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Abstract

Background: Accurate and efficient RNA secondary structure prediction remains an important open problem in

computational molecular biology. Historically, advances in computing technology have enabled faster and more

accurate RNA secondary structure predictions. Previous parallelized prediction programs achieved significant

improvements in runtime, but their implementations were not portable from niche high-performance computers or

easily accessible to most RNA researchers. With the increasing prevalence of multi-core desktop machines, a new

parallel prediction program is needed to take full advantage of today’s computing technology.

Findings: We present here the first implementation of RNA secondary structure prediction by thermodynamic

optimization for modern multi-core computers. We show that GTfold predicts secondary structure in less time than

UNAfold and RNAfold, without sacrificing accuracy, on machines with four or more cores.

Conclusions: GTfold supports advances in RNA structural biology by reducing the timescales for secondary structure

prediction. The difference will be particularly valuable to researchers working with lengthy RNA sequences, such as

RNA viral genomes.

Findings
Prediction algorithms based on thermodynamic models

have been parallelized in the past, but for specific com-

puter architectures that were available over two decades

ago. The Vienna RNA package was originally parallelized

[1] for a target architecture (an IBM RS/6000) popu-

lar in the early 1990’s. Subsequently [2,3], this work was

extended to a first-generation cluster-like parallel com-

puter (the Intel Delta) with an early message-passing

framework, which allows the processors to exchange only

coarse-grained information. Similarly, other researchers

[4] parallelized a minimal free energy (MFE) folding algo-

rithm for two architectures (a Cray Y-MP vector machine

and MasPar MP-2 SIMD mesh) popular through the

1990’s.

Since then, parallel computing technology has changed

substantially, and these previous parallel implementa-

tions are not compatible with current architectures. The
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current execution model includes multiple sockets of

multi-core processors, deepmemory hierarchies with sev-

eral levels of cache, and the availability of gigabytes of

memory. New parallel implementations are needed to take

full advantage of these new platforms.

We present the first implementation of RNA secondary

structure prediction by thermodynamic optimization for

modern multi-core computers. Our motivation is to

reduce the prediction time for long RNA sequences on

modern parallel platforms, including contemporary lap-

tops and desktops, because sequential algorithms still

take many minutes to produce a single MFE structure.

With the increasing prevalence of multi-core desktop

machines, reduction in runtime will be particularly valu-

able to researchers working with long RNA sequences,

such as RNA viral genomes.

We compare our program GTfold with two of the

most widely-used sequential programs, UNAfold [5] and

RNAfold [1,6] which also run on desktop machines.

The purpose of our comparisons is to demonstrate to

RNA researchers that GTfold’s runtime improvements

are easily accessible from their desktop computer. Our
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program GTfold achieves the same minimum free energy

(MFE) accuracy as UNAfold and RNAfold in apprecia-

bly less time on modern multi-core computers. With only

four cores, GTfold folds an HIV genome, a sequence of

nearly 10,000 nucleotides, in just 3.38 minutes versus

the sequential running times of RNAfold (6.05 min.) and

UNAfold (37.32 min.), a significant reduction in running

time which further drops to below two minutes on eight

or more cores.

In addition to our findings on runtime and accuracy

given below, we summarize the algorithmic and imple-

mentation differences between these three software pack-

ages. These findings explain why, though they are based

on the same basic model, they often produce different

MFE structures. This information clarifies why the “same”

programs can produce different outcomes.

Implementation

Like UNAfold and RNAfold, we implement the classic

dynamic programming algorithm for free energy mini-

mization [7] based on the same general nearest neighbor

thermodynamic model (NNTM) [8,9]. The optimal solu-

tion for a given sequence, that is the MFE and associated

secondary structure, is computed from optimal solutions

for smaller subproblems. The algorithm first fills various

one- and two-dimensional tables, whose entries corre-

spond to the MFE scores for different subsequences. It

then computes an optimal structure for the full sequence

by performing a traceback through these tables. For

detailed descriptions of the data dependencies among var-

ious elements of the tables and the algorithm in general,

see [7,10].

In general, these dependencies leave open various

options regarding the order in which the cells of the

tables are calculated. As we will explain, the order used

by GTfold is ideal for enabling a fine-grained paral-

lelism well suited for multi-core and other shared mem-

ory parallel machines. However, when run sequentially

on one core, this approach results in a larger number

of memory accesses compared with the best sequential

approach. Hence, it allows better concurrency on multi-

core machines at the expense of single-core performance.

More specifically, let s1s2 . . . sn be an RNA sequence of

length n. The MFE score of the sequence is computed by

filling a 1×n array whose values depend on multiple n×n

“helper” arrays which are themselves interdependent. The

(i, j) entries of these helper arrays, where i < j, holds the

score of the minimum free energy structure for subsets of

possible structures on the subsequence sisi+1 . . . sj.

To describe the dependencies relevant to paralleliza-

tion that govern the elements of these tables, it suffices

to consider a single n × n matrix and assume, for the

moment, that its entries hold the optimal score for the

set of possible structures on the subsequence sisi+1 . . . sj.

The standard assumption of nested base pairings (i.e.

lack of pseudoknots) means that the optimal structure

for sisi+1 . . . sj depends only on subsequences of the form

si′si′+1 . . . sj′ , where i < i′ < j′ < j. Hence, as illustrated in

Figure 1, the point (i, j) is dependent only on points (i′, j′)

that are both below and to the left.

Consider computing the optimal score for subsequences

of length k = j− i+1 for some 1 ≤ k ≤ n. Since these par-

ticular computations are independent of each other, they

can be performed in parallel. As implemented in GTfold,

the optimal structures for subsequences of length k are

computed in parallel from k = 1, the main diagonal, to

k = n, the optimal score for the full sequence.

Other orderings, such as column-wise or row-wise,

also cover the whole computation space without violat-

ing the algorithm’s dependencies. For example, RNAfold

computes the dynamic programming tables in row-

major order, which is cache-friendly (for programs writ-

ten in C/C++, like RNAfold) and has small average

memory access time, but this approach is inherently

sequential.

We implement the shared memory parallelism neces-

sary for our approach using OpenMP [11] (see Availability

and requirements for details). Using OpenMP allows all

threads to access and to update values in a single set of

arrays.

As described above, our parallel implementation

exploits a diagonal access of table entries, allowing for

concurrent computation via fine-grained parallelism but

incurring more cache misses (and hence, a larger average

Figure 1 Dependencies. Figure 1 shows the dependencies in the

dynamic programming algorithm. The (i, j) entry is dependent on the

entries in the triangle (A, B, C).
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memory access time). As is often necessary when engi-

neering parallel algorithms [12], we accept slower single

processor performance, so that our code will run faster

on the multi-processor machines that are becoming ubiq-

uitous. Further implementation details can be found in

Mathuriya et. al 2009 [13].

Running time

The results shown here and in the rest of this section are

based on GTfold (version 2.0), RNAfold distributed with

the Vienna package (version 1.8.5), and UNAfold (ver-

sion 3.8). When discussing running time, the number of

cores is a parameter for a parallel algorithm so we refer

to GTfold on n cores as GTfold(n). Running time com-

parisons are based on a complete HIV-1 genome [Gen-

Bank:K03454] of length 9,719 nucleotides. Further details

on materials and methods, including command line argu-

ments and computing architectures, are provided in Addi-

tional file 1: Appendix 1. (Recall that previous parallelized

prediction programs do not run on modern multi-core

machines. Because our primary interest was to evaluate

the performance of GTfold on these current architectures,

we did not include these previous parallelized programs in

our study.)

Our running time results for UNAfold and RNAfold

versus GTfold(n) on n = 1, 2, 4, 8, 16 cores are given in

Figure 2. Each program predicted an MFE structure (and

only that) for the HIV-1 genome, and MFE calculations

also on a set of 22 complete HIV genomes of similar length

(accession numbers given in Additional file 1: Appendix

1).We also document how the runtime scales with respect

to length up to that point by graphing prediction times for

different length subsequences of the HIV-1 genome.

We see that GTfold(n) is always faster than UNAfold,

and significantly so for the full genome, which UNAfold

computes in 37 minutes versus 3.38 minutes for

GTfold(4). The relative running time of GTfold versus

RNAfold depends on the number of cores used by GTfold.

RNAfold computes an MFE structure for the full genome

in 6.06 minutes while the running times for GTfold(n)

are 12.44, 6.64, 3.38, 1.89, and 1.54 minutes respectively

for n = 1, 2, 4, 8, 16 cores. Hence, GTfold(1) is slower

than RNAfold while the running time of GTfold(2) and

RNAfold are similar (to within 10%), and GTfold on four

or more cores runs in strictly less time than RNAfold.

The reproducibility of these times was confirmed by

comparing UNAfold, RNAfold, and GTfold(n) (for n =

1, 2, 4, 8, 16), across the full set of 22 HIV genomes (data

not shown).

Accuracy

We also demonstrate that GTfold’s reduced running time

does not come at the expense of prediction accuracy, rel-

ative to UNAfold and RNAfold, as measured against ribo-

somal structures obtained by comparative sequence anal-

ysis [14]. We find no meaningful differences in the average

prediction accuracy, which is only around 40%, of all three

programs across hundreds of ribosomal sequences. This

confirms that in general GTfold predicts optimal struc-

tures as accurately as UNAfold and RNAfold, while simul-

taneously illustrating the importance of ongoing efforts to

improve RNA secondary structure prediction.

Since GTfold(n) always returns the same structure, we

do not specify the number of cores when discussing accu-

racy. The reference secondary structures for 223 16S and

55 23S ribosomal sequences were downloaded from the

Comparative RNA Web site [15] (database queries given

in Additional file 1: Appendix 1).

Our prediction accuracy results for UNAfold and

RNAfold versus GTfold are given in Figure 3. We assess
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Figure 2 Running time vs. sequence length. Figure 2 shows the effect of sequence length on the running time of GTfold (run using 1, 2, 4, 8, and

16 cores), RNAfold, and UNAfold .
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Figure 3 Sensitivity vs. selectivity. Figure 3 plots selectivity against sensitivity for GTfold, RNAfold, and UNAfold on 223 16S sequences and for 55

23S sequences. The gray circles are (selectivity, sensitivity) pairs for an individual sequence, while the black dot shows the (average selectivity,

average sensitivity) for a given method on a given class of sequences.

prediction accuracy against the structures for ribosomal

sequences from the Comparative RNAWeb site [15] using

the two measures of sensitivity and selectivity as in [16].

These values are calculated based on counting base pairs

in the two structures in one of three categories. True pos-

itives (TP) occur in both the comparative and predicted

structure, false negatives (FN) occur only in the compar-

ative structure, while false positives (FP) occur only in

the predicted structure. Gardner & Giegerich further sub-

divide the FP category to account for compatible base

pairs, denoted ξ , that could exist in the comparative struc-

ture and hence “can be considered neutral with respect to

algorithm accuracy.” Thus,

Sensitivity =
TP

TP + FN

Selectivity =
TP

TP + (FP − ξ)

We find that all three programs produce structures with

a wide range of sensitivity and selectivity values, with

nearly indistinguishable distributions of accuracy. Each

program has an average of only ∼ 40% for the 223 16S

ribosomal sequences and the 55 23S ones. Given the high

variance within programs (from a low of ∼ 10% to a high

of ∼ 80%) versus the low variance between programs (less

than 2% average difference), we find no meaningful differ-

ence in the accuracy of MFE predictions for GTfold versus

UNAfold or RNAfold. (Further details are given in Addi-

tional file 2: Appendix 2.) This is certainly not to say that

the three programs always predict the same optimal struc-

ture, in fact our experience indicates that the opposite is

often true (particularly for UNAfold). As discussed below,

this is a result of the subtle but crucial differences in the

optimization criteria used by the different programs.

Differences between programs

Finally, we address the fact that these three programs,

which all implement the same basic algorithm using the

same general NNTM, rarely return the same MFE struc-

ture — and in some cases return very different structures.
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This is due to the small but crucial differences in the

thermodynamic and algorithmic details between GTfold,

RNAfold, and UNAfold. The lack of robustness, or

“ill-conditioning,” is a well-known aspect [17] of this

particular optimization problem; slight changes in the

optimization criteria can result in drastically different

MFE structures.

Our analysis of GTfold’s accuracy versus RNAfold or

UNAfold necessitated a detailed comparison of the dif-

ferent optimization criteria of the three programs. Hence,

here we summarize the details that currently result in

different optimal structures while noting that these dif-

ferences do not have a significant effect on prediction

accuracy between programs. This information should be

useful to other researchers who also find the different

outcomes for these “same” programs perplexing.

The optimality criteria of GTfold and RNAfold differ

simply in their thermodynamic parameter values, specif-

ically for some special cases of internal, bulge and hair-

pin loops and in the number of significant digits used

in the entropic penalty assigned to different lengths of

internal, bulge, and hairpin loops. To address this differ-

ence, GTfold includes a --rnafold option, which uses

the RNAfold parameters. We have confirmed that under

this option GTfold predicts the same MFE structures as

RNAfold on all of our 16S and 23S sequences and on a set

of 500 randomly generated sequences of length 1500.

The optimality criteria of GTfold and UNAfold differ

in a number of ways. Again, there are differences in the

thermodynamic parameters, but there are now also algo-

rithmic differences, which effect the treatment of all types

of loops as well as the stacked pairs. The most notable

parameter differences are the treatment of G-U pairs in

stacks and small symmetric internal loops. The parame-

ters used by UNAfold differ from the Nearest Neighbor

Database (NNDB) [18] values in that various substruc-

tures involving G-U pairs are assigned “infinite” energy.

According to the UNAfold FAQ [19], these are instead

treated as 1 × 1 and 2 × 2 internal loops, which are

intended to be interpreted as base pairs. Nonetheless, it is

our experience that this difference alters the optimization

in small but significant ways. The algorithmic differences

are four-fold:

1. UNAfold handles 2×3 internal loops as a special case.

2. UNAfold considers terminal mismatches in

multi-loops and external loops while GTfold instead

considers pairs of 3’ and 5’ dangling ends.

3. UNAfold performs a pre-filtering that prohibits from

consideration base pairs without at least one possible

neighboring pair.

4. UNAfold and GTfold can take different traceback

paths producing different optimal structures with the

same MFE.

To address the parameter differences and the first three

algorithmic differences, GTfold has a --unafold option.

We have confirmed that under this option GTfold pre-

dicts a structure with the same MFE as UNAfold on all of

our 16S and 23S sequences and on set of 500 randomly

generated sequences of length 1500. We note that, due to

differences in traceback, GTfold with this option does not

always produce a structure identical to UNAfold despite

obtaining the same minimum free energy.

User Options

In addition to basic MFE calculation, GTfold has a num-

ber of user options. One set of options controls what

information is calculated and the level of detail in the out-

put. As is now standard, in addition to the MFE value

and optimal structure, GTfold can provide a loop-by-loop

energy decomposition, suboptimal structures [20] within

a specified range of the MFE, and base pair probabilities

via the partition function. Ongoing feature development

includes performing stochastic backtracking to produce

sets of structures sampled according to the Boltzmann

distribution [21].

Additionally, GTfold provides several options for modi-

fying the optimization criterion used. As with other pro-

grams, users can provide their own parameter sets for

the NNTM, change the calculation of energies associated

with the ends of helices in multi-loops and external loops

(treatment of dangling end energies and terminal mis-

matches), or constrain GTfold to consider only structures

that contain (or that do not contain) particular base pairs

or single stranded regions. It is also possible to provide

experimental data from “SHAPE” experiments (Selective

2’-Hydroxyl Acylation analyzed by Primer Extension [22]),

to be used in the MFE optimization.

Finally, GTfold supports the --unafold and

--rnafold options, under which it uses the same

optimization criteria as UNAfold or as RNAfold, while

still achieving the same running time advantages when

multiple cores are available.

Availability and requirements
GTfold is freely available as open source at gtfold.

sourceforge.net. Support for parallel threads requires

OpenMP (which is part of current standard C com-

piler packages, such as GCC). We implemented shared

memory parallelism using the “omp for” directive of the

OpenMP[11] interface, version 3.0 (with GCC version

4.4). Further instructions, documentation, and details on

requirements are specified on the GTfold sourceforge

website.

• Project name: GTfold
• Project home page: http://gtfold.sourceforge.net/
• Operating systems: Unix, Linux, Mac OS X

http://gtfold.sourceforge.net/
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• Programming language: C/C++
• Other requirements: C/C++ compiler; standard

UNIX tools such as autoconf, automake, make;

OpenMP support in the compiler
• License: GNU GPL v3
• Any restrictions to use by non-academics: None

Availability of supporting data
Additional details on the sequences, software, commands,

and machines used in the accuracy and running time

analyses are available in Additional file 1: Appendix 1.

Additional file 2: Appendix 2 provides a more detailed

analysis of the relative accuracy of the three prediction

methods.

Additional files

Additional file 1: Appendix 1.Materials and Methods. Appendix 1 gives

additional details on the sequences, software, commands, and machines

used in the accuracy and running time analyses.

Additional file 2: Appendix 2. Accuracy Comparison. Appendix 2 gives a

more detailed analysis of the relative accuracy of the three prediction

methods.
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