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Abstract

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of autosomal dominant familial
Parkinson’s disease (PD) and also contribute to idiopathic PD. LRRK2 encodes a large multi-domain protein with GTPase and
kinase activity. Initial data indicates that an intact functional GTPase domain is critically required for LRRK2 kinase activity.
PD–associated mutations in LRRK2, including the most common G2019S variant, have variable effects on enzymatic activity
but commonly alter neuronal process morphology. The mechanisms underlying the intrinsic and extrinsic regulation of
LRRK2 GTPase and kinase activity, and the pathogenic effects of familial mutations, are incompletely understood. Here, we
identify a novel functional interaction between LRRK2 and ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1).
LRRK2 and ArfGAP1 interact in vitro in mammalian cells and in vivo in brain, and co-localize in the cytoplasm and at Golgi
membranes. PD–associated and functional mutations that alter the GTPase activity of LRRK2 modulate the interaction with
ArfGAP1. The GTP hydrolysis activity of LRRK2 is markedly enhanced by ArfGAP1 supporting a role for ArfGAP1 as a GTPase-
activating protein for LRRK2. Unexpectedly, ArfGAP1 promotes the kinase activity of LRRK2 suggesting a potential role for
GTP hydrolysis in kinase activation. Furthermore, LRRK2 robustly and directly phosphorylates ArfGAP1 in vitro. Silencing of
ArfGAP1 expression in primary cortical neurons rescues the neurite shortening phenotype induced by G2019S LRRK2
overexpression, whereas the co-expression of ArfGAP1 and LRRK2 synergistically promotes neurite shortening in a manner
dependent upon LRRK2 GTPase activity. Neurite shortening induced by ArfGAP1 overexpression is also attenuated by
silencing of LRRK2. Our data reveal a novel role for ArfGAP1 in regulating the GTPase activity and neuronal toxicity of LRRK2;
reciprocally, LRRK2 phosphorylates ArfGAP1 and is required for ArfGAP1 neuronal toxicity. ArfGAP1 may represent a
promising target for interfering with LRRK2-dependent neurodegeneration in familial and sporadic PD.
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Introduction

Mutations in the leucine-rich repeat kinase 2 gene (LRRK2,

PARK8, OMIM 607060) cause late-onset, autosomal dominant

Parkinson’s disease (PD) that is clinically and neurochemically

indistinguishable from idiopathic PD [1,2,3]. LRRK2 mutations

that clearly segregate with disease include R1441C/G/H,

Y1699C, G2019S and I2020T [3]. Importantly, the G2019S

mutation has also been identified in subjects with idiopathic PD at

varying frequencies depending on ethnicity thereby linking

LRRK2 dysfunction to idiopathic disease [4,5,6]. The LRRK2

gene encodes a large protein of 2527 amino acids belonging to the

ROCO protein family [7]. Similar to other ROCO proteins,

LRRK2 contains a Ras-of-complex (Roc) GTPase domain and a

C-terminal of Roc (COR) domain in conjunction with a protein

kinase domain with closest homology to members of the mixed-

lineage and receptor-interacting protein kinase families. LRRK2

also contains a number of repeat domains of undetermined

function including N-terminal LRRK2-specific, armadillo, ankyrin

and leucine-rich repeats and C-terminal WD40 repeats that

surround the central Roc-COR-kinase catalytic region. LRRK2

can function in vitro as a kinase whereby it can mediate

autophosphorylation and can phosphorylate generic substrates

(i.e. myelin basic protein or LRRKtide) or putative substrates such

as 4E-BP1, moesin, b-tubulin and FoxO1 [8,9,10,11,12,13,14]. It

is not yet clear whether LRRK2 acts as a kinase in vivo to

phosphorylate physiological or pathological substrates [15]. The

GTPase domain of LRRK2 can bind to GDP or GTP via a

guanine nucleotide phosphate-binding loop (P-loop), and can

hydrolyze GTP, albeit at a relatively slow rate, via an adjacent

Switch II catalytic region [16,17,18,19,20]. It has been proposed

that GTP binding at the GTPase domain may enhance the kinase

activity of LRRK2 whereas numerous studies have shown that

mutations (i.e. K1347A or T1348N) which prevent the binding of

guanine nucleotides to the P-loop region abolish kinase activity

[19,20]. A recent study has demonstrated that LRRK2 kinase
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activity is independent of GTP binding per se but is instead

dependent on the capacity for GTP binding thus potentially

suggesting the GTP-dependent activation of LRRK2 by an

upstream guanine nucleotide-binding protein [21]. These studies

potentially support a model whereby LRRK2 is a GTPase-

regulated protein kinase although whether kinase activity serves as

the main output of LRRK2 is not clear. Autophosphorylation of

residues within the GTPase domain of LRRK2 could suggest a

reciprocal regulation of GTPase activity by kinase activity

[22,23,24,25]. At present, it is unclear how the GTPase activity

of LRRK2 is regulated. Similar to other small GTPases, it is

assumed that guanine nucleotide exchange factors (GEFs) promote

the exchange of GDP for GTP within the LRRK2 GTPase

domain whereas GTPase-activating proteins (GAPs) promote the

hydrolysis of LRRK2-bound GTP. A putative GEF for LRRK2,

ARHGEF7, has recently been identified although as yet no GAPs

have been nominated [26]. The absence of these factors may

explain why LRRK2 exhibits such poor GTPase activity in vitro

[16], which has hampered the characterization of this important

functional domain.

Disease-associated mutations in LRRK2 located throughout the

central Roc-COR-kinase region have variable effects on GTPase

and kinase activity. The R1441C, R1441G and Y1699C variants

lead to a modest impairment of GTP hydrolysis and produce a

resulting increase in steady-state GTP binding [17,18,27,28], but

without consistent effects on kinase activity [9,10,12,20]. In

contrast, the common G2019S variant markedly enhances kinase

activity but does not appear to regulate GTPase activity

[9,10,12,20,27]. Therefore, the precise actions of familial muta-

tions on LRRK2 enzymatic activity are incompletely understood

although it is clear that alterations in both GTPase and kinase

activities are important for the development of PD. Despite the

differential effects on LRRK2 activity, familial mutations com-

monly promote LRRK2-induced cellular toxicity. Studies in

cultured primary cortical neurons, and some neural cell lines,

reveal that the exogenous expression of full-length human LRRK2

harboring familial mutations (i.e. R1441C, Y1699C and G2019S)

induces marked neuronal toxicity and cell death relative to the

wild-type protein [9,19,20,29,30,31]. Preventing GDP/GTP

binding or impairing kinase activity attenuates LRRK2-induced

neuronal toxicity, at least for the R1441C and G2019S variants

[19]. In vivo, viral-mediated gene transfer models reveal that

expression of G2019S but not wild-type LRRK2 induces the

degeneration of nigrostriatal dopaminergic neurons in rodents

which can be prevented by pharmacological or genetic inhibition

of kinase activity [32,33]. A role for GTPase activity or other

familial mutations in LRRK2-induced toxicity in viral rodent

models in vivo has not yet been evaluated, although the expression

of R1441G or R1441C variants in transgenic mice can produce

neuropathological phenotypes [34,35]. Certain familial mutations

(i.e. G2019S and I2020T) have also been shown to enhance

LRRK2-induced shortening of neuronal processes in cultured

neurons compared to wild-type LRRK2, whereas ablation of

endogenous LRRK2 expression oppositely enhances neurite

length [36,37,38]. The effects of the G2019S variant on neurite

morphology are dependent on kinase activity and are mediated by

autophagy whereas the contribution of LRRK2 GTPase activity is

not known [36,37]. Therefore, the exact contribution of GTPase

activity to LRRK2-dependent neuronal phenotypes is poorly

characterized at present. Given that GTPase activity is critically

required for regulating the kinase activity and neurotoxicity of

LRRK2 [19,20], it is important to clarify the intrinsic and extrinsic

factors that regulate GTPase activity.

We recently developed a simple model of LRRK2-induced

toxicity in the baker’s yeast, Saccharomyces cerevisiae [27]. LRRK2

toxicity in this yeast model, as well as in primary cortical neurons,

is regulated by GTPase activity and correlates with impairments in

the trafficking of endosomes and autophagic vacuoles. A genome-

wide genetic screen in this model identified nine yeast genes that

regulate LRRK2-induced toxicity and trafficking defects. Here, we

evaluate the mammalian ortholog of one of these genetic modifiers

in regulating the function of LRRK2. We identify ArfGAP1, an

ortholog of yeast GCS1, as a novel GAP for regulating LRRK2

GTPase activity and neuronal toxicity.

Results

Interaction of LRRK2 with ArfGAP1 in cells and in vivo
A recent genetic modifier screen in yeast identified nine genes

that when deleted can modulate the toxicity induced by expression

of human LRRK2 [27]. Seven mutants suppressed and two

mutants enhanced LRRK2 toxicity. We sought to determine

whether these genes are relevant for the effects of LRRK2 in the

context of mammalian cells. However, of the nine modifiers, only

two yeast genes (SLT2 and GCS1) which acted to suppress toxicity

when deleted possess mammalian orthologs. Yeast SLT2 encodes a

serine/threonine mitogen-activated protein kinase (MAPK) with

broad similarity to ERK, p38 and JNK MAPKs. We have

previously shown that LRRK2 expression exhibits modest effects

on MAPK signaling in mammalian cells in a kinase-independent

manner [20]. Yeast GCS1 encodes an ADP-ribosylation factor

(Arf) GTPase-activating protein (GAP) with a single mammalian

ortholog, ArfGAP1. Therefore, we decided to focus on exploring

the functional relationship between LRRK2 and ArfGAP1.

ArfGAP1 encodes a 415 amino-acid protein that functions as a

GAP to promote the GTP hydrolysis of Arf1, a small GTPase that

is critical for maintaining normal Golgi morphology [39,40,41,42].

Arf1 GTP hydrolysis is required for the dissociation of coat

proteins from Golgi-derived membranes and vesicles [43].

ArfGAP1 contains an N-terminal GAP domain (,130 amino

acids) comprising a C4-type zinc finger motif (residues 22–45)

which promotes the hydrolysis of Arf1-bound GTP, and a C-

Author Summary

Parkinson’s disease (PD) is the most common neurode-
generative movement disorder. Current therapies for
treating PD are symptomatic and rely on restoring
dopamine signaling. There is presently no cure for PD.
PD is typically a sporadic disease, although 5%–10% of
cases are known to have a familial origin. Mutations in at
least seven genes are known to cause familial forms of PD,
with mutations in the leucine-rich repeat kinase 2 (LRRK2)
gene at the PARK8 locus representing the most common
cause of familial and sporadic PD. The LRRK2 gene encodes
a multi-domain protein with two enzymatic activities,
GTPase and kinase, and familial mutations are known to
variably influence these activities. Familial mutations in
LRRK2 promote toxicity in cultured neurons, which is
dependent on both GTPase and kinase activity. The factors
regulating the GTPase activity of LRRK2 are poorly
understood. Here, we identify the ArfGAP1 protein as a
novel regulator of LRRK2 GTPase and kinase activity as well
as neuronal toxicity induced by LRRK2. ArfGAP1 also serves
as a novel substrate for phosphorylation mediated by
LRRK2 kinase activity. ArfGAP1 may therefore represent a
promising molecular target for interfering with neurode-
generation due to LRRK2mutations in familial and sporadic
forms of PD.

ArfGAP1 Regulates LRRK2 Activity and Toxicity
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terminal non-catalytic domain involved in Golgi membrane

localization and protein-protein interactions namely with the

KDEL receptor [43].

To begin to explore the potential relationship between LRRK2

and ArfGAP1, the interaction of these two proteins was assessed

by co-immunoprecipitation in HEK-293T cells expressing

FLAG-tagged LRRK2 and YFP-tagged ArfGAP1. Following

immunoprecipitation of full-length LRRK2 we find a robust

interaction with full-length ArfGAP1 and with an N-terminal

deletion mutant lacking amino acids 1–64 (DN-ArfGAP1) which

exhibits negligible GAP activity (Figure 1A) [39]. In the reverse

experiment, immunoprecipitation of full-length and DN-Arf-

GAP1 reveals an interaction with full-length LRRK2 (Figure 1B).

Thus, LRRK2 most likely interacts with the C-terminal non-

catalytic domain of ArfGAP1. To determine whether the

interaction between LRRK2 and ArfGAP1 is direct, in vitro
pull-down assays were conducted between immunopurified full-

length FLAG-tagged LRRK2 or parkin and recombinant full-

length GST-tagged ArfGAP1. LRRK2 but not parkin interacts

directly with ArfGAP1 (Figure S1). To identify the domain of

LRRK2 responsible for the interaction with ArfGAP1, co-

immunoprecipitation assays were conducted in cells co-expressing

ArfGAP1-YFP and various deletion mutants of LRRK2

(Figure 1C). Following immunoprecipitation of LRRK2 deletion

mutants we unexpectedly find that ArfGAP1 interacts specifically

with N-terminal residues 480–895 of LRRK2, a region

containing LRRK2-specific repeats (residues 1–660), armadillo

repeats (residues 180–660), and putative ankyrin repeats (residues

690–860) known to mediate protein-protein interactions, rather

than with the Roc GTPase domain of LRRK2. We could

confirm that our LRRK2 protein fragment encompassing the

GTPase domain (F3, residues 895–1503) is correctly folded and

functional since it could bind efficiently to GTP-sepharose in pull-

down assays and could interact with full-length GFP-tagged

LRRK2 by co-immunoprecipitation indicative of dimer forma-

tion (Figure S2). To assess the specificity of the LRRK2/

ArfGAP1 interaction, the potential interaction of ArfGAP1 with

the PD-associated protein a-synuclein was assessed in HEK-293T

cells. However, ArfGAP1-YFP fails to interact with myc-tagged

a-synuclein (Figure 1D). We next sought to verify the interaction

of LRRK2 and ArfGAP1 in vivo. LRRK2 interacts with ArfGAP1

in brain extracts derived from wild-type mice following

immunoprecipitation with a LRRK2-specific monoclonal anti-

body (MJFF-2/c41-2), whereas ArfGAP1 is not immunoprecip-

itated in extracts derived from LRRK2 knockout mice

(Figure 1E). ArfGAP1 also interacts with LRRK2 in wild-type

mouse brain following immunoprecipitation with an ArfGAP1-

specific rabbit antibody but not with a non-specific rabbit IgG

control (Figure 1F). Collectively, our data demonstrate that

LRRK2 interacts directly with ArfGAP1 in vitro, in cultured cells

and in vivo in brain tissue.

Co-localization of LRRK2 with ArfGAP1 in the cytoplasm
and at Golgi membranes of mammalian cells and
neurons
To further characterize the interaction of LRRK2 with

ArfGAP1, and where in cells this might occur, we assessed the

co-localization of both proteins in mammalian cells by confocal

microscopy. ArfGAP1 normally localizes to the Golgi complex

but also cycles from the Golgi to the cytoplasm following Arf1

inactivation [39,40]. The overexpression of ArfGAP1 leads to

excessive Arf1 inactivation and promotes the fusion of the Golgi

with the ER resulting in the dispersal of Golgi-derived vesicles

with the Golgi complex ceasing to exist as a discrete organelle

[40]. Co-expression of FLAG-LRRK2 and ArfGAP1-YFP in

HEK-293T cells reveals the localization of ArfGAP1 to Golgi-

derived vesicles and the cytoplasm, with LRRK2 mostly co-

localizing with the cytoplasmic portion of ArfGAP1 but also at

vesicle membranes (Figure 2A). FLAG-LRRK2 also co-localizes

with endogenous ArfGAP1 within the cytoplasm and at the

membrane surface of the intact Golgi complex in HEK-293T

cells (Figure 2A). We also performed similar co-localization

experiments in rat primary cortical neurons. Exogenous FLAG-

LRRK2 co-localizes with exogenous ArfGAP1-YFP and endog-

enous ArfGAP1 within the cytoplasm and at the membrane

surface of either Golgi-derived vesicles or the intact Golgi

complex, respectively, within neuronal soma (Figure 2B). It is not

possible to reliably assess co-localization of endogenous LRRK2

and ArfGAP1 in HEK-293T cells or primary neurons with

currently available antibodies. To determine whether LRRK2

and ArfGAP1 are capable of interacting together within the

cytoplasm, we prepared extracts from transfected HEK-293T

cells by subcellular fractionation that are devoid of membranous

organelles including Golgi membranes (soluble S3 fraction, 100K)

followed by co-immunoprecipitation assays. FLAG-LRRK2

robustly interacts with ArfGAP1-YFP in Golgi-free cell extracts

(Figure 2C) thus confirming that LRRK2 and ArfGAP1 can

interact within the cytoplasm and do not critically require Golgi

membranes for their interaction. Furthermore, FLAG-LRRK2

and ArfGAP1-YFP are shown to co-associate in membranous P2

(heavy membranes i.e. mitochondria) and P3 (light membranes

i.e. Golgi) or soluble cytosolic (S1–S3) subcellular fractions in

HEK-293T cells (Figure 2C). Therefore, ArfGAP1 exists within

both membrane-associated and soluble cytosolic subcellular

compartments of mammalian cells supporting its dynamic

interaction with membranes.

We could confirm the localization of endogenous ArfGAP1 to

the Golgi complex in HEK-293T cells, and the variable

localization of exogenous ArfGAP1-YFP to either the intact

Golgi complex or Golgi-derived vesicles depending upon its

degree of overexpression (Figure S3A), as previously reported

[40]. ArfGAP1-YFP overexpression frequently induces the

dispersal of the intact Golgi complex with the appearance of

ArfGAP1-positive Golgi-derived vesicles that are devoid of Golgi

markers (Figure S3A). We could further confirm the localization

of endogenous ArfGAP1 to the Golgi complex and exogenous

ArfGAP1-YFP to Golgi-derived vesicles in primary cortical

neurons (Figure S3B). Endogenous LRRK2 and exogenous

FLAG-LRRK2 also localize to a small extent with the Golgi

complex in cortical neurons with LRRK2-positive punctate

structures decorating Golgi membranes (Figure S3B). To

determine whether the overexpression of LRRK2 influences the

integrity of the Golgi complex, similar to ArfGAP1 overexpres-

sion, the effects of exogenous FLAG-LRRK2 on Golgi morphol-

ogy was assessed in primary cortical neurons (Figure 3). The

overexpression of FLAG-LRRK2 in cortical neurons induces the

partial and complete fragmentation of the Golgi complex with the

familial G2019S mutant LRRK2 producing greater fragmenta-

tion than wild-type (WT) LRRK2 (Figure 3). Therefore, one

aspect of LRRK2-induced neuronal toxicity may relate to

disruption of the normal Golgi complex, and potentially suggests

that LRRK2 and ArfGAP1 act together in a common pathway to

regulate Golgi morphology and function. Together, our data

reveal the co-localization of LRRK2 with exogenous or

endogenous ArfGAP1 occurring within the cytoplasm and at

Golgi membranes. Furthermore, the overexpression of LRRK2

or ArfGAP1 commonly promotes the fragmentation and dispersal

of the Golgi complex.

ArfGAP1 Regulates LRRK2 Activity and Toxicity
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Figure 1. LRRK2 interacts with ArfGAP1 in mammalian cells and in vivo. (A) YFP-tagged ArfGAP1 (WT or DN) interacts with full-length FLAG-
tagged LRRK2 following immunoprecipitation (IP) with anti-FLAG antibody from HEK-293T cells. Domain organization of ArfGAP1 constructs is
indicated. (B) Interaction of ArfGAP1-YFP (WT or DN) and FLAG-LRRK2 following reverse IP with anti-GFP antibody from HEK-293T cells. (C) Domain
mapping reveals the interaction of ArfGAP1-YFP with full-length (WT) LRRK2 and residues 480–895 of LRRK2 (fragment F2) following IP with anti-FLAG
antibody from HEK-293T cells. Domain organization of LRRK2 deletion mutants is indicated. (D) Myc-a-synuclein fails to interact with ArfGAP1-YFP
following IP with anti-myc antibody from HEK-293T cells. (E) LRRK2 interacts with ArfGAP1 in cerebral cortex extracts from WT mice but not LRRK2
knockout (KO) mice following IP with anti-LRRK2 antibody (clone c41-2). (F) ArfGAP1 interacts with LRRK2 in mouse cerebral cortex following IP with
anti-ArfGAP1 antibody but not with a rabbit IgG control. IgG light chain (LC) indicates the equivalent amounts of IgG used for IP. Molecular mass
markers are indicated in kilodalton (kDa). Data are representative of at least two independent experiments.
doi:10.1371/journal.pgen.1002526.g001

ArfGAP1 Regulates LRRK2 Activity and Toxicity
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Figure 2. Co-localization of LRRK2 and ArfGAP1 in mammalian cells and neurons. (A) Confocal fluorescence microscopy reveals the co-
localization of FLAG-tagged human LRRK2 with YFP-tagged and endogenous ArfGAP1 within the cytoplasm and at Golgi membranes of HEK-293T
cells. ArfGAP1-YFP expression induces the dispersal of the Golgi complex and localizes to Golgi-derived vesicles and within the cytoplasm, whereas
endogenous ArfGAP1 localizes to the intact Golgi complex (arrowheads) and at lower levels within the cytoplasm. Scale bars: 10 mm. (B) Similar co-
localization of FLAG-LRRK2 with ArfGAP1-YFP or endogenous ArfGAP1 within the cytoplasm and at Golgi membranes (arrowheads) in rat primary
cortical neurons. Cytofluorograms and co-localization coefficients (Rcoloc) reveal the extent of co-localization between LRRK2 and ArfGAP1
fluorescence signals with strongest correlation between LRRK2 and ArfGAP1-YFP in HEK-293T cells, and LRRK2 and endogenous ArfGAP1 in cortical
neurons. Confocal images are taken from single z-plane at 0.1 mm thickness. Images are representative of at least three independent transfection
experiments. Scale bars: 10 mm. (C) Subcellular fractionation of HEK-293T cells expressing ArfGAP1-YFP and FLAG-LRRK2. LRRK2 and ArfGAP1 are
detected together in multiple subcellular fractions including soluble cytosolic (S1-S3), heavy (P2, mitochondria/TIM23) and light (P3, Golgi/GM130)
membrane fractions (left panels). ArfGAP1-YFP interacts with FLAG-LRRK2 in the membrane-deficient soluble cytosolic fraction (S3) following IP with
anti-FLAG antibody (right panel). Molecular mass markers are indicated in kilodalton (kDa). Blots are representative of at least two independent
experiments.
doi:10.1371/journal.pgen.1002526.g002

ArfGAP1 Regulates LRRK2 Activity and Toxicity
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PD–associated and functional mutations in LRRK2
modulate the interaction with ArfGAP1
To investigate the impact of PD-associated familial mutations

on the interaction of LRRK2 with ArfGAP1, we conducted co-

immunoprecipitation analysis in HEK-293T cells expressing

ArfGAP1-YFP and FLAG-LRRK2 variants. Compared to WT

LRRK2, the familial mutants R1441C, Y1699C and G2019S

commonly induce a marked yet non-significant increase in the

interaction of LRRK2 with ArfGAP1 (Figure 4A). The R1441C

and Y1699C variants are localized to the Roc GTPase and COR

domains, respectively, and have been shown to modestly impair

GTP hydrolysis and lead to an increase in the steady-state levels of

Figure 3. LRRK2 expression induces Golgi fragmentation in cortical neurons. (A) Rat primary cortical neurons were transfected at DIV 3
with FLAG-LRRK2 variants or control empty plasmids. Cultures were fixed at DIV 6 and subjected to immunocytochemistry with antibodies to FLAG
and the Golgi membrane marker, Giantin. Confocal fluorescence microscopy reveals the effects of G2019S LRRK2 expression on Golgi morphology,
resulting in a normal, partially fragmented (intermediate) or fully fragmented Golgi complex. (B) Quantitative analysis of Golgi fragmentation induced
by WT or G2019S LRRK2 expression in cortical neurons. Golgi were subclassified as normal, intermediate or fragmented in FLAG-positive neurons
expressing WT LRRK2 (n= 359) or G2019S LRRK2 (n= 238) compared to control neurons (empty plasmid; n=498). Golgi subclasses were expressed as
a percent of the total number of Golgi per condition from three independent cultures.
doi:10.1371/journal.pgen.1002526.g003

ArfGAP1 Regulates LRRK2 Activity and Toxicity
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GTP-bound LRRK2 [17,20,27]. Accordingly, we assessed the

effects of functional non-pathogenic mutations known to modulate

the GTPase activity of LRRK2. We employed a T1348N variant

in the P-loop which abolishes GDP/GTP binding and impairs

GTP hydrolysis [16], and a R1398L variant in the Switch II

catalytic region which enhances GTP hydrolysis and reduces GTP

binding [27]. The T1348N and R1398L mutations significantly

impair the interaction of LRRK2 with ArfGAP1 compared to WT

LRRK2 (Figure 4B). Therefore, ArfGAP1 preferentially interacts

with GTP-bound LRRK2 rather than GDP-bound or guanine

nucleotide-deficient LRRK2, consistent with GAP proteins which

exhibit higher affinity for GTP-bound GTPases. Taken together,

our data demonstrate that familial and functional mutations which

impair GTP hydrolysis and increase the levels of GTP-bound

LRRK2 increase the interaction of LRRK2 with ArfGAP1.

Distribution of ArfGAP1 in the mammalian brain
LRRK2 is widely distributed throughout the mammalian brain

where it localizes to intracellular vesicular and membranous

structures within neurons. These structures include acidic vesicles

(i.e. lysosomes, endosomes, Golgi-derived vesicles, microtubule-

associated vesicles and multivesicular bodies), mitochondria, the

Golgi complex, the endoplasmic reticulum (ER) and lipid rafts

[44,45,46]. However, the distribution of ArfGAP1 within the

mammalian brain has not been described in detail but is enriched

in the brain relative to other tissues [47]. To further assess the

physiological relevance of the LRRK2/ArfGAP1 interaction, we

explored the localization of ArfGAP1 in the mammalian brain.

Western blot analysis of ArfGAP1 expression in distinct anatomic

regions of mouse brain reveals a broad expression profile with

highest levels detected in the cerebral cortex and cerebellum,

moderate levels in the striatum and ventral midbrain, and lowest

levels in the olfactory bulb and spinal cord (Figure 5A). To further

explore the localization of ArfGAP1, we conducted subcellular

fractionation of mouse brain tissue. ArfGAP1 is broadly detected

in a number of subcellular fractions with particular enrichment in

soluble cytosolic (S1 and S3), heavy membrane (P2, i.e.

mitochondria and crude synaptosomes), synaptosomal membrane

(LP1) and synaptosomal/synaptic vesicle cytosolic (LS1 and LS2)

fractions (Figure 5B). For comparison, LRRK2 is enriched in

heavy (P2) and light (P3, i.e. ER and Golgi) membrane,

synaptosomal membrane (LP1) and synaptic vesicle-enriched

Figure 4. Familial PD–associated and functional mutations in LRRK2 modulate the interaction with ArfGAP1. (A) Differential interaction
of YFP-tagged ArfGAP1 with WT and PD-associated mutant forms of FLAG-tagged human LRRK2 following IP with anti-FLAG antibody from HEK-293T
cells. Densitometric analysis reveals a non-significant increase in the interaction of ArfGAP1 with R1441C, Y1699C and G2019S LRRK2 compared to WT
LRRK2. (B) Functional GTPase mutations in FLAG-LRRK2 impair the interaction with ArfGAP1-YFP following IP with anti-FLAG antibody from HEK-293T
cells. Densitometry reveals a significant reduction of the interaction of ArfGAP1 with T1348N and R1398L LRRK2 compared to WT LRRK2. Data
represent the level of interaction of ArfGAP1 with LRRK2 expressed as a percent of the interaction with WT LRRK2. The levels of ArfGAP1 IP were first
normalized to ArfGAP1 input levels, and then further normalized to LRRK2 IP levels. Bars represent the mean 6 SEM (n=3 experiments). *P,0.05
compared to WT LRRK2 by one-way ANOVA with Newman-Keuls post-hoc analysis. ns, non-significant.
doi:10.1371/journal.pgen.1002526.g004
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(LP2) fractions (Figure 5B). Importantly, ArfGAP1 and LRRK2 co-

associate in heavy membrane (P2), synaptosomal membrane (LP1),

and synaptosomal cytosolic (LS1) fractions as well as other soluble

fractions (S1 and S2) (Figure 5B). Notably, ArfGAP1 is detected in

both membrane (P2 and LP1) and soluble cytosolic (S1–S3, LS1 and

LS2) fractions in brain tissue supporting its dynamic and transient

interaction with intracellular membranes such as the Golgi complex.

Next, we explored the localization of endogenous ArfGAP1 in

primary neuronal cultures derived from the cortex or ventral

midbrain of post-natal rats. Confocal fluorescence microscopy

demonstrates the localization of endogenous ArfGAP1 to the Golgi

complex and cytoplasm of microtubule-associated protein 2 (MAP2)-

labeled neurons in cortical cultures and tyrosine hydroxylase (TH)-

labeled dopaminergic neurons in midbrain cultures (Figure 5C). To

confirm the specificity of our ArfGAP1 antibody we developed

lentiviral vectors expressing short hairpin RNAs (shRNAs) for

efficient silencing of ArfGAP1 expression. Primary cortical neurons

were infected with lentiviral-shRNAs and endogenous ArfGAP1

expression was monitored by Western blot analysis of neuronal

extracts or by confocal microscopy. Two independent shRNAs

directed against rat ArfGAP1 induce the viral dose-dependent

knockdown of endogenous ArfGAP1 levels compared to a non-

silencing control shRNA in cortical neurons (Figure 5D). We also

demonstrate the loss of ArfGAP1-positive fluorescent signal in GFP-

labeled cortical neurons following shRNA-mediated knockdown of

endogenous ArfGAP1 compared to a control shRNA (Figure 5E).

Thus, this antibody specifically labels endogenous ArfGAP1 in

cortical neurons, and furthermore validates the efficient knockdown

of endogenous ArfGAP1 in cortical neurons using lentiviral-shRNA

vectors. Finally, two ArfGAP1-specific antibodies were employed to

assess the distribution of ArfGAP1 in intact tissue sections from

mouse brain. However, both antibodies were not suitable for

specifically labeling ArfGAP1 in brain sections (data not shown).

Collectively, our data demonstrate that ArfGAP1 is expressed

throughout the mammalian brain including within cortical and

midbrain dopaminergic neuronal populations where it localizes to

both cytosolic and membrane-associated subcellular compartments.

ArfGAP1 enhances the GTPase activity of LRRK2
ArfGAP1 functions as a GAP protein to promote the GTP

hydrolysis of the small GTPase Arf1 [39]. Additional GTPases

regulated by ArfGAP1 have not yet been identified. To determine

whether the interaction with ArfGAP1 may serve to regulate the

GTPase activity of LRRK2, we explored the effects of ArfGAP1 on

LRRK2 GTP binding and hydrolysis. To monitor the effects of

ArfGAP1 on the steady-state levels of GTP-bound LRRK2, we

conducted pull-down assays using GTP-sepharose fromHEK-293T

cell extracts expressing FLAG-LRRK2 with or without ArfGAP1-

YFP. ArfGAP1 expression fails to influence the levels of GTP-

bound LRRK2 (Figure 6A). Control experiments confirm the

specificity of LRRK2 for binding to immobilized GTP as revealed

by a reduction in GTP-bound LRRK2 following competition with

an excess of free GTP, or by using a T1348N variant of LRRK2

that abolishes binding to guanine nucleotides (Figure 6B). Next, we

compared the effects of ArfGAP1 on the steady-state levels of GTP-

bound LRRK2 harboring familial PD-associated mutations.

ArfGAP1 expression fails to appreciably influence the levels of

GTP-bound WT or mutant LRRK2, whereas the R1441C and

Y1699C mutations significantly enhance the levels of GTP-bound

LRRK2 independent of ArfGAP1 expression levels (Figure 6C), as

previously reported [20]. The increased levels of GTP-bound

LRRK2 for these familial mutations (i.e. R1441C and Y1699C)

correlates with their increased interaction with ArfGAP1 (refer to

Figure 4A), further suggesting a preference of ArfGAP1 for

interacting with GTP-bound LRRK2.

To assess the impact of ArfGAP1 on LRRK2 GTPase activity

we performed a well-established in vitro assay with immunopurified

proteins to monitor LRRK2-mediated GTP hydrolysis by

measuring the release of free c-phosphate produced by hydrolysis

of GTP to GDP [27]. To initially determine whether ArfGAP1 is

functional in these assays, the effects of ArfGAP1 on Arf1-

mediated GTP hydrolysis were assessed. As expected, ArfGAP1

enhances Arf1 GTP hydrolysis by .2.5-fold whereas a DN-

ArfGAP1 deletion mutant with negligible GAP activity fails to

modify Arf1 GTP hydrolysis (Figure 6D). Thus, ArfGAP1 is

functional in this GTPase assay consistent with the functional

effect of ArfGAP1 overexpression on Golgi dispersal (refer to

Figure 2 and Figure S3). Next, we assessed the impact of ArfGAP1

on LRRK2-mediated GTP hydrolysis. Similar to its effect on Arf1,

ArfGAP1 enhances the GTP hydrolysis of WT LRRK2 by .2.5-

fold whereas DN-ArfGAP1 has no effect (Figure 6E). The GDP/

GTP-binding-deficient T1348N LRRK2 variant exhibits mark-

edly diminished GTP hydrolysis activity that does not increase

upon addition of ArfGAP1 (Figure 6E). Furthermore, a GTPase-

hyperactive R1398L LRRK2 variant exhibits a .2.5-fold increase

in GTP hydrolysis, compared to WT LRRK2, which is not further

enhanced by addition of ArfGAP1 (Figure 6E). The lack of effect

of ArfGAP1 on R1398L LRRK2 suggests that this mutant may

already possess maximal GTPase activity in this assay, and is

comparable to the effect of ArfGAP1 on WT LRRK2.

Collectively, our data identify ArfGAP1 as a novel GAP protein

for modulating the GTPase activity of LRRK2.

ArfGAP1 is directly phosphorylated by LRRK2 and
enhances LRRK2 kinase activity
To determine whether there is a reciprocal relationship between

LRRK2 and ArfGAP1 enzymatic activities, we assessed whether

ArfGAP1 regulates LRRK2 kinase activity and whether ArfGAP1 is

a substrate of LRRK2-mediated phosphorylation. In vitro kinase

assays using [32P]-c-ATP with recombinant LRRK2 (residues 970–

2527) and full-length GST-ArfGAP1 proteins reveal that WT,

R1441C and G2019S LRRK2 can robustly phosphorylate

ArfGAP1 (Figure 7A and 7B). A kinase-dead LRRK2 variant

(D1994A) has negligible effects on ArfGAP1 phosphorylation

(Figure 7A). Similar results were obtained using immunopurified

full-length LRRK2 variants for in vitro kinase assays (Figure S4).

Several LRRK2 kinase substrates have previously been proposed,

but these have generally shown weak phosphorylation compared to

intrinsic LRRK2 autophosphorylation [11,12,13,15,48]. In contrast

to previously published substrates, natively folded ArfGAP1

demonstrates a K(m) of 9.362.8 nM in kinase reactions containing

2 nM LRRK2 enzyme, suggesting efficient phosphorylation of

ArfGAP1 by LRRK2 (Figure 7B). Therefore, ArfGAP1 represents a

novel, robust substrate of LRRK2-mediated phosphorylation in vitro.

Unexpectedly, we noticed that inclusion of ArfGAP1 enhances

LRRK2 autophosphorylation (Figure 7A). Inclusion of a peptide

substrate for LRRK2 in the same reaction demonstrates that

ArfGAP1 enhances the kinase activity of WT, R1441C and

G2019S LRRK2 by .2-fold (Figure 7C). Our data suggest that

modulation of GTPase activity by ArfGAP1 enhances the kinase

activity of LRRK2.

Silencing of ArfGAP1 expression rescues G2019S LRRK2-
induced neurite shortening
The overexpression of familial LRRK2 mutations promotes

neuronal toxicity and cell death in primary cultures in a manner
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Figure 5. ArfGAP1 is expressed in the mammalian brain. (A) Western blot analysis of ArfGAP1 protein levels in mouse brain, with highest
levels detected in cerebral cortex (Ctx) and cerebellum (Cb), moderate levels in striatum (Str) and ventral midbrain (VMB), and lowest levels in olfactory
bulb (Olf) and spinal cord (SC). LRRK2 is detected at highest levels in striatum, cortex and cerebellum. b-tubulin indicates equivalent protein loading.
(B) Subcellular fractionation of mouse whole brain tissue. ArfGAP1 is broadly detected with particular enrichment in membrane-associated fractions
including the heavy (P2) and synaptosomal (LP1) membrane fractions, and soluble cytosolic (S1 and S3) and synaptosomal cytosolic (LS1) fractions.
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dependent upon GTPase and kinase activity [9,19,20,30]. LRRK2

has also been shown to robustly regulate the morphology of

neuronal processes with overexpression of familial LRRK2

mutants (i.e. G2019S and I2020T) reducing neurite length and

complexity and LRRK2 deletion or knockdown producing

opposing effects [35,36,38,49]. As GTPase activity is required

for the neurotoxic effects of WT and mutant LRRK2, we explored

the effects of ArfGAP1 expression on LRRK2-induced neurite

shortening. First, we assessed the effects of LRRK2 overexpression

on neurite length in primary cortical and midbrain dopaminergic

neurons in order to develop a robust quantitative assay of neurite

shortening. Primary cortical and midbrain cultures were tran-

siently co-transfected with FLAG-LRRK2 variants and DsRed-

Max (cortical) or GFP (midbrain) at a DNA molar ratio of 10:1 to

morphologically label transfected neurons (Figure 8A and Figure

S5). At 3 days post-transfection, the length of DsRed-positive or

GFP-positive neurites were determined and assigned as dendritic

or axonal processes. For cortical cultures, neurite analysis was

restricted to the MAP2-positive neuronal population, whereas for

midbrain cultures, neurite analysis was conducted on TH-positive

dopaminergic neurons. The overexpression of G2019S LRRK2

leads to a robust shortening of axonal processes from cortical

neurons with a smaller effect of WT LRRK2, compared to

neurons expressing DsRed alone (Figure 8A and 8B). In contrast,

G2019S LRRK2 has only a modest effect on the length of

dendritic processes from cortical neurons in this assay, whereas the

effects of WT LRRK2 are negligible (Figure 8A and 8B). The

effects of LRRK2 overexpression on the length of dopaminergic

neuronal processes were less robust with G2019S LRRK2

producing a negligible effect on axonal length but unexpectedly

a small significant increase in the length of dendritic processes

compared to neurons expressing GFP alone (Figure S5).

Therefore, we decided to focus our attention on primary cortical

neurons as a robust model for assessing LRRK2-induced neurite

shortening.

To confirm that G2019S LRRK2 overexpression specifically

influences the length of axonal processes, cortical neurons were co-

transfected as described above with FLAG-LRRK2 and the

axonal marker GFP-tagged tau (MAPT) at a DNA molar ratio of

10:1 to morphologically label axonal processes of transfected

neurons (Figure S6A). The overexpression of G2019S LRRK2

leads to a robust shortening of GFP-tau-positive axonal processes

from cortical neurons compared to neurons expressing GFP-tau

alone (Figure S6B). To determine whether the overexpression of

LRRK2 also induces neuronal cell death in our primary cortical

culture model, cultures were co-transfected with FLAG-LRRK2

variants and GFP constructs at a 10:1 molar ratio at DIV 11, fixed

at DIV 14, and subjected to TUNEL labeling to detect apoptotic

cells. The overexpression of WT or G2019S LRRK2 does not

appreciably induce the apoptotic cell death of cortical neurons

compared to control neurons expressing GFP alone (Figure S6C).

Therefore, G2019S LRRK2 induces robust neurite shortening

independent of apoptotic cell death in this rat primary cortical

neuronal model.

In yeast, deletion of the GCS1 gene suppresses human LRRK2-

induced toxicity [27]. To determine the effects of modulating

ArfGAP1 expression on LRRK2-induced toxicity in primary

cortical neurons, we assessed the impact of ArfGAP1 gene

silencing on LRRK2-induced neurite shortening. Cortical neurons

were first infected with lentiviral vectors expressing shRNAs (sh-

control and sh-ArfGAP1 #2, refer to Figure 5) and subsequently

co-transfected with FLAG-LRRK2 and GFP constructs at a 10:1

molar ratio (Figure 9A). The length of GFP-positive axonal

processes was determined for each condition. Silencing of

endogenous ArfGAP1 expression alone fails to influence axon

length compared to a non-silencing shRNA control (Figure 9B).

The overexpression of G2019S LRRK2 reduces axonal length by

,30% and remarkably the shRNA-mediated silencing of

ArfGAP1 completely rescues this toxic effect (Figure 9B). WT

LRRK2 reduces axonal length by ,15% in this assay and

additional silencing of ArfGAP1 leads to a partial rescue of neurite

shortening (Figure 9B). The protective effect of ArfGAP1 silencing

against G2019S LRRK2-induced neurite shortening could be

replicated using an independent shRNA sequence targeting

ArfGAP1 (sh-ArfGAP1 #1, refer to Figure 5) thus confirming

the specificity of this protective effect (Figure S7). Collectively,

these data demonstrate that silencing of ArfGAP1 expression

robustly protects against neuronal toxicity induced by G2019S

LRRK2 expression.

LRRK2 and ArfGAP1 synergistically promote neurite
shortening
Similar to our yeast LRRK2 model [27], reducing ArfGAP1

expression in neurons protects against LRRK2-induced toxicity.

Next, we sought to determine the impact of ArfGAP1 overex-

pression on LRRK2-induced neurite shortening. Primary cortical

neurons were co-transfected with combinations of FLAG-LRRK2,

ArfGAP1-YFP and DsRed-Max constructs at a 10:10:1 molar

ratio to morphologically label transfected neurons (Figure 10A).

WT LRRK2 was used in these assays in order to assess more

subtle effects resulting from co-expression with ArfGAP1.

Overexpression of ArfGAP1 alone reduces the length of DsRed-

positive axons by ,20% and dendrites by ,10%, relative to

control neurons expressing DsRed alone (Figure 10B). The

overexpression of WT LRRK2 leads to a ,10% reduction of

axon length with negligible effects on dendrite length (Figure 10B).

The co-expression of WT LRRK2 and ArfGAP1 in cortical

neurons reduces the length of axons (,45%) and dendrites

(,30%) to a greater extent than would be expected for an additive

effect of these proteins (i.e. ,30% for axons and ,10% for

LRRK2 (MJFF-2/c41-2) is also broadly detected with enrichment in membrane-associated fractions, including heavy (P2) and light (P3) membrane,
synaptosomal (LP1) and synaptic vesicle (LP2) fractions, in addition to soluble cytosolic (S1 and S2) and synaptosomal cytosolic (LS1) fractions.
ArfGAP1 and LRRK2 co-associate in the S1, P2, S2, LP1 and LS1 fractions. The distribution of marker proteins demonstrates the enrichment of
mitochondria/heavy membranes (TIM23; P2 and LP1), endoplasmic reticulum (PDI; P2, P3, LP1 and LP2), Golgi (Giantin; P2 and P3), synaptosomes/
synaptic vesicles (synaptophysin 1; P2, P3, LP1 and LP2) and synaptosomal/synaptic vesicle cytosolic (a-synuclein; LS1 and LS2). (C) Confocal
fluorescence microscopy reveals the localization of endogenous ArfGAP1 to the Golgi complex and cytoplasm of MAP2-positive cortical neurons and
tyrosine hydroxylase (TH)-positive dopaminergic neurons in rat primary cortical and midbrain cultures, respectively. (D) Validation of short hairpin
RNA (shRNA)-mediated silencing of endogenous ArfGAP1 expression in rat primary cortical neuronal cultures. Lentiviral vectors expressing non-
silencing shRNA (LV-sh-control) or ArfGAP1-specific shRNAs (LV-sh-ArfGAP1 #1 and LV-sh-ArfGAP1 #2) were used to infect primary neurons at
increasing viral doses ranging from 3.3 to 50 ng of P24 antigen per ml of media. Western blot analysis of neuronal extracts reveals the viral dose-
dependent knockdown of ArfGAP1 with ArfGAP1-specific shRNAs but not control shRNA. b-tubulin indicates equivalent protein loading. (E) Silencing
of endogenous ArfGAP1 expression in GFP-labeled cortical neurons with lentiviral-shRNA vectors revealed by confocal fluorescence microscopy with
a rabbit anti-ArfGAP1 antibody. Molecular mass markers are indicated in kilodalton (kDa). Scale bars: 10 mm.
doi:10.1371/journal.pgen.1002526.g005
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Figure 6. ArfGAP1 enhances the GTP hydrolysis activity of LRRK2. (A) ArfGAP1-YFP expression fails to influence the steady-state levels of
FLAG-tagged WT LRRK2 bound to GTP following pull-down assays with GTP-sepharose from HEK-293T cells. (B) Confirmation of the specificity of
LRRK2 GTP binding is indicated by negligible binding of the GDP/GTP binding-deficient LRRK2 mutant, T1348N. Competition with an excess of free
GTP (2 mM) abolishes binding of WT LRRK2 to GTP-sepharose in the presence or absence of ArfGAP1. Each input lysate (top panel) was split equally
and used for GTP pull-down assays in the presence or absence of free GTP (lower panel), as indicated. (C) ArfGAP1-YFP expression fails to influence the
steady-state levels of GTP-bound WT and PD-associated mutant LRRK2. Densitometric analysis reveals a significant increase in GTP binding of the
R1441C and Y1699C LRRK2 variants compared to WT LRRK2, independent of ArfGAP1 expression. Data represent the level of LRRK2 GTP binding
expressed as a percent of WT LRRK2 levels. GTP-bound LRRK2 levels were normalized to LRRK2 input levels. Bars represent the mean 6 SEM (n=3
experiments). *P,0.05 and **P,0.01 compared to WT LRRK2 by one-way ANOVA with Newman-Keuls post-hoc analysis. (D) GTP hydrolysis activity of
Arf1 in the presence or absence of full-length ArfGAP1 was determined by measuring the concentration of free phosphate (Pi) released from GTP. WT
ArfGAP1 enhances Arf1-mediated GTP hydrolysis whereas DN ArfGAP1 has negligible effects on Arf1. The input levels of immunopurified Arf1-CFP
and ArfGAP1-YFP variant were assessed by Western blot analysis with anti-GFP antibody (lower panel). (E) GTP hydrolysis activity of WT LRRK2 is
significantly enhanced by WT ArfGAP1 but not by DN ArfGAP1. Guanine nucleotide-deficient T1348N LRRK2 exhibits impaired GTP hydrolysis activity,
whereas the GTPase-hyperactive R1398L LRRK2 exhibits enhanced activity compared to WT LRRK2. The input levels of immunopurified FLAG-LRRK2
variants were assessed by Western blot analysis with anti-FLAG antibody (E, upper panel), quantified by densitometry, and used for normalization of Pi
release between LRRK2 variants. GTP hydrolysis activity for Arf1 (D) or LRRK2 (E) is expressed as Pi release as a percent of Arf1 or WT LRRK2 activity
alone, as indicated. Bars represent the mean 6 SEM (n= 5 experiments). *P,0.05 and **P,0.01 compared to Arf1 (D) or WT LRRK2 (E) by one-way
ANOVA with Newman-Keuls post-hoc analysis.
doi:10.1371/journal.pgen.1002526.g006
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dendrites) (Figure 10B). Since ArfGAP1 promotes the GTP

hydrolysis activity of LRRK2 we reasoned that the synergistic

effect on neurite shortening may result from the increased GTPase

activity of LRRK2. Accordingly, we assessed the effects of co-

expressing the GDP/GTP binding-deficient variant, K1347A

LRRK2, together with ArfGAP1 on neurite shortening in cortical

neurons. The expression of K1347A LRRK2 alone has a

negligible effect on axonal length whereas ArfGAP1 alone

markedly reduces axonal length (Figure 10C). The co-expression

of these proteins fails to produce a synergistic shortening of axonal

processes but instead K1347A LRRK2 modestly protects against

ArfGAP1-induced neurite shortening (Figure 10C). A second

GTPase-inactive variant, T1348N LRRK2, also fails to produce

synergistic effects with ArfGAP1 but similarly partly protects

against ArfGAP1-induced neurite shortening (Figure 10D). The

modest protective effects of GDP/GTP binding-deficient LRRK2

mutants could potentially result from dominant-negative effects of

these variants on endogenous LRRK2. Taken together, these data

reveal a synergistic effect of LRRK2 and ArfGAP1 expression on

neurite shortening which is dependent, at least in part, on LRRK2

GTPase activity.

Silencing of LRRK2 expression attenuates ArfGAP1-
induced neurite shortening
ArfGAP1 overexpression unexpectedly promotes neurite short-

ening in cortical neurons similar to the effects of G2019S LRRK2

(refer to Figure 10). Furthermore, the synergistic effects of

LRRK2/ArfGAP1 on neurite shortening are prevented by

impairing the GDP/GTP binding activity of LRRK2 suggesting

a role for active LRRK2 in this process. Since ArfGAP1

additionally serves as a robust substrate of LRRK2-mediated

phosphorylation (refer to Figure 7), we elected to determine

whether LRRK2 expression is reciprocally required for the

neurotoxic effects of ArfGAP1. To silence LRRK2 expression,

we first developed a lentiviral shRNA vector targeting rodent

LRRK2. Rat primary cortical neurons were infected with

lentiviral-shRNAs and endogenous LRRK2 expression was

monitored by Western blot analysis of neuronal extracts or by

confocal microscopy using two well-characterized LRRK2-specific

antibodies (MJFF-2/c41-2 and JH5514 [44,50,51,52]). A LRRK2-

specific shRNA could induce the viral dose-dependent knockdown

of endogenous LRRK2 levels compared to a non-silencing control

Figure 7. LRRK2 phosphorylates ArfGAP1, and ArfGAP1 enhances LRRK2 kinase activity. (A) In vitro kinase assay with [32P]-c-ATP,
recombinant WT, R1441C, G2019S or D1994A human LRRK2 (D970, residues 970–2527) and GST-tagged ArfGAP1. Silver-stained SDS-PAGE gels
indicate equal loading of ArfGAP1 and LRRK2 proteins in each condition. Autoradiographs show the LRRK2-dependent phosphorylation of ArfGAP1,
with enhanced phosphorylation by G2019S LRRK2 compared to WT protein. LRRK2 autophosphorylation is also detected in this assay. Molecular mass
markers are indicated in kilodaltons (kDa). (B) Michaelis-Menten kinetics of ArfGAP1 as a LRRK2 substrate. Reactions were run for 30 min in the
presence of 2 nM WT-LRRK2 enzyme and the indicated concentration of ArfGAP1. Incorporation of phosphate into ArfGAP1 was determined by SDS-
PAGE followed by densitometry from a phosphoscreen. (C) In vitro radioactive kinase assay using recombinant D970-LRRK2 variants and LRRKtide
peptide as a LRRK2 substrate. WT, R1441C and G2019S LRRK2 phosphorylate LRRKtide at levels correlating with LRRK2 autophosphorylation, whereas
kinase-dead D1994A shows minimal activity towards LRRKtide. ArfGAP1 significantly enhances LRRKtide phosphorylation by LRRK2 variants. Data
represent the level of LRRKtide phosphorylation expressed as 32P incorporation in radioactive counts per minute (CPM). Bars represent the mean 6
SEM (n=4 experiments). ***P,0.001 comparing the absence or presence of ArfGAP1 for each LRRK2 variant by one-way ANOVA with Newman-Keuls
post-hoc analysis. ns, non-significant.
doi:10.1371/journal.pgen.1002526.g007
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shRNA in cortical neurons (Figure 11A). We also demonstrate a

loss of LRRK2-positive fluorescent signal in GFP-labeled cortical

neurons following lentiviral-shRNA-mediated silencing of endog-

enous LRRK2 compared to a control shRNA (Figure 11B). To

determine the effects of modulating LRRK2 expression on

ArfGAP1-induced toxicity in primary cortical neurons, we

assessed the impact of LRRK2 gene silencing on ArfGAP1-

induced neurite shortening. Cortical neurons were first infected

with lentiviral vectors expressing shRNAs (LV-sh-control and LV-

sh-LRRK2) and subsequently co-transfected with ArfGAP1-YFP

and DsRed constructs at a 10:1 molar ratio (Figure 11C). The

length of DsRed-positive axonal processes was determined for

each condition. Silencing of endogenous LRRK2 expression alone

markedly increases axonal length compared to a non-silencing

control shRNA (Figure 11D), as previously reported [36,37]. The

overexpression of ArfGAP1 alone reduces axonal length and the

shRNA-mediated silencing of LRRK2 attenuates this toxic effect

(Figure 11D). Collectively, these data demonstrate that neuronal

Figure 8. Effects of LRRK2 expression on neurite length of cortical neurons. (A) Rat primary cortical neurons were transfected at DIV 3 with
FLAG-LRRK2 variants and DsRed constructs at a DNA molar ratio of 10:1. Cultures were fixed at DIV 6. Fluorescent microscopic images reveal the co-
labeling of cortical neurons with FLAG-LRRK2 (WT or G2019S) and DsRed. DsRed images were pseudo-colored with ICA to improve the contrast of
neuritic processes for length measurements. Neuronal soma (arrows) and axonal processes (arrowheads) are indicated. Scale bars: 400 mm. (B) Analysis
of the length of DsRed-positive neurites reveals a significant shortening of axons and dendrites due to G2019S LRRK2 expression, with smaller effects
of WT LRRK2 on axons only, compared to DsRed alone (control). Bars represent mean (6 SEM) length of axons or dendrites in mm from 90–120 DsRed-
positive neurons from at least three independent experiments/cultures. *P,0.05, **P,0.01 and ***P,0.001 compared to control (DsRed alone) by
one-way ANOVA with Newman-Keuls post-hoc analysis. ns, non-significant.
doi:10.1371/journal.pgen.1002526.g008
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Figure 9. Silencing of ArfGAP1 expression rescues G2019S LRRK2-induced neurite shortening. (A) Primary cortical neurons were infected
with lentiviral vectors expressing shRNAs (non-silencing control or ArfGAP1-specific) at DIV 2, subsequently transfected with FLAG-LRRK2 (WT or
G2019S) and GFP constructs at a 10:1 molar ratio at DIV 3, and fixed at DIV 6. Fluorescent microscopic images reveal the co-labeling of cortical
neurons with FLAG-LRRK2 and GFP. The knockdown of endogenous ArfGAP1 fluorescence signal is also shown following lentiviral expression of
ArfGAP1-specific shRNA (LV-sh-ArfGAP1 #2) compared to control shRNA (LV-sh-control). GFP images were pseudo-colored with ICA for neurite
length measurements. Neuronal soma (arrows) and axonal processes (arrowheads) are indicated. Scale bars: 400 mm. (B) Analysis of GFP-positive
axonal processes reveals a robust shortening of axons induced by G2019S LRRK2 expression, and a smaller effect induced by WT LRRK2, compared to
GFP alone (control). Knockdown of ArfGAP1 with lentiviral-shRNA vectors produces a complete rescue of G2019S LRRK2-induced axon shortening and
a partial rescue of WT LRRK2-induced shortening, compared to control shRNA. Bars represent mean (6 SEM) length of axons expressed as a percent
of GFP alone (control/LV-sh-control) from.60 GFP-positive neurons from at least two independent experiments/cultures. ***P,0.001 comparing LV-
sh-ArfGAP1 with LV-sh-control for G2019S LRRK2 by one-way ANOVA with Newman-Keuls post-hoc analysis. ns, non-significant.
doi:10.1371/journal.pgen.1002526.g009
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toxicity induced by ArfGAP1 expression is dependent, at least in

part, on endogenous LRRK2 expression.

ArfGAP1 expression is required for G2019S LRRK2-induced

neurite shortening (refer to Figure 9). To determine whether

ArfGAP1 expression also influences the increased neurite length

induced by silencing of LRRK2 expression, we examined the

impact of co-silencing LRRK2 and ArfGAP1 on neurite length.

Cortical neurons were co-infected with lentiviral vectors express-

ing shRNAs (LV-sh-control, LV-sh-LRRK2 or LV-sh-ArfGAP1

#2), subsequently transfected with a GFP construct to morpho-

logically label individual neurons, and the length of GFP-positive

axonal processes were determined (Figure S8). Silencing of

LRRK2 expression dramatically increases neurite length and the

co-silencing of ArfGAP1 does not influence this LRRK2-

dependent neurite phenotype (Figure S8). Therefore, the increased

neurite length induced by silencing of endogenous LRRK2

expression occurs independently of ArfGAP1 expression.

Discussion

Here, we demonstrate a novel functional interaction between

LRRK2 and the GTPase-activating protein, ArfGAP1. Both

proteins biochemically interact in vitro, in mammalian cells and in

vivo in brain. LRRK2 and ArfGAP1 co-localize within the

cytoplasm and at the membrane surface of the Golgi complex

and Golgi-derived vesicles. The overexpression of ArfGAP1 or

LRRK2 commonly promotes the fragmentation and dispersal of

the Golgi complex, and for LRRK2 this effect is more pronounced

for the familial G2019S mutant compared to the WT protein. The

interaction of LRRK2 and ArfGAP1 occurs at least within the

cytoplasm of mammalian cells and may not critically require Golgi

membranes. Familial PD mutations in LRRK2 tend to enhance

the interaction with ArfGAP1 whereas functional mutations

influencing LRRK2 GTPase activity also modulate the interaction

with ArfGAP1. ArfGAP1 expression does not influence LRRK2

GTP binding but instead markedly enhances the GTP hydrolysis

activity of LRRK2 consistent with its known function as a GAP.

Unexpectedly, ArfGAP1 enhances the kinase activity of LRRK2

suggesting a potential requirement of GTP hydrolysis for kinase

activation. Conversely, LRRK2 robustly and directly phosphor-

ylates ArfGAP1 suggesting the potential for a reciprocal regulation

of its GAP activity. Finally, silencing of ArfGAP1 expression

protects against neurite shortening induced by G2019S LRRK2

expression in cortical neurons, whereas the co-expression of

LRRK2 and ArfGAP1 promotes neurite shortening in a

synergistic manner dependent upon LRRK2 GTPase activity. In

a reciprocal manner, endogenous LRRK2 expression is required

in part for neurite shortening induced by ArfGAP1 overexpression

whereas endogenous ArfGAP1 is not required for increased

neurite length induced by LRRK2 silencing. Collectively, this

study reveals a novel functional role for ArfGAP1 in regulating the

GTPase activity and neuronal toxicity of LRRK2. Modulation of

ArfGAP1 activity could potentially provide a promising strategy

for attenuating LRRK2-induced neurodegeneration in PD.

The functional interaction of LRRK2 with ArfGAP1 is

conserved from yeast to mammals. Our prior studies revealed

that deletion of the GCS1 gene in yeast suppressed toxicity and

reversed the vesicular trafficking defect induced by the expression

of human LRRK2 [27]. However, the mechanisms underlying

these effects remain unclear. In the present study, we translate

these observations to mammalian cells and demonstrate that

ArfGAP1, the mammalian ortholog of yeast GCS1, can function-

ally modulate LRRK2 activity and toxicity. ArfGAP1 is known to

act as a GTPase-activating protein for the small GTPase Arf1

where it participates in the recruitment of coat proteins to the

surface of Golgi membranes [39,42,43]. COPI (coat protein I),

COPII or clathrin-AP-2 complexes are well-characterized coat

proteins which act to initiate vesicular transport by coupling

vesicle formation with cargo sorting [53]. ArfGAP1 is a

component of the COPI complex where it serves to regulate

Arf1 through GAP activity-dependent inactivation [39], and also

serves as a coat protein that acts as an effector of Arf1

[40,54,55,56,57]. Recently, ArfGAP1 has also been shown to

play a similar role in endocytosis regulated by the coat protein AP-

2 [58]. In the present study we identify ArfGAP1 as a novel

interacting protein of LRRK2. ArfGAP1 unexpectedly interacts

with the N-terminal region of LRRK2, a largely uncharacterized

region of this protein containing LRRK2-specific, armadillo and

ankyrin repeats [1,59]. The non-catalytic C-terminal region of

ArfGAP1 most likely mediates the interaction with LRRK2, a

region that is known to mediate protein-protein interactions [57].

The strength of the interaction between ArfGAP1 and LRRK2 is

modulated by the GTPase activity of LRRK2 with a preference

for the GTP-bound protein. However, impairing LRRK2 GDP/

GTP binding through the introduction of the P-loop T1348N

mutation, or increasing the GDP-bound state via the GTPase-

hyperactive mutation R1398L, reduces but does not prevent the

interaction with ArfGAP1 suggesting that factors other than GTP

hydrolysis activity or GDP/GTP binding status may additionally

regulate this interaction. The observation that the familial PD

mutants, R1441C and Y1699C, increase the interaction of

LRRK2 with ArfGAP1 may reflect the impaired GTP hydrolysis

and increased GTP binding exhibited by these mutations [20,27].

We demonstrate that ArfGAP1 enhances the GTP hydrolysis

activity of LRRK2 by ,2.5-fold in vitro, an effect which is similar

in magnitude to the effect of ArfGAP1 on Arf1 GTPase activity.

ArfGAP1 does not influence the steady-state levels of GTP-bound

Figure 10. Synergistic effects of LRRK2 and ArfGAP1 overexpression on neurite shortening. (A) Primary cortical neurons were transfected
with FLAG-LRRK2 WT, ArfGAP1-YFP and DsRed constructs at a molar ratio of 10:10:1 at DIV 3 and fixed at DIV 6. Fluorescent microscopic images
indicate the co-labeling of cortical neurons with combinations of FLAG-LRRK2, ArfGAP1-YFP and DsRed. DsRed images were pseudo-colored with ICA
for neurite length measurements. Neuronal soma (arrows) and axonal processes (arrowheads) are indicated. Scale bars: 400 mm. (B) Analysis of DsRed-
positive neurites reveals a modest shortening of axons induced by WT LRRK2 or ArfGAP1 expression alone with no effect on dendrite length. Co-
expression of WT LRRK2 and ArfGAP1 induces a marked synergistic shortening of axons and dendrites compared to either condition alone. (C)
K1347A LRRK2 expression alone has negligible effects on axon length whereas ArfGAP1 alone induces the shortening of DsRed-positive axonal
processes. The co-expression of K1347A LRRK2 and ArfGAP1 fails to further reduce axon length but instead modestly protects against ArfGAP1-
induced axon shortening. (D) T1348N LRRK2 and ArfGAP1 alone induce the shortening of DsRed-positive axonal processes, whereas their co-
expression fails to further reduce axon length. Instead, T1348N LRRK2 expression modestly protects against ArfGAP1-induced axon shortening. Bars
represent mean (6 SEM) length of axons or dendrites expressed as a percent of DsRed alone (control) from 60–120 DsRed-positive neurons from at
least three independent experiments/cultures. *P,0.05, **P,0.01 and ***P,0.001 compared to control (DsRed alone), or by comparison of ArfGAP1
alone with LRRK2/ArfGAP1 co-expression, by one-way ANOVA with Newman-Keuls post-hoc analysis. ns, non-significant. (E) Western blot analysis of
FLAG-tagged human LRRK2 variants (WT, K1347A or T1348N), used above, following transient expression in HEK-293T cells confirming equivalent
LRRK2 protein levels. b-tubulin indicates equivalent protein loading.
doi:10.1371/journal.pgen.1002526.g010
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LRRK2 variants. Therefore, ArfGAP1 represents a novel GAP

protein for regulating the GTPase activity of LRRK2.

The regulation of LRRK2 activity by protein effectors or

extrinsic signals is poorly understood. Until now, only a single

protein, ARHGEF7, has been suggested to regulate the GTPase

domain of LRRK2 by potentially acting as a GEF to promote the

exchange of GDP for GTP [26]. The intrinsic regulation of

LRRK2 activity is also unclear. It has previously been proposed

that the irreversible binding of non-hydrolyzable GTP analogs to

the GTPase domain of LRRK2 may promote its kinase activity

[19,20], whereas substantial evidence clearly demonstrates that an

intact functional GTPase domain is critically required for kinase

activity [19,20,60,61]. Recent compelling data has shown that

LRRK2 kinase activity is dependent upon the capacity for GTP

binding but is independent of GTP binding per se [21]. This has led
to the suggestion that interaction with an unknown guanine

nucleotide-binding protein may instead regulate LRRK2 kinase

activity in a GTP-dependent manner [21]. Therefore, based on

the effects of synthetic GTPase mutations (i.e. T1343G/R1398Q

or R1398L) that exhibit enhanced GTPase activity yet reduced

kinase activity [16,27,60], we might anticipate that enhancing

GTP hydrolysis activity via ArfGAP1 would similarly reduce the

kinase activity of LRRK2. Unexpectedly, we observe that

ArfGAP1 enhances the kinase activity of LRRK2. Since ArfGAP1

does not influence the steady-state levels of GTP-bound LRRK2

in cells, our data may suggest that GTP hydrolysis per se could
serve to regulate kinase activity through an unknown mechanism.

Such a mechanism might involve a GTP hydrolysis-dependent

Figure 11. Silencing of LRRK2 expression rescues ArfGAP1-induced neurite shortening. (A) Validation of short hairpin RNA (shRNA)-
mediated silencing of endogenous LRRK2 expression in rat primary cortical neuronal cultures. Lentiviral vectors expressing non-silencing shRNA (LV-
sh-control) or LRRK2-specific shRNA (LV-sh-LRRK2) were used to infect primary neurons at increasing viral doses ranging from 1.66 to 25 ng of P24
antigen per ml of media. Western blot analysis of neuronal extracts reveals the viral dose-dependent knockdown of LRRK2 with LRRK2-specific
shRNAs but not control shRNA using two independent rabbit LRRK2 antibodies (MJFF-2/c41-2 or JH5514). b-tubulin indicates equivalent protein
loading. (B) Silencing of endogenous LRRK2 expression in GFP-labeled cortical neurons with lentiviral-shRNA vectors revealed by confocal
fluorescence microscopy with a rabbit anti-LRRK2 antibody (JH5514). (C) Primary cortical neurons were infected with lentiviral vectors expressing
shRNAs (non-silencing control or LRRK2-specific) at DIV 2, subsequently transfected with ArfGAP1-YFP and DsRed constructs at a 10:1 molar ratio at
DIV 3, and fixed at DIV 6. Fluorescent microscopic images reveal the co-labeling of cortical neurons with ArfGAP1-YFP and DsRed. DsRed images were
pseudo-colored with ICA for neurite length measurements. Neuronal soma (arrows) and axonal processes (arrowheads) are indicated. Scale bars:
400 mm. (D) Analysis of DsRed-positive axonal processes reveals a robust shortening of axons induced by ArfGAP1 expression and increased axon
length induced by silencing of LRRK2 with LV-sh-LRRK2 vector, compared to DsRed alone (control). Silencing of LRRK2 with LV-sh-LRRK2 produces a
partial rescue of ArfGAP1-induced axon shortening compared to LV-sh-control. Bars represent mean (6 SEM) length of axons expressed as a percent
of DsRed alone (control/LV-sh-control) from .85 DsRed-positive neurons from two independent experiments/cultures. **P,0.01 and ***P,0.001
compared to control (LV-sh-control/DsRed alone), or by comparison of ArfGAP1/LV-sh-control with ArfGAP1/LV-sh-LRRK2, by one-way ANOVA with
Newman-Keuls post-hoc analysis. ns, non-significant.
doi:10.1371/journal.pgen.1002526.g011
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alteration in protein conformation which exposes the kinase

activation loop or modulates the interaction with a guanine

nucleotide-dependent binding protein. Alternatively, it is possible

that ArfGAP1 interacts directly with LRRK2 in vitro to stabilize the

kinase-active dimeric LRRK2 conformation and/or alter the

kinase domain thereby prolonging an activated state [62]. Future

studies will aim to clarify the mechanism by which ArfGAP1

regulates the kinase activity of LRRK2 both in vitro and in

mammalian cells.

In a reciprocal manner, we also demonstrate that ArfGAP1 is a

robust and direct substrate of LRRK2-mediated phosphorylation

in vitro. While our data is suggestive of ArfGAP1 being a

physiological substrate of LRRK2 kinase activity, further work is

required to confirm LRRK2-dependent phosphorylation of

ArfGAP1 in vivo. The role of LRRK2-mediated ArfGAP1

phosphorylation is unclear. It could serve to reciprocally regulate

GAP activity through a positive or negative feedback mechanism,

or may serve to regulate the interaction of ArfGAP1 with LRRK2

or other protein factors. ArfGAP1 overexpression in cells results in

excessive inactivation of Arf1 and Golgi fragmentation [40], and

synergistically promotes neurite shortening when co-expressed

with LRRK2, suggesting that LRRK2-mediated phosphorylation

does not lead to an inactivation of ArfGAP1 but rather may

enhance its activity. Supporting such a mechanism, neurite

shortening induced by ArfGAP1 overexpression is dependent, at

least in part, upon endogenous LRRK2 expression. It has not yet

been possible to confirm whether phosphorylation of ArfGAP1

promotes or inhibits its GAP activity towards LRRK2 or Arf1

since obtaining sufficient quantities of recombinant phosphorylat-

ed ArfGAP1 for such GTPase assays has proven difficult. In future

studies, the detailed mapping of ArfGAP1 phosphorylation sites

and the development of phospho-mimic and phospho-deficient

forms will help to determine the impact of LRRK2-dependent

phosphorylation on ArfGAP1 activity and neurotoxicity.

The functional interaction of LRRK2 with ArfGAP1 may

support a role for LRRK2 in regulating COPI-dependent

trafficking of Golgi-derived vesicles as well as AP-2-dependent

endocytosis [57,58]. LRRK2 is localized to a number of vesicular

and membranous intracellular structures in mammalian neurons,

including lysosomes, clathrin-coated endosomes, Golgi-derived

vesicles, microtubule-associated vesicles, multivesicular bodies, the

Golgi complex, endoplasmic reticulum and the mitochondrial

outer membrane [44,45,46]. LRRK2 does not contain obvious

transmembrane domains and most likely interacts with proteins or

protein complexes at the surface of membranes [63]. In a yeast

model, LRRK2 induces defects in the trafficking of endosomes

from the plasma membrane to the vacuole most likely due to the

abnormal accumulation of autophagic vacuoles in and around this

structure [27]. Disruption of the ArfGAP1 ortholog GCS1 rescued

the endosomal trafficking defect and toxicity induced by human

LRRK2 in yeast [27]. The expression of human LRRK2 is also

known to cause derangements in a number of vesicular trafficking

pathways in cells and in vivo. In the brains of transgenic mice, the

expression of human R1441C and G2019S LRRK2 leads to the

abnormal accumulation of autophagic vacuoles [35]. Further-

more, G2019S LRRK2 inducible transgenic mice exhibit

neuronal Golgi fragmentation [64], an effect similarly observed

in the present study following overexpression of WT or G2019S

LRRK2 in primary cortical neurons. In cultured neurons, G2019S

LRRK2 expression leads to the accumulation of spheroid axonal

inclusions composed of swollen lysosomes, multivesicular bodies,

and distended vacuolated mitochondria [36]. The expression of

R1441G LRRK2 causes the accumulation of autophagic vacuoles

and multivesicular bodies in cultured neurons [46]. Therefore, it is

clear that human LRRK2 expression is capable of regulating

vesicular trafficking pathways in cells and neurons.

It is not yet clear whether ArfGAP1 regulates the effects of

LRRK2 on vesicular trafficking. While ArfGAP1 predominantly

localizes to Golgi membranes as part of the COPI complex where

it also serves to regulate Arf1 activity [57], it is also found in the

cytoplasm of mammalian cells and associates with synaptosomes in

mouse brain. The interaction of ArfGAP1with LRRK2 can occur

within the cytoplasm of cells, and also potentially at vesicle

membranes, where it is likely to have broad implications. In the

brain, LRRK2 and ArfGAP1 are detected together in synapto-

somal membrane and cytosolic fractions in addition to heavy

membrane fractions. The observation that ArfGAP1 can regulate

vesicle generation through regulating at least two of the three

major vesicle coat proteins (i.e. COPI and clathrin-AP-2) implies

that it may influence the generation, trafficking and sorting of

diverse vesicular structures [57,58]. LRRK2 has been reported to

interact with the endosomal protein Rab5b to regulate synaptic

vesicle endocytosis in neurons [65]. Our recent studies have

further shown that LRRK2 can regulate synaptic vesicle

exocytosis in addition to endocytosis in neurons [27]. Another

recent study demonstrates a role for LRRK2 in synaptic vesicle

trafficking and distribution where it may regulate the storage and

mobilization of synaptic vesicles within the recycling pool [66].

LRRK2 is present within the synaptosomal compartment of

neurons where it has been shown to interact with several pre-

synaptic proteins involved in vesicular endocytosis and recycling

including AP-2 complex subunits a2 and b1, AP-1 complex

subunits a1 and b1, clathrin coat assembly protein AP180, clathrin

heavy chain 1 and dynamin-1 [66]. The functional relationship of

LRRK2 with these vesicular proteins is unclear but could

potentially be related to a proposed function of LRRK2 in

regulating actin cytoskeleton dynamics [38,67]. In future studies, it

will be important to determine whether ArfGAP1 plays a role in

LRRK2-dependent vesicular trafficking through the regulation of

AP-2-mediated endocytosis at the pre-synapse either through

direct phosphorylation by LRRK2 or by enhancing LRRK2

GTPase activity. A role for ArfGAP1 in synaptic vesicle

endocytosis has not yet been demonstrated but is plausible given

its association with synaptosomal membranes.

We demonstrate that neurite shortening induced by G2019S

LRRK2 in cortical neurons is regulated by ArfGAP1 expression.

Similar to our recent yeast model of LRRK2-dependent toxicity

[27], we demonstrate that silencing of ArfGAP1 expression

protects against LRRK2-induced neurite shortening, whereas co-

expression of ArfGAP1 and LRRK2 promotes this phenotype

through a GTPase-dependent mechanism. The molecular basis for

these effects is not clear at present. Neurite shortening induced by

LRRK2 appears to be more prominent for the G2019S and

I2020T kinase domain mutations, whereas the R1441G mutation

has only modest effects, with minimal effects for WT LRRK2 [36].

In this study, we demonstrate a small effect of WT and T1348N

LRRK2, but not K1347A LRRK2, on axonal length which

potentially relates to a GTPase activity-independent effect of

LRRK2 in this assay, whereas G2019S LRRK2 induces robust

neurite shortening. At least for the G2019S mutation, LRRK2-

induced neurite shortening is dependent on kinase activity and

requires activation of autophagy [36,37]. Although the contribu-

tion of GTPase activity has not been directly assessed, our data

suggest a requirement of ArfGAP1 for LRRK2-induced neurite

shortening. Conceivably, this could be due to a direct physiological

effect of ArfGAP1 on enhancing the GTP hydrolysis and/or

kinase activity of LRRK2 in neurons, as supported by the effects of

LRRK2/ArfGAP1 co-expression on neurite length, or may relate
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to an indirect downstream effect of ArfGAP1 on regulating

vesicular trafficking pathways potentially including autophagy

[57,58]. The development of selective inhibitors of ArfGAP1

activity is warranted to determine whether ArfGAP1 inhibition

provides a promising strategy for attenuating the pathogenic

effects of familial LRRK2 mutants in neurons. Furthermore, it will

be important to confirm the contribution of ArfGAP1 to G2019S

LRRK2-induced dopaminergic neurodegeneration in vivo in

available rodent models. We also find that ArfGAP1 expression

alone induces robust neurite shortening of cortical neurons that

can be attenuated, at least in part, by silencing of endogenous

LRRK2 expression. This might suggest that LRRK2-mediated

phosphorylation is required for the toxic effects of ArfGAP1. The

future identification of ArfGAP1 phosphorylation sites will be

required to test this idea. LRRK2 and ArfGAP1 may therefore

operate together in a common pathway where they interplay to

regulate Golgi integrity and neurite morphology.

Collectively, we demonstrate a novel functional interaction

between LRRK2 and ArfGAP1 which serves to regulate LRRK2

GTPase activity and neuronal phenotypes. We identify ArfGAP1

as a novel GAP protein for regulating LRRK2 GTPase activity,

whereas ArfGAP1 also represents a new substrate of LRRK2-

mediated phosphorylation. ArfGAP1 may represent a promising

target for interfering with LRRK2-dependent neurodegeneration

in familial and sporadic PD.

Materials and Methods

Animals
Mice and rats were housed and treated in strict accordance with

the Swiss legislation (Canton de Vaud, Animal Authorization

No. 2293) and the European Community Council directive

(2010/63/EU) for the care and use of laboratory animals. Animals

were maintained in a pathogen-free barrier facility and exposed to

a 12 h light/dark cycle with food and water provided ad libitum.

Pregnant female Sprague-Dawley rats were obtained from Charles

River Laboratories (L’Arbresle Cedex, France) and resulting P0

rats were used for preparation of post-natal primary neuronal

cultures.

Expression plasmids, proteins, and antibodies
Mammalian expression plasmids containing FLAG-tagged full-

length human LRRK2 (WT, R1441C, Y1699C and G2019S) and

FLAG-tagged human LRRK2 deletion mutants were kindly

provided by Dr. Christopher Ross (Johns Hopkins University,

Baltimore, USA) [30]. Functional GTPase missense mutations

(K1347A, T1348N and R1398L) were introduced into FLAG-

tagged WT LRRK2 by site-directed mutagenesis using the

Stratagene QuickChange II XL kit (Agilent Technologies, La

Jolla, CA, USA) and verified by DNA sequencing. C-terminal

YFP-tagged rat ArfGAP1 (WT and D64N) plasmids were kindly

provided by Dr. Jennifer Lippincott-Schwartz (National Institutes

of Health, Bethesda, USA) [40]. A GFP-tagged full-length human

LRRK2 plasmid was kindly provided by Dr. Mark Cookson

(National Institutes of Health, Bethesda, USA) and GFP-tagged

human tau was kindly provided by Dr. Leonard Petrucelli (Mayo

Clinic, Jacksonville, USA). A plasmid containing C-terminal CFP-

tagged human Arf1 was obtained from Addgene (plasmid#11381,

[68]). A pRK5 plasmid containing myc-tagged human a-synuclein
was kindly provided by Dr. Ted Dawson (Johns Hopkins

University, Baltimore, USA). A FLAG-tagged human parkin

plasmid was described previously [69]. A pEGFP-N1 plasmid was

obtained from Clontech (Mountain View, CA, USA) and a

pDsRed-Max-N1 plasmid was obtained from Addgene (plasmid

#21718, [70]). Short hairpin RNA (shRNA) sequences in

lentiviral plasmid pLKO.1 targeting rat ArfGAP1 (sh-ArfGAP1

#1, TRCN0000047321; sh-ArfGAP1 #2, TRCN0000100750) or

rat LRRK2 (sh-LRRK2, TRC0000021461) were obtained from

Thermo Fisher Scientific (Open Biosystems, Huntsville, AL, USA).

A non-silencing control shRNA sequence in lentiviral plasmid

pLKO.1 was obtained from Addgene (plasmid #1864, [71]).

Recombinant GST-tagged human LRRK2 protein (residues 970–

2527) and LRRKtide peptide (RLGRDKYKTLRQIRQ) were

obtained from Invitrogen (Carlsbad, CA, USA). GST-tagged full-

length human ArfGAP1 protein was obtained from Novus

Biologicals (Littleton, CO, USA). The following antibodies were

employed: mouse monoclonal anti-FLAG-(M2), anti-FLAG-(M2)-

peroxidase, anti-TH (clone TH-2), anti-MAP2 (clone HM-2) and

anti-b-tubulin (clone TUB 2.1), and rabbit polyclonal anti-MAP2

and reagent grade IgG from rabbit serum (Sigma-Aldrich, Buchs,

Switzerland); mouse monoclonal anti-GFP (clones 7.1 and 13.1),

anti-c-myc (clone 9E10) and anti-c-myc-peroxidase (Roche

Applied Science, Basel, Switzerland); rabbit polyclonal anti-TH

(Novus Biologicals); rabbit monoclonal anti-LRRK2 (clone

MJFF2/c41-2; Epitomics Inc., Burlingame, CA, USA); rabbit

polyclonal anti-LRRK2 (JH5514) raised to residues 2500–2515

[44,51]; rabbit polyclonal anti-ArfGAP1 raised to recombinant

full-length human ArfGAP1 protein (Proteintech Group Inc.,

Chicago, IL, USA); rabbit polyclonal anti-ArfGAP1 raised to

recombinant rat ArfGAP1 protein (residues 1–257) was generously

provided by Dr. Dan Cassel (Technion-Israel Institute of

Technology, Haifa, Israel) [39,47]; rabbit polyclonal anti-Giantin

(ab24586; Abcam, Cambridge, UK); rabbit monoclonal anti-PDI

(clone C81H6; Cell Signaling Technology, Danvers, MA, USA);

mouse monoclonal anti-TIM23 (clone 32), anti-GM130 (clone 35)

and anti-a-synuclein (clone 42) (BD Biosciences, Allschwil,

Switzerland); mouse monoclonal anti-synaptophysin 1 (Synaptic

Systems, Göttingen, Germany); peroxidase-coupled anti-mouse

and anti-rabbit IgG, light chain-specific secondary antibodies

(Jackson ImmunoResearch, Inc., West Grove, PA, USA); anti-

rabbit IgG and anti-mouse IgG coupled to AlexaFluor-488, -546

and -633 (Invitrogen).

Cell culture and transient transfection
HEK-293FT cells were maintained in Dulbecco’s modified

Eagle’s media supplemented with 10% foetal bovine serum and

16 penicillin/streptomycin at 37uC in a 5% CO2 atmosphere.

For transient transfection, cells were transfected with plasmid

DNAs using FuGENE HD reagent (Roche Applied Science)

according to manufacturer’s recommendations. Cells were

routinely harvested at 48–72 h post-transfection for biochemical

assays.

Lentivirus production
Lentiviral vectors were produced in HEK-293T cells using a

third generation packaging system by calcium phosphate trans-

fection with the following plasmids: pCMV-D8.92 (13 mg), pRSV-

Rev (3.75 mg), pMD2.G (3 mg) and pLKO.1 vector containing

shRNA sequence (13 mg) [72]. After 72 h the medium was

collected and centrifuged in a SW32Ti ultracentrifuge rotor at

19,000 rpm for 90 min at 4uC. The pellet was resuspended in

3 ml of buffer containing 16 PBS pH 7.4 and 0.5% BSA for a

506concentrated virus stock. Viral titer was determined using the

HIV-1 p24 antigen ELISA kit (Zeptometrix Corp., Buffalo, USA).

A p24 of 1.66 to 50 ng/ml was used for infecting primary cortical

neurons at a density of 400,000 cells in 3 ml media (per 35 mm

dish).
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Co-immunoprecipitation assay and Western blot analysis
For co-immunoprecipitation (IP) assays, HEK-293FT cells were

transiently transfected with each plasmid in 10 cm dishes. After

48 h, confluent cells were harvested in 1 ml of IP buffer (16

phosphate-buffered saline [PBS] pH 7.4, 1% Triton X-100, 16

phosphatase inhibitor cocktail 1 and 2 [Sigma-Aldrich], 16

Complete Mini protease inhibitor cocktail [Roche Applied

Sciences]). Cell lysates were rotated at 4uC for 1 h and soluble

fractions were obtained by centrifugation at 17,500 g for 15 min at

4uC. Soluble fractions were combined with 50 ml Protein G-

Dynabeads (Invitrogen) pre-incubated with mouse anti-FLAG

(5 mg; Sigma-Aldrich), anti-GFP (1 mg; Roche Applied Sciences) or

anti-myc (5 mg; Roche Applied Sciences) antibodies followed by

overnight incubation at 4uC. Dynabead complexes were sequen-

tially washed once with IP buffer supplemented with 500 mM

NaCl, twice with IP buffer and three times with PBS.

Immunoprecipitates were eluted by heating at 70uC for 10 min

in 26Laemmli sample buffer (Bio-Rad AG, Reinach, Switzerland)

with 5% 2-mercaptoethanol. IPs and inputs (1% total lysate) were

resolved by SDS-PAGE, transferred to Protran nitrocellulose

(0.2 mm; Perkin Elmer, Schwerzenbach, Switzerland), and sub-

jected to Western blot analysis with appropriate primary and

secondary antibodies. Proteins were visualized by enhanced

chemiluminescence (ECL; GE Healthcare, Glattbrugg, Switzer-

land) on a FujiFilm LAS-4000 Luminescent Image Analysis

system. Quantitation of protein levels by densitometry was

conducted on acquired images using LabImage 1D software

(Kapelan Bio-Imaging Solutions, Leipzig, Germany).

For in vitro pull-down assays with recombinant proteins, HEK-

293T cell extracts expressing FLAG-LRRK2 or FLAG-parkin, or

mock transfected, were subjected to IP with anti-FLAG antibody

(5 mg) and Protein G-Dynabeads (Invitrogen) overnight at 4uC and

washed stringently five times with IP buffer supplemented with

500 mM NaCl, and once with PBS. FLAG IP-Dynabead

complexes were combined with recombinant GST-ArfGAP1

(500 ng) in 16 PBS and incubated overnight at 4uC. Dynabead

complexes were washed three times with IP buffer and subjected

to Western blot analysis with anti-ArfGAP1 and anti-FLAG

antibodies.

For in vivo co-IP, protein extracts were prepared from the

cerebral cortex of adult wild-type and LRRK2 knockout mice

(with targeted deletion of exon 41 of the LRRK2 gene [73];

generously provided by Drs. Giorgio Rovelli and Derya Shimshek,

Novartis Pharma AG, Basel, Switzerland) by homogenization in

TNE buffer (10 mM Tris-HCL pH 7.4, 150 mM NaCl, 5 mM

EDTA, 0.5% NP-40, 16 phosphatase inhibitor cocktail 1 and 2

[Sigma-Aldrich], 16 Complete Mini protease inhibitor cocktail

[Roche Applied Sciences]). Protein concentration was determined

by BCA assay (Pierce Biotechnology, Rockford, IL, USA). Brain

extracts (10 mg protein) were combined with 50 ml Protein G-

Dynabeads (Invitrogen) pre-incubated with rabbit anti-LRRK2

(5 mg; MJFF2/c41-2; Epitomics, Inc.), rabbit anti-ArfGAP1 (3 mg;

Proteintech Group Inc.) or rabbit IgG (3 mg; Sigma-Aldrich)

antibodies followed by overnight incubation at 4uC. Dynabead

complexes were sequentially washed twice with TNE buffer and

twice with TBS buffer (10 mM Tris-HCL pH 7.4, 150 mM

NaCl). Immunoprecipitates were eluted by heating at 70uC for

10 min, resolved by SDS-PAGE and subjected to Western blot

analysis.

For western blot analysis of mouse brain tissues, adult C57BL/

6J mice were sacrificed and anatomic brain regions were rapidly

dissected and frozen on dry ice. Protein extracts were prepared

from brain tissues by homogenization in TNE buffer, and clarified

by centrifugation at 100,000 g for 20 min at 4uC. The detergent-

soluble supernatant fraction was quantified by BCA assay (Pierce

Biotechnology) and 75–100 mg of protein was resolved by SDS-

PAGE and subjected to Western blot analysis with rabbit anti-

ArfGAP1 (provided by Dr. D. Cassel), rabbit anti-LRRK2 (clone

c41-2; Epitomics, Inc.) and mouse anti-b-tubulin (clone TUB 2.1;

Sigma-Aldrich) antibodies.

Immunocytochemistry and confocal microscopy
For co-localization of LRRK2 and ArfGAP1, HEK-293FT cells

or primary cortical cultures transiently expressing FLAG-LRRK2

and ArfGAP1-YFP were fixed in 4% paraformaldehyde (PFA) and

processed for immunocytochemistry with mouse anti-FLAG-(M2)

antibody, and anti-mouse IgG-AlexaFluor-633 antibody. Endog-

enous ArfGAP1 was visualized using a rabbit anti-ArfGAP1

antibody (provided by Dr. D. Cassel) and anti-rabbit IgG-

AlexaFluor-488 antibody. For localization of endogenous Arf-

GAP1 to neurons, primary cortical and midbrain cultures were

fixed and processed for immunocytochemistry with rabbit anti-

ArfGAP1 antibody (provided by Dr. D. Cassel) and either mouse

anti-TH antibody (for midbrain cultures) or mouse anti-MAP2

antibody (for cortical cultures), and anti-rabbit-IgG-AlexFluor-488

and anti-mouse IgG-AlexaFluor-633 antibodies. For co-localiza-

tion of LRRK2 or ArfGAP1 with Golgi markers, FLAG-LRRK2

(anti-FLAG antibody), endogenous LRRK2 (JH5514 antibody,

[44]) or endogenous ArfGAP1 (anti-ArfGAP1; provided by Dr. D.

Cassel) were combined with either anti-GM130 or anti-Giantin

antibodies, and visualized with appropriate anti-IgG-AlexaFluor

secondary antibodies. Fluorescent images were acquired using a

Zeiss LSM 700 inverted confocal microscope (Carl Zeiss AG,

Feldbach, Switzerland) with a Plan-Apochromat 636/1.40 oil

objective in x, y and z planes. Images were subjected to

deconvolution using HuygensPro software (Scientific Volume

Imaging, Hilversum, Netherlands). Representative images are

taken from a single z-plane at a thickness of 0.1 to 1 mm.

Subcellular fractionation of brain tissue
Subcellular fractionation was conducted as described previously

[44,74] using whole brain tissue from adult C57BL/6J mice.

Briefly, mouse brain homogenates were subjected to centrifugation

at 800 g for 10 min to generate pellet (P1, nuclear/whole cell) and

soluble (S1, cytosolic) fractions. S1 fractions were centrifuged at

9,200 g for 15 min to produce P2 (heavy and crude synaptosomal

membranes) and S2 (soluble cytosolic) fractions. The P2 fraction

was solublized and centrifuged at 25,000 g for 20 min to produce

LP1 (synaptosomal membranes) and LS1 (synaptosomal cytosolic)

fractions. The LS1 fraction was further fractionated by ultracen-

trifugation at 165,000 g for 2 h to produce LP2 (synaptic vesicle-

enriched) and LS2 (synaptic vesicle cytosolic) fractions. The S2

fraction was subjected to ultracentrifugation at 165,000 g for 2 h to

produce P3 (light membranes/microsomes) and S3 (soluble

cytosolic) fractions. Protein concentrations were determined by

BCA assay (Pierce Biotechnology) and equal quantities of each

fraction were validated by Western blotting with specific

antibodies labeling mitochondria (TIM23; P2 and LP1), endo-

plasmic reticulum (PDI; P2, LP1 and LP2), Golgi complex

(Giantin; P2 and P3), synaptosomes/synaptic vesicles (synapto-

physin 1; P2, P3, LP1 and LP2), and synaptosomal/synaptic

vesicle cytosolic (a-synuclein; LS1 and LS2) subcellular compart-

ments.

Subcellular fractionation of HEK-293T cells
HEK-293T cells were transfected with combinations of FLAG-

LRRK2 and ArfGAP1-YFP plasmids for 48 h. Confluent cells

were harvested in 16 PBS and homogenized by 10 strokes in a

ArfGAP1 Regulates LRRK2 Activity and Toxicity

PLoS Genetics | www.plosgenetics.org 20 February 2012 | Volume 8 | Issue 2 | e1002526



2 ml glass Dounce homogenizer with a polytetrafluoroethylene

pestle. Total homogenates (H) were centrifuged at 1,000 g for

10 min to produce pellet (P1, nuclei/cell debri) and soluble (S1)

fractions. The S1 fraction was centrifuged at 10,000 g for 10 min

to produce pellet (P2, heavy membranes) and soluble (S2)

fractions. The S2 fraction was subjected to ultracentrifugation at

100,000 g for 1 h to produce pellet (P3, light membranes) and

soluble (S3, cytosolic) fractions. Protein concentrations were

determined by BCA assay (Pierce Biotechnology) and equal

quantities of each fraction were validated by Western blotting with

specific antibodies labeling heavy (P2, anti-TIM23/mitochondria)

or light (P3, anti-GM130/Golgi complex) membranes.

For co-immunoprecipitation analysis of FLAG-LRRK2 and

ArfGAP1-YFP in subcellular fractions, the membrane-deficient

soluble S3 fraction was subjected to IP with anti-FLAG antibody

(5 mg; Sigma-Aldrich) coupled to Protein G-Dynabeads (Invitro-

gen) as described above, and IPs and input lysates were subjected

to Western blotting with anti-GFP and anti-FLAG antibodies.

GTP binding assay
HEK-293T cells transiently expressing FLAG-tagged LRRK2

variants or LRR-Roc (F3, residues 895–1503) were lysed in 1 ml

of lysis buffer G (16 PBS pH 7.4, 1% Triton X-100, 16

phosphatase inhibitor cocktail 1 and 2 [Sigma-Aldrich], 16

Complete Mini protease inhibitor cocktail [Roche Applied

Sciences]), rotated for 1 h at 4uC, and clarified by centrifugation

at 17,500 g for 10 min at 4uC. Soluble proteins were incubated

with 50 ml c-aminohexyl-GTP-sepharose bead suspension (Jena

Bioscience, Jena, Germany) by rotating for 2 h at 4uC. Beads were

washed three times with buffer G and once with PBS alone. For

GTP competition assays, incubation was allowed to proceed for

60 min at 4uC, GTP was added to a final concentration of 2–

4 mM, and incubation was continued for a further 60 min at 4uC

followed by washing. GTP-bound proteins were eluted in 26

Laemmli sample buffer containing 5% 2-mercaptoethanol by

heating at 70uC for 10 min. GTP-bound proteins or input lysates

(1% total lysate) were resolved by SDS-PAGE and subjected to

Western blotting with anti-FLAG and anti-GFP antibodies.

GTP hydrolysis assay
GTP hydrolysis activity was measured as previously described

[27] by monitoring the release of free c-phosphate (Pi) from GTP.

Briefly, HEK-293FT cells transiently expressing full-length FLAG-

LRRK2 variants (WT, T1348N or R1398L), Arf1-CFP or

ArfGAP1-YFP (WT or DN) in 10 cm dishes were lysed in 1 ml

of phosphate-free lysis buffer (10 mM Tris-HCl pH 7.5, 150 mM

NaCl, 1% NP-40, 16Complete Mini protease inhibitor cocktail

[Roche Applied Sciences]) and subjected to immunoprecipitation

(IP) with anti-FLAG (5 mg) or anti-GFP (1 mg) antibodies pre-

incubated with 50 ml Protein G-Dynabeads (Invitrogen) by

rotating at 4uC overnight. Similar non-transfected HEK-293FT

cell lysates were also subjected to IP with anti-FLAG or anti-GFP

antibodies to control for non-specific protein contamination.

Dynabeads were stringently washed 36with lysis buffer and 26

with 0.5 M Tris-HCl pH 7.5, finally resupended in 45 ml of 0.5 M

Tris-HCl pH 7.5, and subjected to GTP hydrolysis assays in 96-

well plates using the high sensitivity colorimetric GTPase assay kit

(Innova Biosciences, Cambridge, UK) as per manufacturer’s

recommendations. To control for protein contamination, each

well received 20 ml of FLAG- and GFP-coupled Dynabeads at a

1:1 ratio (total 40 ml Dynabead suspension) to a final volume of

100 ml in 0.5 M Tris buffer before addition of 100 ml substrate

buffer mix containing 0.5 mM GTP. For Arf1 hydrolysis assays,

each well received a total of 40 ml of GFP-coupled Dynabead

suspension. In parallel, replicate samples were set up in the

absence of GTP to account for non-specific background

absorbance. Assay samples were incubated for 2 h at room

temperature, Dynabeads were carefully removed to prevent

interference with absorbance measurements, and the remaining

assay sample was measured for absorbance at 635 nm. Absor-

bance from samples in the absence of GTP was removed from the

equivalent sample containing GTP. The resulting absorbance

value was used to calculate Pi concentration based on a known Pi
standard curve included on each 96-well plate. Data were

expressed as a percent of Pi release due to WT LRRK2 or Arf1

alone. Each anti-FLAG or anti-GFP IP used above (5 ml total) was

subjected to Western blotting with anti-FLAG or anti-GFP

antibodies to confirm immuno-purification of LRRK2, Arf1 or

ArfGAP1 proteins in each experiment. The relative expression

levels of each LRRK2 variant was determined by densitometry

and used to normalize LRRK2-mediated Pi release in each

experiment.

In vitro kinase assays
Recombinant commercially purified human WT, R1441C,

G2019S and D1994A LRRK2 (D1-970) proteins were purchased

from Invitrogen for use in some experiments. Recombinant

proteins were assessed for equal purity (.95% by Coomassie SDS-

PAGE) and protein concentration as determined by BCA assay

(Pierce Biotechnology). Recombinant human full-length myc-

tagged human LRRK2 protein was isolated from HEK-293FT

cells (Invitrogen) transiently transfected with LRRK2-myc plas-

mids. Cells were collected at 48 h post-transfection and centri-

fuged at 500 g for 5 min. Pelleted cells were re-suspended in lysis

buffer (0.5% Triton X-100, 16 Complete protease inhibitor

cocktail (Roche Applied Sciences) and 16 PhoStop (Roche

Applied Sciences) in 16 PBS pH 7.4 without Ca2+ or Mg2+) and

rotated at 4uC for 1 h. Lysates were clarified by centrifugation at

20,000 g for 10 min. Supernatant was incubated with anti-c-myc

antibody (clone 9E10, Roche Applied Sciences) pre-incubated

with Dynabeads-Protein G (Invitrogen) for 16 h. Supernatants

were discarded and beads washed 36 in PBS supplemented with

500 mM NaCl, 36 in PBS and resuspended in kinase buffer

(5 mM EGTA and 20 mM b-glycerol phosphate in PBS).

Reactions were initiated by addition of activation buffer to final

concentrations that includes 0.1 mM [32P]-c-ATP (0.2 mCi/

reaction) and 20 mM MgCl2 (reactions using ArfGAP1 were

conducted with 1 mg of protein) and incubation at 30uC with

shaking for 30 min. Reactions were terminated by placing the

tubes in ice and removing supernatant to P-81 Whatman paper for

scintillation counting of LRRKtide peptide phosphorylation. The

remaining beads and reaction buffer were suspended in 26

Laemmli sample buffer. Reactions were then heated at 75uC for

10 min and resolved on Tris-acetate SDS-PAGE gels. Immuno-

precipitated proteins were stained using Coomassie G-250 (Bio-

Rad) according to the manufacturer’s protocol. Whatman P-81

discs were washed 56 in 100 mM phosphoric acid buffer or with

additional washes until no radioactivity could be detected in wash

buffer. For comparisons in levels of kinase activity against peptide

substrates, one-way ANOVA and Newman-Keuls post-hoc test

were used to determine significance.

Primary neuronal cultures
Whole brains were dissected from Sprague-Dawley P0 rats and

the cerebral cortices and ventral midbrain (containing the

substantia nigra and ventral tegmental area) were stereoscopically

isolated and dissociated in media containing papain (20 U/ml;

Sigma). The cells were grown in 35 mm dishes on glass coverslips

ArfGAP1 Regulates LRRK2 Activity and Toxicity

PLoS Genetics | www.plosgenetics.org 21 February 2012 | Volume 8 | Issue 2 | e1002526



pre-coated with mouse laminin (33 mg/ml; Invitrogen) and poly-

D-lysine (20 ng/ml; BD Biosciences, Allschwil, Switzerland) in

media consisting of Neurobasal (Invitrogen), B27 supplement (2%

w/v), L-glutamine (500 mM) and penicillin/streptomycin (100 U/

ml). At days-in-vitro (DIV) 3, cortical and midbrain cultures were

treated with cytosine b-D-arabinofuranoside (AraC, 10 mM) to

inhibit glial cell division. By immunocytochemical analysis with

neuronal (MAP2 and TH) and astrocyte (GFAP) markers, cortical

neurons at DIV 6 were shown to consist of MAP2-positive neurons

(36.2062.03% of total cells), MAP2-negative neurons (45.616

2.21%) and GFAP-positive astrocytes (18.1962.10% of total)

based upon random sampling from 10 independent microscopic

fields at 106magnification. Midbrain cultures at DIV 6 consist of

TH-positive dopaminergic neurons (6.460.9% of total cells),

MAP2-positive neurons (51.6362.10% of total), GFAP-positive

astrocytes (28.3462.36% of total) and other cells (20.0263.10% of

total).

Neurite length assays
Cortical neurite length assay. Primary cortical cultures at

DIV 3 were co-transfected with FLAG-LRRK2 and DsRed-

Max, GFP or GFP-tau plasmids at a 10:1 molar ratio (5 mg total

DNA per 35 mm dish) using Lipofectamine 2000 reagent

(Invitrogen) according to manufacturer’s recommendations. At

DIV 6, cultures were fixed with 4% paraformaldehyde and

processed for immunocytochemistry with mouse anti-FLAG-

(M2) antibody (Sigma-Aldrich) and anti-mouse IgG-AlexaFluor-

488 or -633 antibodies (Invitrogen). For assays using shRNAs,

cultures were infected at DIV 2 with lentiviral vectors expressing

shRNAs (non-silencing control or ArfGAP1-specific shRNAs) at

a final dose of 3.3 ng of p24 antigen per ml of media, followed by

co-transfection as described above. Fluorescent images were

acquired using an EVOS inverted fluorescence digital

microscope (Advanced Microscopy Group, Bothell, WA, USA)

with a 106 objective. DsRed or GFP images were pseudo-

colored using ICA1 in NIH Image J software to improve the

contrast of neuritic processes, and used for neurite length

measurements. The length of DsRed-positive neurites from

single (control: DsRed) or double-positive (LRRK2: DsRed/

FLAG) cortical neurons were measured using the line tool

function of NIH ImageJ software by an investigator blinded to

each condition. Only neurons that had extended neurites were

measured whereas neurons without processes were excluded

from the analysis. DsRed-positive neurites were assigned as

axons (longest neurite) or dendrites (all neurites minus the longest

neurite). In each experiment, neuronal processes from 50–100

DsRed-positive neurons randomly sampled across five coverslips

from at least two independent experiments were measured. For

assays using GFP-tau, the length of the longest axonal process

following branching was measured as described above from 76–

87 individual GFP-tau-positive neurons sampled from two

independent cultures.

For co-expression experiments, primary cortical cultures at DIV

3 were transfected with FLAG-LRRK2, ArfGAP1-YFP and

DsRed plasmids at a 10:10:1 molar ratio (5 mg total DNA per

35 mm dish) using Lipofectamine 2000 reagent (Invitrogen). Cells

were fixed at DIV 6 and processed for immunocytochemistry with

mouse anti-FLAG-(M2) antibody (Sigma-Aldrich) and anti-mouse

IgG-AlexaFluor-633 antibody (Invitrogen). Fluorescent images

were acquired and the length of DsRed-positive neurites from

single (control: DsRed), double-positive (LRRK2 or ArfGAP1:

DsRed/FLAG or DsRed/YFP) or triple-positive (LRRK2+Arf-

GAP1: DsRed/FLAG/YFP) cortical neurons were measured

using NIH ImageJ software as described above.

For LRRK2 silencing experiments, primary cortical neurons

were infected at DIV 2 with lentiviral vectors expressing shRNAs

(non-silencing control or LRRK2-specific shRNA) at a final dose

of 3.3 ng of p24 antigen per ml of media, followed by co-

transfection at DIV 3 with ArfGAP1-YFP and DsRed plasmids at

a 10:1 molar ratio. Cells were fixed at DIV 6, fluorescent images

were acquired and the length of DsRed-positive neurites from

single (shRNA alone: DsRed) or double-positive (Arf-

GAP1+shRNA: DsRed/YFP) cortical neurons were measured

using NIH ImageJ software as described above.

Dopaminergic neurite length assay. Primary midbrain

cultures at DIV 3 were transfected with FLAG-LRRK2 and GFP

plasmids at a 10:1 molar ratio as described above and fixed at DIV

6. Cells were processed for immunocytochemistry with mouse

anti-FLAG-(M2) (Sigma-Aldrich) and rabbit anti-TH (Novus

Biologicals) antibodies, and anti-mouse IgG-AlexaFluor-633 and

anti-rabbit IgG-AlexaFluor-546 antibodies (Invitrogen). The

length of GFP-positive neurites from double-positive (control:

GFP/TH) or triple-positive (LRRK2: GFP/TH/FLAG)

dopaminergic neurons were measured using NIH Image J

software as described above.

TUNEL labeling
Primary cortical neurons were co-transfected with FLAG-

LRRK2 (or empty vector) and GFP plasmids at a 10:1 molar

ratio at DIV 11 and fixed with 4% PFA at DIV 14. TUNEL

staining was conducted using the In Situ Cell Death Detection Kit

(Roche Applied Sciences) containing tetramethylrhodamine

(TMR) red-labeled dUTP as per the manufacturer’s instructions.

Cultures were further subjected to immunocytochemistry with

mouse anti-FLAG-(M2) antibody (Sigma-Aldrich) and anti-mouse

IgG-AlexaFluor-633 antibody (Invitrogen). Fluorescent microscop-

ic images were acquired of individual single (control: GFP) or

double-positive (LRRK2: FLAG/GFP) cortical neurons and the

proportion of TUNEL-positive nuclei was scored. In each

experiment, the number of TUNEL-positive nuclei from GFP-

positive or GFP/FLAG-positive neurons (n=155–174) randomly

sampled across three coverslips from three independent cultures

were measured. Data represent TUNEL-positive neurons as a

percent of total GFP-positive neurons (mean 6 SEM) for each

condition.

Golgi fragmentation assay
Primary cortical neurons at DIV 3 were transfected with FLAG-

LRRK2 or pcDNA3.1 control plasmid (4.5 mg DNA per 35 mm

dish) using Lipofectamine 2000 reagent (Invitrogen). At DIV 6,

cultures were fixed with 4% PFA and processed for immunocy-

tochemistry with mouse anti-FLAG-(M2) (Sigma-Aldrich) and

rabbit anti-Giantin (Abcam) antibodies, and anti-mouse-IgG-

AlexFluor-546 and anti-rabbit-IgG-AlexaFluor-488 antibodies

(Invitrogen). Confocal microscopic analysis was conducted on a

Zeiss LSM 700 inverted confocal microscope (Carl Zeiss AG,

Feldbach, Switzerland) with a Plan-Apochromat 636/1.40 oil

objective in x, y and z planes. Golgi morphology was assessed in

individual control or LRRK2-positive (FLAG) cortical neurons

using Giantin immunofluorescence, an endogenous transmem-

brane protein of the cis and medial Golgi complex. Golgi were

classified as either normal (tubular network), intermediate

(partially fragmented plus tubular network) or fragmented (fully

fragmented without tubular network). In each experiment, Golgi

morphology was scored from control (n=498), WT LRRK2-

positive (n=359) or G2019S LRRK2-positive (n=238) cortical

neurons randomly sampled across five coverslips from three
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independent cultures. Golgi subclasses were expressed as a percent

of the total number of Golgi for each condition.

Statistical analysis
Data were analyzed by two-tailed, unpaired Student’s t-test for

pair-wise comparisons, or by one-way ANOVA with Newman-

Keuls post-hoc analysis for comparison of multiple data groups, as

indicated. P,0.05 was considered significant.

Supporting Information

Figure S1 Direct interaction of LRRK2 with ArfGAP1. (A)

SDS-PAGE analysis of recombinant full-length GST-tagged

human ArfGAP1 (140 or 420 ng protein) by staining with

coomassie colloidal blue or by Western blot analysis with rabbit

anti-ArfGAP1 antibody (Proteintech Group Inc.). GST-ArfGAP1

was also added to HEK-293T cell lysates (20 mg protein) and

detected by probing with anti-ArfGAP1 antibody. Equal loading

of cell lysates is indicated by staining with Ponceau S. (B) SDS-

PAGE analysis of recombinant FLAG-LRRK2 or FLAG-parkin

immunoprecipitated (IP) from transfected HEK-293T cells with

anti-FLAG antibody and stained with coomassie colloidal blue.

IgG heavy chain (HC) is indicated confirming equal loading of IPs.

FLAG IP from non-transfected (untr.) cell lysates was used to

assess contaminating proteins (*). (C) In vitro interaction of

recombinant GST-ArfGAP1 with immunopurified FLAG-

LRRK2 but not with FLAG-parkin or mock FLAG IP. GST-

ArfGAP1 interaction with each FLAG IP is detected with anti-

ArfGAP1 antibody. IgG light chain (LC) is also indicated

confirming equal loading of IPs. Molecular mass markers are

indicated in kilodaltons.

(TIF)

Figure S2 Confirmation of functional LRR-Roc protein frag-

ment of LRRK2. (A) FLAG-tagged human LRR-Roc (fragment

F3, residues 895–1503) and full-length WT LRRK2 bound to

GTP following pull-down assays with GTP-sepharose from HEK-

293T cells. Confirmation of the specificity of LRR-Roc or WT

LRRK2 GTP binding is indicated by negligible binding of the

GDP/GTP binding-deficient LRRK2 mutant, T1348N. Compe-

tition with an excess of free GTP (4 mM) reduces binding of LRR-

Roc or WT LRRK2 to GTP-sepharose. (B) Co-immunoprecip-

itation of FLAG-tagged LRR-Roc or full-length WT LRRK2 with

GFP-tagged full-length LRRK2 from HEK-293T cells following

IP with anti-GFP antibody. Both LRR-Roc and WT LRRK2 are

capable of forming dimers with GFP-LRRK2 suggesting appro-

priate folding of the LRR-Roc fragment. Molecular mass markers

are indicated in kilodaltons.

(TIF)

Figure S3 Co-localization of ArfGAP1 or LRRK2 with the

Golgi complex in mammalian cells and neurons. (A) Confocal

fluorescence microscopy reveals the co-localization of endogenous

ArfGAP1 with the Golgi membrane marker, GM130, in HEK-

293T cells. Exogenous ArfGAP1-YFP also co-localizes with Golgi

membrane markers (GM130 or Giantin) to varying degrees

depending upon the level of overexpression. ArfGAP1-YFP can

localize to the intact Golgi complex (upper panel), can induce the

fragmentation of the Golgi complex with the appearance of

ArfGAP1-YFP-positive Golgi-derived vesicles (middle panel), or can

induce the complete removal of the Golgi complex with ArfGAP1-

YFP-positive Golgi-derived vesicles remaining (lower panel). (B)

Similar co-localization of endogenous ArfGAP1 or exogenous

ArfGAP1-YFP with the Golgi membrane marker, GM130, in rat

primary cortical neurons (upper panels). ArfGAP1-YFP overexpres-

sion induces Golgi fragmentation with the appearance of

ArfGAP1-YFP-positive Golgi-derived vesicles that are devoid of

Golgi markers. Endogenous LRRK2 (JH5514 antibody) or

exogenous FLAG-tagged LRRK2 partially co-localizes with the

Golgi membrane markers, GM130 and Giantin, respectively, in

primary cortical neurons (lower panels). Cytofluorograms and co-

localization coefficients (Rcoloc) reveal the extent of co-localiza-

tion between LRRK2 or ArfGAP1 and Golgi marker fluorescence

signals. Confocal images are taken from single z-plane at 0.1 mm

thickness. Images are representative of at least three independent

experiments. Scale bars: 10 mm.

(TIF)

Figure S4 Full-length LRRK2 phosphorylates ArfGAP1. In vitro

radioactive kinase assay with full length (FL) immunopurified myc-

tagged human LRRK2 variants (WT, R1441C, G2019S and

kinase-dead D1994A) and recombinant full-length GST-tagged

human ArfGAP1. Autoradiographs (32P) reveal ArfGAP1 phos-

phorylation by WT, R1441C and G2019S LRRK2 but not

D1994A LRRK2, with ArfGAP1 phosphorylation levels correlat-

ing with levels of LRRK2 autophosphorylation (upper panel). (*)

indicates the LRRK2-dependent phosphorylation of an unknown

LRRK2-interacting protein (.75 kDa) in these reactions. Coo-

massie colloidal blue-stained SDS-PAGE gels reveal equivalent

loading and purity of immunoprecipitated full-length myc-

LRRK2 variants (,260 kDa) in each reaction (middle panel).
Western blot analysis with anti-GST antibody indicates equivalent

loading of GST-ArfGAP1 (,75 kDa) in each reaction (lower panel).
Molecular mass markers are indicated in kilodaltons.

(TIF)

Figure S5 Effects of G2019S LRRK2 expression on neurite

length of midbrain dopaminergic neurons. (A) Rat primary ventral

midbrain cultures were transfected with FLAG-LRRK2 G2019S

and GFP constructs at a 10:1 molar ratio at DIV 3 and fixed at

DIV 6. Fluorescent microscopic images indicate the co-labeling of

FLAG-LRRK2, GFP and tyrosine hydroxylase (TH). GFP/TH

merged images were rendered in ICA for neurite length

measurements. Neuronal soma (arrows) and axonal processes

(arrowheads) are indicated. Scale bars: 400 mm. (B) G2019S LRRK2

expression has negligible effects on the length of GFP/TH-positive

dopaminergic axons but increases the length of dopaminergic

dendrites, compared to GFP alone (control). Bars represent the

mean (6 SEM) length of axons or dendrites in mm from 30–40

GFP/TH-positive dopaminergic neurons from at least two

independent experiments. *P,0.05 compared to control (GFP

alone) by two-tailed unpaired Student’s t-test. ns, non-significant.

(TIF)

Figure S6 Effects of G2019S LRRK2 expression on axonal

length and cell death in cortical neurons. (A) Rat primary cortical

neurons were transfected at DIV 3 with FLAG-LRRK2 G2019S

and GFP-tau constructs at a DNA molar ratio of 10:1. Cultures

were fixed at DIV 6. Fluorescent microscopic images reveal the co-

labeling of cortical neurons with FLAG-LRRK2 and GFP-tau.

GFP images were pseudo-colored with ICA to improve the

contrast of axonal processes for length measurements. Neuronal

soma (arrows) and axonal processes (arrowheads) are indicated. Scale

bars: 400 mm. (B) Analysis of the length of GFP-tau-positive axonal

processes reveals a significant shortening of axons due to G2019S

LRRK2 expression, compared to GFP-tau alone (control). Bars

represent axon length (mean 6 SEM) expressed as a percent of

control (GFP-tau alone) from 76–87 GFP-tau-positive neurons

from at least two independent experiments/cultures. ***P,0.001

compared to control (GFP-tau alone) by two-tailed unpaired

Student’s t-test. (C) Effect of LRRK2 expression on apoptotic cell
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death of cortical neurons. Primary cortical neurons were

transfected with FLAG-LRRK2 variants and GFP at a 10:1

molar ratio at DIV 11 and fixed at DIV 14. Cultures were

subjected to TUNEL staining and immunocytochemistry with

anti-FLAG antibody. TUNEL-positive neurons were counted as a

percent of total GFP-positive (control) or GFP/FLAG-positive

(LRRK2) neurons and expressed as mean 6 SEM (n=3

experiments/cultures).

(TIF)

Figure S7 Silencing of ArfGAP1 expression with lentiviral sh-

ArfGAP #1 rescues G2019S LRRK2-induced neurite shortening.

(A) Silencing of endogenous ArfGAP1 expression in cortical

neurons with a lentiviral ArfGAP1-specific shRNA (LV-sh-

ArfGAP1 #1) compared to a non-silencing control shRNA (LV-

sh-control) revealed by confocal fluorescence microscopy with a

rabbit anti-ArfGAP1 antibody. (B) Primary cortical neurons were

infected with lentiviral vectors expressing shRNAs (non-silencing

control or ArfGAP1-specific) at DIV 2, subsequently transfected

with FLAG-LRRK2 G2019S and GFP constructs at a 10:1 molar

ratio at DIV 3, and fixed at DIV 6. Fluorescent microscopic

images reveal the co-labeling of cortical neurons with FLAG-

LRRK2 and GFP. GFP images were pseudo-colored with ICA for

neurite length measurements. Neuronal soma (arrows) and axonal

processes (arrowheads) are indicated. Scale bars: 400 mm. (C)

Analysis of GFP-positive axonal processes reveals a robust

shortening of axons induced by G2019S LRRK2 expression

compared to GFP alone (control/LV-sh-control). Knockdown of

ArfGAP1 with lentiviral-shRNA vectors (LV-sh-ArfGAP1 #1)

produces a complete rescue of G2019S LRRK2-induced axon

shortening compared to control shRNA (LV-sh-control). Bars

represent axon length (mean 6 SEM) expressed as a percent of

GFP alone (control/LV-sh-control) from .60 GFP-positive

neurons from at least two independent experiments/cultures.

**P,0.01 or ***P,0.001 comparing sh-ArfGAP1 with sh-control

for G2019S LRRK2, or by comparing control with G2019S

LRRK2, by one-way ANOVA with Newman-Keuls post-hoc

analysis. ns, non-significant.

(TIF)

Figure S8 Increased neurite length induced by silencing of

endogenous LRRK2 expression is not dependent on endogenous

ArfGAP1. (A) Primary cortical neurons were co-infected with

equal titers of lentiviral vectors expressing shRNAs (LV-sh-control,

LV-sh-LRRK2- or LV-sh-ArfGAP1 #2) at DIV 2, subsequently

transfected with a GFP construct at DIV 3 to morphologically

label individual neurons, and fixed at DIV 6. Fluorescent

microscopic images reveal the labeling of cortical neurons with

GFP. GFP images were pseudo-colored with ICA for neurite

length measurements. Neuronal soma (arrows) and axonal

processes (arrowheads) are indicated. Scale bars: 400 mm. (B)

Analysis of GFP-positive axonal processes reveals a robust increase

of axonal length induced by silencing of LRRK2 expression alone

compared to a non-silencing control shRNA. Co-silencing of

ArfGAP1 fails to influence the LRRK2 silencing-induced increase

in axonal length compared to a control shRNA. Bars represent

mean (6 SEM) length of axons expressed as a percent of GFP

alone (LV-sh-control) from 50 GFP-positive neurons from two

independent cultures. ***P,0.001 by one-way ANOVA with

Newman-Keuls post-hoc analysis. ns, non-significant.

(TIF)
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