExprNoIf ::= ProcExprNoIf "|" ProcExprNoIf >

right: ProcExprNoIf ::= ProcExprNoIf "." ProcExprNoIf >

left: ProcExprNoIf ::= ProcExprNoIf "<<" ProcExprNoIf >

right: ProcExprNoIf ::= ProcExprNoIf "||" ProcExprNoIf,
ProcExprNoIf ::= ProcExprNoIf "||_" ProcExprNoIf >

left: ProcExprNoIf ::= ProcExprNoIf "+" ProcExprNoIf
}

{
BesExpr ::= "!" BesExpr >

right: BesExpr ::= BesExpr "&&" BesExpr >

right: BesExpr ::= BesExpr "||" BesExpr >

right: BesExpr ::= BesExpr "=>" BesExpr
}

{
PbesExpr ::= "!" PbesExpr >

right: PbesExpr ::= PbesExpr "||" PbesExpr >

right: PbesExpr ::= PbesExpr "&&" PbesExpr >

right: PbesExpr ::= PbesExpr "=>" PbesExpr
}

{
ActFrm ::= "!" ActFrm >

right: ActFrm ::= ActFrm "||" ActFrm >

right: ActFrm ::= ActFrm "&&" ActFrm >

right: ActFrm ::= ActFrm "=>" ActFrm
}

{
RegFrm ::= RegFrm "+",
RegFrm ::= RegFrm "*" >

left: RegFrm ::= RegFrm "+" RegFrm >

right: RegFrm ::= RegFrm "." RegFrm
}

{
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StateFrm ::= "!" StateFrm >

right: StateFrm ::= StateFrm "&&" StateFrm >

right: StateFrm ::= StateFrm "||" StateFrm >

right: StateFrm ::= StateFrm "=>" StateFrm
}
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Appendix F

An MEBNF grammar for
Tom

module Tom

start symbol Program

context-free syntax

Program ::= Chunk*

Chunk ::= Water | Island

Water ::= "{" Chunk* "}" | Identifier | Integer |
String | Character | SpecialChar | SpecialChar2 |
CamlChar | "," | "." | "(" | ")"

Island ::= TomConstruct | BackQuoteTerm

TomConstruct ::= IncludeConstruct
| MatchConstruct
| GomConstruct
| StrategyConstruct
| OperatorConstruct
| OperatorListConstruct
| OperatorArrayConstruct
| TypeTermConstruct
| MetaQuoteConstruct

IncludeConstruct ::= "%include" "{" Water* "}"

BackQuoteTerm ::= "`" CompositeTerm | "`" "(" CompositeTerm+ ")"

CompositeTerm ::= VariableStar
| Variable
| Identifier "(" (CompositeTerm+ ("," CompositeTerm+)*)? ")"
| "." Identifier "(" CompositeTerm* ")"
| BackQuoteWater

BackQuoteWater ::= Identifier | Integer | String |
Character | SpecialChar | SpecialChar2 | CamlChar

103



MatchConstruct ::= "%match" ( "(" MatchArguments ")" )? "{" PatternAction* "}"

MatchArguments ::= Type? Term ("," Type? Term)*

PatternAction ::= PatternList "->" "{" Chunk* "}"

ConstraintAction ::= Constraint "->" "{" Chunk* "}"

Term ::= Identifier
| VariableStar
| Identifier "(" ( Term ("," Term)* )? ")"

GomConstruct ::= "%gom" ( "(" Water* ")" )? "{" GomGrammar "}"

GomGrammar ::= Module

Module ::= "module" ModuleName Imports? Grammar

Imports ::= "imports" ModuleName+

Grammar ::= "abstract" "syntax" (TypeDefinition | HookDefinition)*

TypeDefinition ::= SortName "=" OperatorDefinition ("|" OperatorDefinition)*

OperatorDefinition ::= OperatorName "(" ( SlotDefinition ("|" SlotDefinition)* )? ")"
| OperatorName "(" Variable "*" ")"

SlotDefinition ::= SlotName ":" SlotName

HookDefinition ::= HookType ":" HookOperation

HookType ::= OperatorName
| "module" ModuleName
| "sort" SortName

HookOperation ::= "make" "(" ( Identifier ("," Identifier)* )? ")" "{" Chunk* "}"
| "make_insert" "(" Identifier "," Identifier ")" "{" Chunk* "}"
| "make_empty" "(" ")" "{" Chunk* "}"
| "Free" "(" ")" "{" "}"
| "FL" "(" ")" "{" "}"
| ("AU" | "ACU") "(" ")" "{" ("`" Term)? "}"
| "interface" "(" ")" "{" Identifier ("," Identifier)* "}"
| "import" "(" ")" "{" Water* "}"
| "block" "(" ")" "{" Chunk* "}"
| "rules" "(" ")" "{" RulesCode "}"
| "graphrules" "(" Identifier "," ("Identity" | "Fail") ")" "{" GraphRulesCode "}"

RulesCode ::= Rule*

Rule ::= Pattern "->" Term ("if" Condition)?

Pattern ::= (AnnotatedName "@")? PlainPattern

PlainPattern ::= "!"? (Variable | VariableStar | ConstantValue)
| "!"? HeadSymbolList "(" ( Pattern ( "," Pattern )* )? ")"

GraphRulesCode ::= GraphRule*

GraphRule ::= TermGraph "->" TermGraph ("if" Condition)?
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TermGraph ::= (Label ":")? TermGraph
| "&" Label
| Variable "*"
| HeadSymbolList "(" (TermGraph ("," TermGraph)* )? ")"

Condition ::= "(" Condition ")"
| Condition "||" Condition
| Condition "&&" Condition
| Pattern "<<" Term
| Term Operator Term

OperatorConstruct ::= "%op" Type Name "(" ( SlotName ":" Type ( "," SlotName ":" Type )*)? ")"
"{" ( KeywordIsFsym |

KeywordMake |
KeywordGetSlot |
KeywordGetDefault)* "}"

OperatorListConstruct ::= "%oplist" Type Name "(" Type "*" ")"
"{" KeywordIsFsym ( KeywordMakeEmptyList |

KeywordMakeInsert |
KeywordGetHead |
KeywordGetTail |
KeywordIsEmpty )* "}"

OperatorArrayConstruct ::= "%oparray" Type Name "(" Type "*" ")"
"{" KeywordIsFsym (KeywordMakeEmptyArray |

KeywordMakeAppend |
KeywordGetElement |
KeywordGetSize)* "}"

KeywordIsFsym ::= "is_fsym" "(" Name ")" "{" Water+ "}"

KeywordGetSlot ::= "get_slot" "(" Name "," Name ")" "{" Water+ "}"

KeywordGetDefault ::= "get_default" "(" Name ")" "{" Water+ "}"

KeywordMake ::= "make" ( "(" Name ("," Name)* ")" )? "{" Water+ "}"

KeywordGetHead ::= "get_head" "(" Name ")" "{" Water+ "}"

KeywordGetTail ::= "get_tail" "(" Name ")" "{" Water+ "}"

KeywordMakeEmptyList ::= "make_empty" ( "(" ")" )? "{" Water+ "}"

KeywordMakeInsert ::= "make_insert" "(" Name "," Name ")" "{" Water+ "}"

KeywordGetElement ::= "get_element" "(" Name "," Name ")" "{" Water+ "}"

KeywordGetSize ::= "get_size" "(" Name ")" "{" Water+ "}"

KeywordIsEmpty ::= "is_empty" "(" Identifier ")" "{" Water+ "}"

KeywordMakeEmptyArray ::= "make_empty" "(" Name ")" "{" Water+ "}"

KeywordMakeAppend ::= "make_append" "(" Name "," Name ")" "{" Water+ "}"

TypeTermConstruct ::= "%typeterm" Type ("extends" Type)?
"{" KeywordImplement KeywordIsSort? KeywordEquals? "}"

KeywordImplement ::= "implement" "{" Water+ "}"
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KeywordIsSort ::= "is_sort" "(" Name ")" "{" Water+ "}"

KeywordEquals ::= "equals" "(" Name "," Name ")" "{" Water+ "}"

StrategyConstruct ::= "%strategy" StrategyName "(" StrategyArguments? ")"
"extends" "`"? Term "{" StrategyVisit* "}"

StrategyArguments ::= SubjectName ":" AlgebraicType ("," SubjectName ":" AlgebraicType)*
| AlgebraicType SubjectName ("," AlgebraicType SubjectName )*

StrategyVisit ::= "visit" AlgebraicType "{" VisitAction* "}"

VisitAction ::= (Label ":")? PatternList "->" "{" Chunk* "}"

PatternList ::= Pattern ("," Pattern)* (("&&" | "||") Constraint)?

Constraint ::= Pattern "<<" Type Term
| Constraint "&&" Constraint
| Constraint "||" Constraint
| "(" Constraint ")"
| Term Operator Term

HeadSymbolList ::= HeadSymbol "?"?
| "(" HeadSymbol ("|" HeadSymbol)+ ")"

ExplicitTermList ::= "(" (Pattern ("," Pattern)* )? ")"

ImplicitPairList ::= "[" (PairPattern ("," PairPattern)* )? "]"

PairPattern ::= Identifier "=" Pattern

ConstantValue ::= String
| Integer
| Character
| Float

MetaQuoteConstruct ::= "%[" Chunk* "]%"

lexical syntax

StrategyName ::= Identifier
AlgebraicType ::= Identifier
Type ::= Identifier
Variable ::= Identifier
ModuleName ::= Identifier
SortName ::= Identifier
AnnotatedName ::= Identifier
SubjectName ::= Identifier
Label ::= Identifier
OperatorName ::= Identifier
Name ::= Identifier
SlotName ::= Identifier

VariableStar ::= Identifier "*"
HeadSymbol ::= Identifier | Integer | Float | String | AnyChar
SpecialChar ::= [;:+\-=&<>!%:?|&@\[\]\^#$]
CamlChar ::= Identifier "'"
SpecialChar2 ::= [*/]+ -/- { "//".*, "/*".*}
Operator ::= ">" | ">=" | "<" | "<=" | "==" | "!="
Identifier ::= [a-zA-Z_]+[a-zA-Z0-9\-_]*
String ::= ["]([^"\\]|[\\]["trnu\\])*["]
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Character ::= ['].['] | ['][\\] EscapeChar [']
EscapeChar ::= [btnfr'\\]
AnyChar ::= .
Integer ::= [0-9]+
Float ::= [1-9]+[\.][0-9]+

layout syntax

WhiteSpace ::= [\ \r \n \t]+
MultilineCommentCStyle ::= [/][*]([^*]|[*]+[^/*])*[*]+[/]
MultilineCommentCamlStyle ::= [(][*]([^*]|[*]+[^)*])*[*]+[)]
SingleLineComment ::= [/][/][^\r\n]*

disambiguation rules

prefer [Chunk(Island)], [Chunk(Water), _*]

prefer [Variable], [BackQuoteWater]

prefer [Chunk(Island(BackQuoteTerm))],
[Chunk(Island(BackQuoteTerm)), Chunk(Water("*")))]

prefer [Chunk(Island(BackQuoteTerm))],
[Chunk(Island(BackQuoteTerm)), Chunk(Water("(")))]

107


