
GTT: Graph Template Transforms with Applications

to Image Coding

Eduardo Pavez, Hilmi E. Egilmez, Yongzhe Wang and Antonio Ortega

Signal and Image Processing Institute, University of Southern California

{pavezcar, hegilmez, yongzhew}@usc.edu, antonio.ortega@sipi.usc.edu

Abstract—The Karhunen-Loeve transform (KLT) is known
to be optimal for decorrelating stationary Gaussian processes,
and it provides effective transform coding of images. Although
the KLT allows efficient representations for such signals, the
transform itself is completely data-driven and computationally
complex. This paper proposes a new class of transforms called
graph template transforms (GTTs) that approximate the KLT by
exploiting a priori information known about signals represented
by a graph-template. In order to construct a GTT (i) a design
matrix leading to a class of transforms is defined, then (ii) a
constrained optimization framework is employed to learn graphs
based on given graph templates structuring a priori known
information. Our experimental results show that some instances
of the proposed GTTs can closely achieve the rate-distortion
performance of KLT with significantly less complexity.

Index Terms—Graph-based transform, learning graphs, KLT,
image coding, video coding

I. INTRODUCTION

Transform coding is an essential component for image/video

compression standards in which the discrete-cosine transform

(DCT) is undoubtedly the most popular transform. This is

mainly due to practical reasons given that a reasonable energy

compaction can be attained with low-complexity implemen-

tations. However, the DCT is known to be optimal only

for the class of signals characterized by a highly correlated

first-order Gaussian Markov model. To support a broader

class of signals, DCT/DST-based hybrid transforms [1] have

been proposed and recently adopted in state-of-the-art video

coding standards such as HEVC [2]. This transforms are

more efficient for prediction residual signals, but are not

well adapted to other signals, for example, images including

textures. As an alternative, the Karhunen-Loeve transform

(KLT) provides optimal energy compaction for the data, but

it is completely data-driven (i.e., obtained from an empirical

covariance matrix) and does not have a fast implementation.

In general, the empirical covariance is a dense matrix which

requires signaling of a full matrix for different classes of

image blocks, introducing a considerable amount of overhead;

therefore these transforms may not be competitive in terms

of rate-distortion performance. This naturally leads to the

problem of designing a transform that approximates KLT but

with less complexity and overhead.

This paper proposes a new class of transforms called graph

template transforms (GTTs) that approximates inverse covari-

ance matrices under sparsity constraints. For this purpose, first

a set of graph templates are constructed to define the sparsity

pattern of the approximate inverse covariance matrices, or

equivalently, to define connectivity pattern of a graph that

reveal inter-sample similarities among pixels. Then, a con-

strained optimization problem is solved to learn a graph by

optimizing the entries of the matrix of interest. Finally, the

resulting matrix is used to derive GTTs.

In the literature, several estimation methods have been

proposed to construct graphs from data for various applica-

tions. Friedman et.al. [3] propose graphical lasso to estimate

sparse inverse covariance matrix. More recently in [4] and

[5], a sparse combinatorial Laplacian matrix is estimated from

the data samples by including a smoothness functional. In

these works, a regularization parameter is used to control

sparsity, and this usually leads to arbitrarily connected graphs.

However, in our work, we propose using a graph template to

impose a sparsity pattern, then the empirical inverse covariance

is approximated based on that template. There are several

advantages of introducing a graph template for image/video

coding applications. Firstly, it can include prior information

about different classes of block signals. For example, samples

with high vertical correlation may benefit from a template

graph with less or no horizontal links. Secondly, the parameter

estimation is more robust to lack of sufficient data or to noise,

given the reduced number of total parameters to estimate.

Finally, the number of graph parameters to transmit can be

reduced with respect to an arbitrary graph transform or the

KLT because the graph template is fixed and known a priori,

and can be pre-stored at the decoder side.

Recently, graph signal processing [6] has drawn a lot of

interest for its ability to embed a priori signal information

in a graph. For block-based compression applications, it has

been demonstrated that graph-based transforms can provide

significant coding gains for piecewise-smooth images such

as depth maps [7], [8], [9] which exploit sharp boundaries

in depth images to create graphs. In this paper, we show

that the proposed GTTs can be also used for natural image

compression, focusing in particular on texture images, for

which a piecewise smooth image model would not be suitable.

The rest of the paper is organized as follows. Section II

discusses some preliminaries. The proposed GTTs and various

design methods are presented in Section III. Experimental

results are described in Section IV. Section V draws some



conclusions.

II. PRELIMINARIES

A. Karhunen-Loeve transform (KLT)

Consider a set of N image blocks formed as column vectors

x1,x2, · · · ,xN of size K, with empirical covariance matrix

S. We assume that these vectors have been chosen from a

set of block signals sharing some properties/characteristics

of interest (e.g., they might have a structure such as edges

with similar orientation). The empirical KLT is given by the

eigenvector matrix Φ of S = ΦΛΦt. This is the optimal

decorrelating transform for such signals.

B. Graph-based Transform (GBT)

Given an undirected graph G = (V,E,Q) consisting of a

collection of nodes V = {1, 2, ...,K} connected by a set of

edges E and matrix representation Q, where for i 6= j the

link (i, j) /∈ E if and only if the weight Qij = 0. We assume

Q is a symmetric positive semi-definite matrix. Note that our

graph definition is different from the ones used in recent graph

signal processing literature, where Q is usually restricted to

be a graph Laplacian derived from an adjacency matrix [6].

After deciding on a Q matrix, we first perform an orthonormal

eigen-decomposition,

Q = UΛUt. (1)

and the associated graph-based transform (GBT) is defined as

the orthonormal matrix U = {u1, ...,uK}, with corresponding

forward transform given by

x̃ = Utx. (2)

Note that, if we choose Q = S or Q = S−1, then we

simply obtain the KLT basis. This is because any non-singular

diagonalizable matrix and its inverse have the same set of

eigenvectors.

III. GRAPH TEMPLATE TRANSFORMS

In this section, we design three different kinds of Q matrices

that provide sparse approximations for the inverse covariance

matrix, S−1. Since the inverse covariance matrix is dense

in general, we introduce graph templates to set a sparse

nonzero pattern for Q that approximates S−1. We also present

two optimization problems where the graph templates impose

constraints on the optimization. The resulting sparse matrix Q

is used to construct the graph template transforms (GTT).

A. Matrix Types

The empirical covariance matrix is modeled as S−1 = Q+
N, where Q is a sparse positive semi-definite matrix and N

an error term. Assuming the link set E is fixed, we consider

three types of matrices:

1) Sparse inverse covariance (SIC): Q is a positive semi-

definite matrix, where for every i 6= j Qij = 0 when

(i, j) /∈ E.

(a) (b)

Fig. 1: Graphs (a) connecting each pixel with its four nearest

neighboring pixels (4-connected) and (b) connecting each pixel

with pixels that are 1-hop away (8-connected).

2) Generalized Laplacian (GL): Q is a GL matrix if it is

a SIC matrix with non-positive off-diagonal terms, i.e.,

Qij ≤ 0 if i 6= j.

3) Combinatorial Laplacian (L): Q is a combinatorial

Laplacian, if it is a singular generalized Laplacian with

an all ones eigenvector, i.e., Qii = −
∑

j 6=i Qij .

Given a fixed edge set E, the SIC, GL and L matrices have a

decreasing number of parameters. A sparse inverse covariance

will provide a better approximation for the inverse covariance,

but given the arbitrary sign of the off diagonal entries, it

uses more overhead. Also it is not straightforward to give an

interpretation as a weighted graph, where the edge weights

have positive and negative values. If the data were to follow

a Gaussian distribution and N = 0, Q is called the precision

matrix, and Qij 6= 0 if and only if the random variables corre-

sponding to nodes i and j are conditionally independent, given

all the other nodes, leading to a Gaussian Markov Random

Field (GMRF) process. The generalized Laplacian has a fixed

sign pattern, thus reducing the overhead. Furthermore, the off

diagonal elements can be interpreted as the edge similarities

between pixels. The combinatorial Laplacian further reduces

the number of parameters, because its diagonal entries can be

directly computed. Also, the first eigenvector associated with

zero eigenvalue corresponds to DC component which is often

desirable in image compression applications.

B. Template selection

Many image processing applications have adopted the

nearest-neighbor image model for natural image compression

[10], and texture analysis [11]. In terms of our graph-based no-

tation, this model is equivalent to unweighted 4-connected grid

graph as shown in Fig.1(a) which derives the traditional 2D-

DCT [12]. Different transforms can be obtained by choosing

different graphs like the one shown in Fig.1(b) which allows

diagonal connections.

Assuming the pixels are localized in an uniform grid, we

use three different graph templates (edge sets E), whose

corresponding weights are optimized

1) 4-connected graph template (E4): Each pixel is con-

nected to its 4 nearest neighbors which corresponds to

horizontal and vertical edges as shown in Fig.1(a).



2) 8-connected graph template (E8): This template extends

the 4-connected graph template by allowing diagonal

connections so that each pixel is connected to its 8
nearest neighbors as shown in Fig.1(b).

3) 24-connected graph template (E24): This template con-

nects each pixel to its 24 closest neighbors. This allows

connections with farther pixels and in additional diago-

nal directions.

One can show that, if the image blocks have size
√
K×

√
K.

The 8-connected graph template has |E| = 2(
√
K−1)(2

√
K−

1) edges. Hence the SIC and GL matrices have |E| + K
nonzero entries, while the L matrix has |E| nonzero entries.

Thus the parameter complexity of the GTT is O(K), scaling

linearly on the number of pixels per block. This is smaller

than the KLT, which requires K(K+1)/2 parameters to store

a symmetric matrix (i.e., fully connected graph template).

Different graph templates can be also used to define sparsity

patterns capturing other signal characteristics. Yet, we choose

three basic templates for simplicity. The optimization methods

used to design weights are discussed in the next section.

C. Optimization method

To find a matrix of interest Q, we solve one of the following

convex optimization problems,

(i) Sparse left inverse (SLI):

Q = argmin
A∈Γ

‖AS− I‖F (3)

(ii) Gaussian maximum likelihood (GML):

Q = argmin
A∈Γ

(log det(A)− tr(SA)) (4)

where Γ denotes the constraint set given by a matrix type

- graph template pair. For example Γ(GL, E8) is the set of

all generalized Laplacians with edge set E8. Note that the

problem in (3) approximates the inverse covariance matrix

by a sparse left inverse (SLI). In (4), the problem abbrevi-

ated as GML can be interpreted as a constrained maximum-

likelihood (ML) estimation under Gaussian-Markov assump-

tions. Hence, solving (4) is equivalent to approximating the

data as a GMRF with precision matrix Q. In [3], authors

solve minA∈Γ log det(A)−tr(SA)+λ‖A‖1, with A positive

semidefinite, where the extra term is included to promote

sparsity in the solution. Our formulation in (4) is a constrained

version with λ = 0, because the ℓ1 term is not necessary since

we impose a fixed sparsity pattern. In practice these methods

would produce sparse graphs by zeroing out coefficients below

a certain threshold.

IV. RESULTS

In this section, we evaluate the performance of different

GTT designs by benchmarking against DCT and KLT in terms

of rate-distortion (RD) performance. GTTs are investigated

extensively by selecting different (i) optimization methods,

(ii) design matrices and (iii) connectivity constraints/patterns

whose details are discussed in Section III.

In our experiments, we use the USC-SIPI texture dataset1

1USC-SIPI Image Dataset: http://sipi.usc.edu/database/

(a) (b)

Fig. 4: An example of 8-connected graphs designed for wood

image with (a) no rotation and (b) with 30 degree counter-

clockwise rotation. The darker colors correspond to larger

weights.

which includes thirteen Brodatz texture images and their

different pre-processed versions. In particular, we choose all

thirteen original Brodatz textures and their 30 degree counter-

clockwise rotated versions so that a total of 26 images are

used. For each image, KLT and GTT transforms are designed

based on a covariance matrix generated using 4×4 or 8×8 non-

overlapping image blocks as data samples. Fig.4 illustrates two

sample graphs associated to two different GTTs designed for

wood image and its rotated version, respectively. As seen in

Fig.4, the graphs allow us to capture anisotropic behavior in

images by adjusting the edge-weights.

The transforms are applied directly on the images and the

transform coefficients are first uniformly quantized and then

encoded using a symbol grouping-based arithmetic entropy

encoder called AGP, which uses an amplitude group partition

technique to efficiently encode image transform coefficients

[13]. The AGP encoder allows us to fairly compare the

RD performance of different transforms since AGP can flex-

ibly learn and exploit amplitude distribution of transform

coefficients. For ordering of the quantized coefficients, we

employ zig-zag scanning for DCT coefficients, and descending

and ascending order of eigenvalues are used for KLT and

GTT coefficients, respectively. After decoding the quantized

transform coefficients using AGP decoder, we reconstruct the

texture image and PSNR with respect to the original image is

calculated.

The average RD performances of different transforms are

presented in Fig.2 and Table I in terms of PSNR and total bits

spent for encoding quantized transform coefficients per-pixel

(BPP). Fig.2 compares GTTs generated based on different

design matrix types (L, GL and SIC) with different con-

nectivity constraints against traditional DCT and KLT. More

comprehensive results are available in Table I where we show

percent bit reductions gained by using GTTs and KLT at

different PSNR values (i.e., 28, 32 and 36 dBs) with respect to

using DCT. Note that, positive values in the table means that

better RD performance (bit reduction) is achieved compared

to using DCT. According to these results:

• Encoding performance of GTTs can closely approach that

of KLT with reduced number of parameters.

• For sparse graph templates, GL matrices lead to a better

performance, while for dense graph templates (i.e., graphs

with 24 or more connected templates) SIC matrices work

better.

• The best results shown in Table I are similar for different



TABLE I: Average percentage reduction in bitrate (BPP) with respect to average bitrate obtained with DCT.

PSNR Matrix
4× 4 block transform 8× 8 block transform

GML SLI
KLT

GML SLI
KLT

E4 E8 E24 E4 E8 E24 E4 E8 E24 E4 E8 E24

28

L 1.050 2.619 2.651 N/A N/A N/A
5.014

2.224 5.176 5.443 N/A N/A N/A
11.17GL 1.594 3.084 3.124 1.700 3.306 3.284 3.070 5.794 6.304 1.161 3.894 2.808

SIC 1.597 1.247 4.609 1.662 1.134 4.638 3.073 1.238 8.743 0.752 -0.859 8.411

32

L 1.492 2.866 2.837 N/A N/A N/A
6.118

0.896 3.292 3.240 N/A N/A N/A
10.49GL 2.245 3.519 3.555 0.833 1.935 1.997 2.163 4.420 4.638 -1.890 -1.247 -4.408

SIC 2.248 1.480 5.462 0.628 0.982 5.322 2.167 -0.568 8.340 -2.467 -3.366 6.303

36

L 0.790 1.574 1.474 N/A N/A N/A
5.470

-0.602 0.862 0.520 N/A N/A N/A
8.728GL 1.594 2.464 2.460 -1.121 -0.237 -0.439 0.849 2.277 2.158 -4.058 -4.833 -8.428

SIC 1.599 1.244 4.804 -1.319 0.792 4.563 0.857 -0.579 6.698 -4.551 -2.511 4.474
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Fig. 2: Average PSNR vs. BPP results using GML method with (left) 4 and (right) 8 connected models for 4×4 transforms.
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Fig. 3: PSNR vs. BPP results for wood image (left) with no rotation and (right) with 30 degree counter-clockwise rotation.

block sizes, (i.e., 4×4 and 8×8), so our solutions scale

nicely for larger blocks unlike KLT-based solutions.

• In terms of the optimization procedures, generally GML

method is better than SLI method.

• SLI method does not work well on Laplacian (L) matrices

due to convergence issues during the graph optimization,

since L matrices are singular by definition. Therefore,

corresponding results are omitted (see N/A in Table I).

Moreover, Fig.3 illustrates the RD performance results for

the wood texture image. Note that for the image with no

rotation, DCT performs better than KLT and GTT, since the

image is mostly smooth and the pixel value discontinuities

appear vertically. This is a very special case where KLT and

GTT cannot produce effective transforms. On the other hand,

KLT and GTT significantly outperform DCT for 30 degree

rotated version of the same image where the discontinuities



appear diagonally. Note also that the performance of GTT

closely approaches to KLT.

V. CONCLUSIONS

In this paper, we have proposed a new class of transforms,

called graph template transforms (GTT), to approximate the

empirical KLT with a reduced number of parameters. By

introducing the notion of graph templates, we add prior

knowledge about signal classes. In terms of graph learning, we

propose and compare (i) three types of matrices to characterize

the graph, (ii) three graph templates to constraint connectivity

of graphs, and (iii) two optimization methods to optimize

edge weights of a graph based on a given template. Our

experimental results lead us to the following conclusions:

• We propose to use Gaussian maximum-likelihood (GML)

method since it provides a better optimization for learning

edge weights of a graph compared to sparse left inverse

(SLI) method in general.

• For sparse graph templates (e.g., 4 or 8 connected tem-

plates), we suggest to optimize generalized Laplacian

(GL) matrices using GML method.

• For dense graph designs, using 24 connected or more

dense graph templates, we propose to optimize sparse

inverse covariance (SIC) matrices using GML method.

• As we choose more dense graph templates, sparse in-

verse covariance (SIC) matrix can closely achieve the

rate-distortion performance of KLT. However, any trans-

form design procedure should also consider the trade-

off between coding gain and transform signaling/storing

overhead.
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