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ABSTRACT

Mobile video streaming sometimes suffers from playback in-
terruptions which are typically due to considerable network
bandwidth variations that a user may experience when s/he
travels along a route. Segmented adaptive HTTP stream-
ing that switches between video streams encoded at different
bitrates – and hence different quality levels – can be used
to alleviate the issues of variable bandwidth. An impor-
tant issue with respect to users’ perceived experience is how
the system schedules the quality levels to match the end-
to-end network bandwidth capacity. It is very beneficial if
the application can estimate the future network conditions
in advance, and therefore perform quality control and buffer
control wisely.
This work describes GTube, a video streaming system for

receivers equipped with a GPS positioning sensor in a mo-
bile environment. The available network bandwidth for each
location is collected by mobile users and then this data along
with the measured locations are uploaded and recorded in a
server. Mobile devices that stream video can send queries to
the server in order to better predict the near-future band-
width availability and plan quality adaptations accordingly.

Keywords

Mobile video, Location services, Geo-prediction, DASH

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network
Protocols—Application (multimedia streaming)

1. INTRODUCTION
Mobile devices are popular for receiving video content on

the go. As wireless connectivity is now commonly integrated
into most handheld devices, streaming multimedia content
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to mobile peers is becoming a popular application that is in-
creasingly available everywhere. Mobile data traffic, accord-
ing to an annual report from Cisco Systems [6], continues to
grow significantly. The forecast estimates that mobile video
will generate over 66% of mobile data traffic by 2017.

Mobile media streaming may suffer from discontinuous
playback which affects the user perceived Quality of Service
(QoS). As the user of a portable device is moving along a
path, network bandwidth fluctuates between different loca-
tions, and even in the same area the bandwidth can vary due
to factors like the surrounding environment and the time of
day. Most current mobile platforms do not predefine a strat-
egy to deal with this situation. Hence how to handle this
problem presents a challenge for mobile streaming applica-
tions.

Recently attention has focused on the Dynamic Adaptive
Streaming over HTTP (DASH) standard [19], which has
emerged as a popular video delivery mechanism based on
HTTP progressive downloads. Its main features consist of
(1) splitting a large video file into segments, (2) providing
client-initiated flexible bandwidth adaptation by enabling
stream switching among differently encoded segments, and
(3) supporting near-live streaming events. DASH promises
to improve users’ end-to-end experience significantly by per-
forming the video segment quality scheduling naturally and
flexibly at the client side.

Under varying wireless conditions the configuration of a
mobile media player’s quality scheduler is hence both chal-
lenging and important. The general design goals of quality
adaptation in adaptive HTTP streaming for mobile devices
include the following aspects, in addition to the common
rate adaptation for media streaming.

• The scheduler should identify whether a specific qual-
ity level matches the end-to-end network bandwidth
capacity. It should utilize as much of the potential
bandwidth as possible to provide the user with a high
average video quality.

• The scheduler should have an effective buffer strategy
to avoid streaming buffer underflows or overflows since
such events cause playback interruptions.

• The scheduler should avoid rapid oscillations in qual-
ity, as this has an undesirable effect on the user’s qual-
ity of experience.

• The scheduler should avoid changing the quality by
too many levels in a single adjustment as it affects the
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Figure 1: Dynamic Adaptive Streaming of HTTP (DASH) system.

user’s perceived quality.

To satisfy the above design requirements, it is very ben-
eficial if a streaming application can estimate the future
network conditions in advance, therefore performing qual-
ity and buffer control smartly and efficiently. At least two
key challenges exist for building such system. An initial and
essential step is to obtain and maintain a bandwidth map,
which relates the network condition to the location informa-
tion. Applications that have access to such information will
be able to anticipate upcoming fluctuations in the network
before they occur. A reliable bandwidth prediction scheme
which also needs to be carefully designed is the second major
challenge.
Here we present a design framework for a geo-predictive

streaming system called GTube to achieve these goals. The
application obtains a user’s location using the built-in Global
Positioning System (GPS) receiver of a mobile device. A
request indicating the device’s trajectory will be sent to a
server, and information about the expected connection qual-
ity in future locations is subsequently received. With this
information, the application can adjust streaming parame-
ters accordingly and provide a smooth and comparably high
quality video stream, ensuring a good viewing experience for
the user.
The contributions of our work are as follows. We have

developed a smartphone application to gather information
and relate it to GPS locations. The information collected
is used to build the bandwidth map. A path prediction
and a geo-based bandwidth estimation method is presented
for estimating the future network conditions. Finally, we
provide two quality adaptation algorithms which make use
of the predicted bandwidth obtained in the previous step.
Our simulation study results highlight that our approach can
help streaming applications achieve fast and smooth adap-
tation to varying network conditions. The proposed scheme
enables mobile clients to intelligently use location-specific
bandwidth information in making quality adaptation deci-
sions. Overall, the introduced solution achieves a balance
between resource demands and quality of service.
The remainder of this paper is organized as follows. In

Section 2, we introduce the background and summarize the
related work. Section 3 describes the GTube framework.
Section 4 describes several datasets we used, details the ex-
perimental setup and reports the experiment results. Finally
Section 5 concludes the paper and presents future work.

2. BACKGROUND AND RELATED WORK

2.1 Adaptive HTTP Streaming Fundamentals
In the streaming media industry, HTTP-based media de-

livery has emerged as a de-facto streaming standard over
recent years, replacing the existing media transport proto-
cols such as RTP/RTSP. Despite its higher communication
overhead and somewhat lack of technical finesse, its sim-
ple downloading model has attracted many content publish-
ers, in part because it can reach a wide audience due to its
high network penetrability and excellent match with existing
HTTP-based caching infrastructures.

The 3GPP group recently standardized the adaptive HTTP
streaming solution [19] as part of a Packet-switched Stream-
ing Service (PSS) [20]. Adaptive HTTP streaming in 3GPP
PSS follows a strategy of sequentially requesting and re-
ceiving small media chunks of the multimedia content, so-
called media segments. 3GPP PSS adaptive HTTP stream-
ing further enables the client to request media segments
from different representations to react to varying network re-
sources. Each representation consists of multiple media seg-
ments containing a certain duration of media data and en-
coded at a specific bitrate. Figure 1 shows a 3GPP adaptive
HTTP streaming system. In the following paragraphs we
briefly review several popular, commercial HTTP streaming
solutions.

Adobe’s HTTP Dynamic Streaming (HDS) is based on
their MP4 fragment format (F4F) and its corresponding
XML-based proprietary manifest file (F4M) [3]. HDS can
be served from Flash Media Server (FMS) or an Apache
server. The Adobe Flash Player is used on the client side to
receive and render streams.

Microsoft’s Smooth Streaming solution [23] is a compact
and efficient method for the real-time delivery of MP4 files
from the company’s IIS web server, using a fragmented,
MP4-inspired ISO/IEC 14496-12 ISO Base Media File For-
mat specification [2]. The Smooth Streaming file format
consists of a single physical file that encapsulates multi-
ple self-contained “virtual” segments which can be retrieved
through the use of a RESTful URL. This means that it re-
quires a dedicated streaming web server that understands
how to translate the URL requests into the corresponding
byte offsets.

Apple has developed HTTP Live Streaming (HLS) [5]
which uses an MPEG-2 Transport Stream (TS) as its de-
livery container format and an extension of the existing



proprietary MP3 playlist file format, M3U8, as its media
descriptor container format. Nevertheless, Apple’s solution
has been widely supported by newer mobile devices and pop-
ular streaming platforms due to Apple’s recent dominance
in the smartphone and tablet markets.

2.2 Quality Adaptation Algorithm in Adap-
tive HTTP Streaming

There exists some prior work on the quality adaptation
algorithm in HTTP streaming. Liu et al. [14] proposed an
algorithm which compares the segment fetch time with the
media duration contained in the segment to detect conges-
tion and probe the spare network capacity. De et al. [8]
proposed a Quality Adaptation Controller for live adaptive
video streaming designed by employing feedback control the-
ory. The controller tries to maintain the buffer level as sta-
ble as possible to match the video bitrate with the avail-
able bandwidth. QDASH [15] is a QoE-aware DASH sys-
tem which takes into account the effect of the transition of
quality levels on the QoE. Xiang et al. [21] focused on the
quality adaptation algorithm for streaming scalable video in
wireless networks. They formulated the quality adaptation
problem as an Markov Decision Process (MDP) and used
dynamic programming to solve the problem. Some research
efforts provided evaluation on comparing the quality adap-
tation algorithms in the existing commercial players, and
identified major differences between these adaptive media
players in the market [16, 4].
For video quality adaptation, the existing HTTP stream-

ing techniques only focus on the reaction to network condi-
tions and player behavior. In contrast, our technique applies
a predictive scheme to allow a more flexible operation.

2.3 Location-Aided Video Delivery System
Recently some video delivery systems associated with lo-

cation information have been proposed [7, 18, 22, 17]. Cur-
cio et al. [7] predicted network bandwidth for the future
locations and adjusted the buffering parameters. However,
they only provide a preliminary system design and their ra-
dio network throughput is modeled synthetical, while we use
real-world traces. Singh et al. [18] proposed to build a Net-
work Coverage Map Service to make rate-control decisions
over RTP. Yao et al. [22] demonstrated the possibility to map
network bandwidth to the road network through repeated
measurements and revealed the strong correlation between
WWAN bandwidth and location. More similar to our work,
Riiser et al. [17] used real-world traces for predictive buffer-
ing in Dynamic Adaptive Streaming over HTTP (DASH).
However, their prediction was based on the assumption that
the server knows the the whole route information in advance
(for example for a commuter), and they measured the band-
width along that route for several times to get the average
data. In contrast, our work does not make such assumptions,
e.g., we do not know the future locations of the mobile user.
We predict the path and calculate the bandwidth in 2-D
geographical space.

3. GEO-PREDICTIVE VIDEO STREAMING

SYSTEM
We now describe the design of GTube in details. Fig-

ure 2 shows a flowchart of the proposed system. As Geo-
bandwidth Providers, mobile nodes collect required data

DASH Client

Geo-predic!ve 

Server

Geo-bandwidth data 

collec!on

Map matching

Path Predic!on

Bandwidth 

es!ma!on

Bandwidth 

Map

Geo-bandwidth 

data upload

Geo-bandwidth query

Geo-bandwidth query response

Bandwidth query process

Quality Adapta!on

DASH Client

Geo-bandwidth 

Provider

1-Predict 

Quality 

Adapta!on

N-Predict 

Quality 

Adapta!on

Figure 2: Flowchart of the proposed geo-predictive
GTube streaming system.

tuples such as bandwidth, GPS location and capture time
during video streaming. This functionality can be combined
with a DASH player. The collected geo-bandwidth data are
uploaded to the Geo-predictive Server immediately. The
Geo-predictive Server is in charge of building and keeping a
bandwidth map which correlates locations with other data
associated to each location (e.g., network throughput, mea-
surement time, etc.). In a typical streaming session, other
users (DASH Clients) can request DASH segments from the
Multimedia Server, and they are also responsible for send-
ing their locations and speed to the Geo-predictive Server to
obtain the predicted bandwidth. Upon receiving the band-
width request, the Geo-predictive Server matches the cur-
rent GPS sample point to the road network, predicts the
future path of the client, then calculates the possible band-
width (through a k-NN algorithm) along that path and sends
it to the client. Based on the predicted bandwidth, the
DASH Client applies the best quality level it can afford.

We first describe how the geo-bandwidth data are col-
lected by the mobile client and uploaded to the server, and
how a bandwidth request is issued. Next, we illustrate how
the Geo-predictive Server estimates the bandwidth and acts
to respond to the bandwidth request. Finally, we introduce
two quality adaptation algorithms which both can utilize the
bandwidth prediction scheme.

3.1 Geo-Bandwidth Data Collection and Up-
load

To build the bandwidth map, we need to record a large
set of the locations (P ) and bandwidth measurements (bw)
of mobile clients. The collected meta-data streams are com-
bined and analogous to sequences of 〈nid, t, s, P, bw〉 tuples,
where nid represents the ID of the mobile device, t indicates



the time instant at which the data was recorded, and s is
the speed of the client.
When a mobile client begins video streaming, the GPS is

turned on to record the location as 〈latitude, longitude〉 pair.
Our custom-written recording software receives location up-
dates as soon as new values are available and records the
updates along with the coordinated universal (UTC) time.
The clients measure the receiver rate at each geo-location.
Each recorded GPS update includes: (1) the current lati-
tude and longitude, (2) the satellite time (in UTC) for the
location update (in seconds), and (3) the current speed over
ground. It is worth noting that this functionality can easily
be added to any DASH client.
This part of the system also manages the storage of the

bandwidth data on the device’s flash disk. The goal is to
utilize a flexible data format that can be easily ingested at a
server. In this situation we choose JSON (JavaScript Object
Notation) as the data interchange and storage format, since
it has an equal descriptive power comparable to XML and
has a much smaller grammar. The data format consists of
four mandatory key attributes:

• format version: The version number of the data for-
mat.

• network type: The type of wireless internet access.

• network operator: The provider of wireless commu-
nication services.

• network data: Stores sequences of 〈t, s, P, bw〉 data
collected from a mobile device.

Here is a sample specification of the data format that
stores geo-bandwidth data.

{

"format_version":"0.1",

"network_type":"3G",

"network_operator":"StarHub",

"network_data":[

{

"location_array_timestamp_lat_long":[

["2013-03-18T07:58:41Z",1.29356,103.77],

["2013-03-18T07:58:46Z",1.29356,103.78]

]

},

{

"speed_array_timestamp_s":[

["2013-03-18T07:58:41Z",10.20],

["2013-03-18T07:58:46Z",15.38]

]

},

{

"bandwidth_array_timestamp_bw":[

["2013-03-18T07:58:41Z",2.103],

["2013-03-18T07:58:46Z",0.479]

]

}

]

}

The client routinely sends POST HTTP requests with this
information to the Geo-predictive Server. The data are up-
loaded to build the bandwidth map, which relates the net-
work condition to geographic locations. A geo-bandwidth

query is sent to the Geo-predictive Server together with
these data, hence the server can perform bandwidth predic-
tion and send the predicted values back to the DASH Client.
Afterwards, the quality scheduler in the DASH Client will
perform quality selection by using the predicted bandwidth.

3.2 Geo-Bandwidth Query and Response
The streaming client routinely queries the Geo-predictive

Server for future bandwidth. It sends its current location
and speed (g, s) to the server. If the user is traveling on a
road, the Geo-predictive Server will perform map matching
and path prediction for the mobile client along a road arc.
Otherwise, the mobile client is assumed to move uniformly
in a straight line and the future locations can be easily calcu-
lated. Then the server predicts the bandwidth for the future
T time interval based on the historical bandwidth values
measured around the predicted locations, and sends the list
of estimated bandwidth values to the streaming client.

To explain our geo-bandwidth prediction scheme better,
we now provide some definitions which will be used later.

Definition (Road Network): The road network represents
a finite street system. It consists of a set of one-way or two-
way road curves in R

2, each of which is called a road arc and
assumed to be piecewise linear. An arc A can be completely
characterized by a finite sequence of points (a1, a2, . . . , an),
where the endpoints a1 and an are referred to as nodes while
a2, a3, . . . , an−1 are referred to as shape points.

Definition (Map Matching): Assume that a vehicle (or a
person) is moving along a finite street system N and an ab-
stract road network N

′ is used to represent this system. For
this moving object, a sequence of observed positions of this
object in the road network is acquired at a finite number of
points in time, denoted by t1, t2, ..., tn. This object’s actual
location at time tn is denoted by vn and the GPS sample
point is denoted by gn. Thus, map matching is to match
the sample point gn to an arc in the road network N

′, while
determining the map-matched position on the arc that best
corresponds to the vehicle’s actual location vn.

Definition (Historical Trajectories): A user moving be-
tween two locations in a road network generates a trajectory.
A user’s trajectory is defined as a sequence of connected road
arcs between two locations. GPS can record the user’s loca-
tions at fixed time intervals and the speed at each location.
These recorded locations together with speed information
are transmitted to the server. On the server, these raw lo-
cation sequences can be map-matched with the road network
to generate a trajectory. The set of previous trajectories of a
user are considered as his/her historical trajectories. In our
study, trajectories are kept separate for each user, because
at the crossroads different user may take different paths ac-
cording to the user’s moving preference. When a user is new
to the target area, s/he does not have historical trajectories.
In this case, the server uses a trajectory derived from the
trajectories of all users.

Figure 3 illustrates the concept of bandwidth prediction.
We first find the match point (red rectangle) of the GPS
sample point (green diamond) on the road network (black
line segment), then we predict the future locations (red cir-
cles). To narrow the scope, we issue a range query (blue
dashed circle) with distance d and obtain the bandwidth
measure points (blue triangles) within the range. Next the
points whose sample time is within the adjacent time interval
are selected. Among them we find the k nearest bandwidth
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measurement locations and finally we use the distance values
d1, d2, d3 as weight parameters to calculate the bandwidth.
We now describe the operation for bandwidth prediction

in details. Assume that the user is located at point v on
some road arc. Due to the inaccuracy of GPS, the obtained
GPS sample point probably maps to a different location g.

• First, a map matching is performed for this new GPS
sample point g. We find the most likely route which
results in the trajectory data up to now. Then we
select the last road arc A on this route as the most
possible road arc the mobile user is traveling on now.
Finally, we find the match point v of g on A such that it
satisfies v = argmin∀vi∈Adist(vi, g), where dist(vi, g)
returns the distance between vi and g.

We adapt the improved HMM-based map matching
algorithm introduced by Fang et al. [9]. To apply the
HMM model, we can view the candidate road arcs in
the road network as the hidden states, and the sam-
ple points derived from the noisy localization measure-
ments as the observations. Then the map matching is
redefined as finding the most probable arc sequence
in the network which could have generated the given
sample points. The algorithm utilizes the historical
information from previous candidate arcs (candidate
arcs of the previous sample point), as well as the topo-
logical information and speed constraints of the road
network, instead of a range query, to find the current
candidate arcs faster. Moreover, when it identifies a
current candidate arc, only those previous candidate
arcs from which this current candidate arc is tempo-
rally accessible are considered. Meanwhile the corre-
sponding shortest routes are also found, respectively.

• Second, given the speed s of the mobile user and the
match point v on road arc A obtained in the previous
step, we aim to predict the future possible locations
(p ∈ P ) the user will be at. We assume a linear move-
ment along the road arc. Denote T as the predicted
time interval, and t as the time step. Hence, the future
locations will be p = v+s×jt, where j is an integer in
the range of [1, bT

t
c]. However, the above method only

applies when the user moves along a single road arc. To
handle the uncertainty problem when the user encoun-
ters an intersection, we adapt the predictive location
model [12] to calculate the probability. We store the
historical trajectories on the server and use them to in-
fer the number of times the user has traveled on each
road arc and the trajectory choice at each intersec-

tion. The model uses a probability matrix to describe
the probabilistic information at an intersection. The
matrix is dynamic and is updated periodically. The
model evaluates all the options and selects the road
arc with the highest probability.

• Third, since it is impossible to obtain bandwidth mea-
surements for every single location, it is necessary to
perform interpolation to obtain bandwidth estimations
for target locations derived from adjacent points with
bandwidth measurements. In our system we use the
k-nearest neighbor algorithm (k-NN) to retrieve the
nearest locations (l1, l2, ..., lk) and calculate the weighted
mean bandwidth among them. For efficient processing,
we issue a range query with distance d and gather the
bandwidth measurement points within the range.

As Figure 6 shows, the measured bandwidth for a sin-
gle location can vary dramatically during the time of
day, but the changing pattern tends to repeat itself
over the days. That is, the bandwidth measurements
in the same time period of different days shows lit-
tle change. In order to make use of this property, we
only select the bandwidth measurement points whose
recording time is within the same time period (Tp) of
the query time on different days. For example, assume
the query time is 7am of day 3, given Tp = 2h, we will
pick up all the measurement points whose recording
time is between 6am and 8am of day 1 and day 2.

Intuitively, we assume that the bandwidth values of
near locations are more similar than those of locations
farther apart. Therefore, we apply an Inverse Distance
Weighted (IDW) interpolation for the bandwidth esti-
mation. IDW assigns greater weights to points closer
to the prediction location, and the weights diminish as
a function of distance. The bandwidth value B(p) of
location p is determined by:

B(p) = pow

√

√

√

√

k
∑

i=1

(

B(li)

dist(li, p)

)pow

/

k
∑

i=1

(

1

dist(li, p)

)pow

where pow is the power value that determines the rate
at which the weights decrease.

Algorithm 1 outlines our method for bandwidth prediction.
In line 1 functionMapMatching(G, g) finds the match point
v of the GPS sample point g on a road network G. Then
it calculates the future possible locations (p ∈ P ) where
the user will be at (lines 2–5). Next for all the predicted
locations, RangeQuery(p, d, L) uses location p as a central
point and fetches points from set L within the requested
range d. Function T imeFilter(Tp, LR) picks up the points
whose sampling times are within Tp. KNN(k, p, LT ) finds
k nearest neighbors for location p among location set LT ,
and the Euclidean distance is used as the distance metric.
IDW (Lk, B(Lk), p) uses the inverse weighted distance in-
terpolation to calculate the estimated bandwidth value b at
location p, and Lk is a set of known locations with band-
width measurement values B(Lk). Afterwards the estimated
bandwidth value b is incorporated to the set Bp (lines 6–12).
Finally the set of estimated bandwidth values is returned
(line 13).



Algorithm 1 Algorithm for geo-bandwidth prediction

Require: g: Current GPS sample point
s: Current speed of the mobile client
T : Predict time interval
t: Time step
G: Road network
M = (B,L): Bandwidth map. B–bandwidth, L–location
B(l): Bandwidth measured in location l
Tp: Adjacent time period
b: Predict bandwidth value
Initialize P = ∅, where P is set of positions identified for
predictive path
Bp = ∅, where Bp is a set of bandwidth values predicted for
next T time

1: v = MapMatching(G, g)

2: for all j ∈ [1, bT
t
c] do

3: p = v + s× jt
4: P = P ∪ p
5: end for

6: for all p ∈ P do

7: LR = RangeQuery(p, d, L)
8: LT = T imeFilter(Tp, LR)
9: Lk = KNN(k, p, LT )
10: b = IDW (Lk, B(Lk), p)
11: Bp = Bp ∪ b
12: end for

13: return B

3.3 Quality Adaptation
Upon receipt of the response of a previous bandwidth re-

quest, the DASH Client can make use of these data to per-
form quality adaptation. The quality adaptation algorithm
determines the representation of the next media segment to
be fetched each time after receiving the previous segment.
Suppose the stream we desire to transmit contains C rep-

resentation levels. The levels are 0,1, ..., C−1 (0 is the index
for the lowest level). r is the encoding media bitrate for the
current video quality level used, and r′ is the proposed level
to be used after the next switch. Thus r0 (rC−1) represents
the lowest (highest) bitrate. We write r−(r+) for the bi-
trate of the next higher (lower) quality level with respect to
r. Denote β as the current buffered media duration, βlow as
the minimum buffered media duration required, and βhigh

as the maximum buffered media duration. We denote as ρ′

the predicted bandwidth for the next time steps.
Based on the amount of available predicted bandwidth

values, we propose two algorithms for quality adaptation.

A. 1-predict Algorithm
It is comparably simple and accurate if the Geo-predictive

Server only needs to predict the bandwidth value for the next
one time step. In this case, the quality adaptation algorithm
can only take the most recent predicted bandwidth value as
input and perform the quality selection. Here we propose the
1-predict rate adaptation algorithm which works as follows.
If β < βlow, there is a risk that the buffer will underflow,

so switch to the lowest quality level.
While βlow < β < βhigh, by comparing ρ′ and r, we can

make the switching decision as follows: (1) If ρ′ < r−, it
means the bandwidth is too low to transmit the video seg-
ment at the current quality level, so decrease and switch to
the first bitrate for which r′ < ρ′. (2) If r− < ρ′ ≤ r, then
the bandwidth is not enough to transmit the video segment
at the current quality level, but decreasing one level should
be sufficient. (3) If r < ρ′ ≤ r+, it means that the network
condition is getting better, but switching up one level may

cause the proposed bitrate to move higher than the aver-
age TCP throughput, so keeping the status unchanged is
suitable for the current situation. (4) If ρ′ > r+, the avail-
able bandwidth can allow a higher video quality presentation
level, so we can increase to r′ which is the highest bitrate
for which r′ < ρ′.

If β > βhigh, the client has quite a bit of buffered media
to consume. In this case, we have two options: switching to
a higher quality level, or keeping the current quality level
and delay the transmission of the next video segment. If
the current quality level is already the highest one, or the
predicted bandwidth is less than the next higher bitrate, we
will stay with the current quality level, and wait for a period
of time until the buffer level reduces to a more moderate
value (

βlow+βhigh

2
). Otherwise, we will switch to a higher

quality level.

Algorithm 2 1-predict quality adaptation algorithm

Require: r: Current bitrate used
r′: Proposed bitrate
r0: Lowest bitrate
rC−1: Highest bitrate
ρ′: Predicted bandwidth for next time interval
β: Current buffered media time
Initialize r′ = r, Tidle = 0

1: if β < βlow then

2: r′ = r0
3: else if β < βhigh then

4: if r− < ρ′ ≤ r then

5: r′ = r−

6: else if r < ρ′ ≤ r+ then

7: r′ = r
8: else

9: r′ = the highest bitrate for which r′ < ρ′

10: end if

11: else

12: if r = rC−1 or ρ′ < r+ then

13: Tidle = β −
βlow+βhigh

2
14: else

15: r′ = r+

16: end if

17: end if

18: return r′, Tidle

Algorithm 2 outlines our method for the 1-predict qual-
ity adaptation. As a drawback, if we only use the predicted
bandwidth value in the next time step to determine the video
rate since bandwidth is naturally time and location varying,
the curve of the selected video rate over time will not be
smooth. Furthermore, the user’s quality of experience will
suffer due to frequent video bitrate fluctuations. Hence, to
avoid this phenomenon and to stabilize the video quality, we
propose to use the running average bandwidth to replace the
next predicted bandwidth value in Algorithm 2. For simplic-
ity, we only use the 2 seconds running average connection
throughput: the predicted bandwidth for this second and
the actual bandwidth for the last second. Denote ρi as the
actual bandwidth in the i′th time interval and ρ′i as the pre-
dicted bandwidth, then the 2-sec running average bandwidth
is:

ρi =

{

λ1ρ
′
i + λ2ρi−1 + (1− λ1 − λ2)ρi−1 i > 0

ρ0 i = 0
(1)

In the experiments, we set the same weight for ρi and ρ′i,
λ1 = λ2 = 0.3.



B. N-predict Algorithm
If the Geo-predictive Server can estimate the bandwidth

values for the next N time steps, the rate adaptation al-
gorithm can utilize all this information and perform more
smooth rate switching. Additionally it can ensure better
bandwidth utilization.
Here we propose the N -predict quality adaptation algo-

rithm. Denote ρ0, ρ1, . . . , ρN−1 as the predicted bandwidth
values for the next N time steps. The video data that can

be transmitted during this period is

N−1
∑

i=0

ρi, and the whole

media data that can be consumed during this interval is
N−1
∑

i=0

ρi + β′, where β′ is the buffered media which can be

consumed and be determined by:

β′ =

{

β − βlow β > βlow

0 β ≤ βlow
(2)

Then the bitrate r for the next several video segments
to be transmitted is established by calculating the average
transmitted throughput γ as depicted by Equation 3.

α× (

N−1
∑

i=0

ρi + β′) = N × γ (3)

Here, α (0 < α < 1) is a configuration parameter used
to ensure that there is enough data that can be transmitted
with the selected quality level. For the next N time steps,
we can switch to r which is the highest bitrate for which
r < γ. During the actual transmission, there is a chance
that the buffer will underflow because the selected bitrate
is calculated based on an average value. To avoid this phe-
nomenon, if β < βlow, we decrease the quality level by one
to ensure smooth playback.

4. EVALUATION
To demonstrate the feasibility of our proposed GTube

framework, we conducted experiments on the datasets we
collected. In this section, we first introduce several datasets
used for evaluation, and then illustrate the experimental
setup. Finally, we report on the experimental results and
provide some discussions.

4.1 Datasets

A. Road Network
Our road network information is based on OpenStreetMap 1

data. We extract the XML data from the map around the
area of the National University of Singapore (NUS). The
road network is contained within a rectangular area with
the top left corner at (lat/long 1.306570, 103.765195) and
bottom right corner at (lat/long 1.288520, 103.789485).

B. Bandwidth Traces
We collected bandwidth data of the NUS campus by trav-

eling on school buses and by walking around the campus
area. We used an HTC Nexus One phone to perform HTTP
streaming downloads. The phone received the stream over
its 3G interface and used the internal GPS module for loca-
tion tracking. Our custom-written data acquisition software
fetches information such as location, timestamp, etc., and

1http://www.openstreetmap.org/

calculates the average throughput every second as the ob-
served bandwidth. We collected more than 1,000 bandwidth
values in a 7-day period. Figure 4 shows some of the band-
width traces around the NUS campus. This map is used by
the Geo-bandwidth Server to predict the bandwidth.

Figure 4: An example of a bandwidth map for the
NUS campus.

Specifically, in our experiments we use two traces – Track
1 (184s) and Track 2 (283s) – to evaluate the performance of
the quality adaptation algorithms. Their bandwidth values
are shown in Figure 8(a) and Figure 9(a).

C. GPS Traces
To evaluate the accuracy of the map-matching and path

prediction algorithm proposed in Section 3.2, we need a GPS
trace dataset which contains historical trajectories and user
identification information. To obtain these data, we em-
ployed 5 students to record their GPS trajectories in the
NUS campus for a 7-day period. During that week, they
performed their daily activities (e.g., go to the canteen on
a school bus, walk to a lecture room or gym, etc.) as they
usually did. The average total length of the GPS trace for
one user is 18km.

State-of-the-art mobile devices report the GPS accuracy
of the received GPS signal in addition to the location. We
found that the two different mobile devices we tested had
two different minimum GPS error bounds: 6 meters and
2 meters. The GPS error distribution for our GPS trace
dataset is shown in Figure 5. One can see that most of the
GPS errors are below 20 meters.
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Figure 5: GPS error distribution for GPS trace
dataset.



Module Parameter Description Values

N Predict time step 1–200, 10
Path Prediction t Time step 1s

T = N × t Predict time interval 1s–200s, 10s
Tp Selected adjacent time period 1h–24h, 3h

Bandwidth Prediction pow Power value used in IDW 2
k Input for k-NN algorithm 1–20, 5

βlow, βhigh Buffer setting βlow = 10s, βhigh = 50s
Quality Adaptation λ1, λ2 Weight for running average bandwidth λ1 = 0.3, λ2 = 0.3

α Configure parameter N-predict 0.5

Table 1: Parameters used in the experiments (values in bold are the default settings).

D. Video Segments
The used video sequence (Big Buck Bunny) was generated

with an open source DASH content generation tool [13]. It
has duration of approximately 600 seconds. The segment
size is 2s. The available bitrates are 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.9, 1.2, 1.5, 2.0, 2.5, and 3.0 Mbit/s.
For later use, we note here that the smallest percentage

difference between bitrates is (0.7− 0.6)/0.7 = 14.3%.

4.2 Experimental Setup
We implemented an extensive simulator by using C++

and the ns2 platform [11]. We assume an urban wireless
communication infrastructure where mobile users are trav-
eling on the road network of the NUS campus. The band-
width prediction module is implemented with C++. The
simulator took the measured bandwidth traces, the histor-
ical trajectories and the mobile user’s current location and
speed as input, and estimated the geo-bandwidth informa-
tion for the user. The network condition is simulated by
ns2, and we implemented a DASH client also in ns2, where
various quality adaptation algorithms can be tested. The
simulation parameters are summarized in Table 1.

4.3 Evaluation Metrics
To measure the performance of our proposed approach, we

now describe the evaluation metrics we focus on for different
modules.

A. Path Prediction
Correct location prediction rate: As Figure 5 shows, most

of the GPS errors are below 20m. If the distance between the
predicted and actual location is less than 20m, we consider
the prediction to be correct. The correct location prediction
rate is calculated as the ratio of the number of correct loca-
tion predictions to the number of all location predictions.

B. Bandwidth Prediction
Correct bandwidth prediction rate: As we calculated in

the video segments dataset, the smallest percentage bitrate
differences between different video quality level is 14.3%. If
the difference between the predicted and actual bandwidth
is less than 14.3%, we consider the prediction to be correct.
The rational behind this assumption is: this small shift will
not cause the DASH client to switch the video quality for
more than one level. The correct bandwidth prediction rate
is calculated as the ratio of the number of correct bandwidth
predictions to the number of all bandwidth predictions.

C. Quality Adaptation
For comparison, we implemented two other quality adap-

tation algorithms. The first is the algorithm proposed by

Algorithm 3 Quality adaptation algorithm in OSMF

Require: tlastseg : Time of downloading the last segment
r: Current bitrate used
r′: Proposed bitrate
r0: Lowest bitrate
rC−1: Highest bitrate
τ : Segment duration
rdownload ← τ/tlastseg

1: if rdownload < 1 then

2: if r > r0 then

3: if rdownload < r−/r then

4: r′ = r0
5: else

6: r′ = r−

7: end if

8: end if

9: else

10: if r < rC−1 then

11: while r′ < rC−1 do

12: r′ = r′+

13: if rdownload < r′/r then

14: break
15: end if

16: end while

17: end if

18: end if

Liu et al. [14], where the authors use µ = MSD/SFT as
the transmission metric to decide whether to switch up or
down (MSD is the media segment duration and SFT is
the segment fetch time). If µ > 1 +max((bri+1

− bri)/bri),
the chosen video rate will be switched up one level, where
bri denotes the encoded media bitrate of representation i.
If µ < γd where γd denotes the switch down threshold, the
chosen video rate reduces to a level to meet bri < µbc, where
bc denotes the bitrate of the current representation. To pre-
vent a buffer overflow, before sending the next GET request,
the algorithm will wait for ts = tm − tmin − (bc/bmin)MSD
seconds, where ts, tm and tmin denote the idle time in sec-
onds, the buffered media time, and bc and bmin denote the
current representation bitrate and the minimum representa-
tion bitrate, respectively. The other algorithm implemented
for comparison is the quality adaptation algorithm used by
Adobe’s Open Source Media Framework (OSMF) [1], shown
in Algorithm 3. The download ratio (playback time of last
segment downloaded / amount of time it took to download
that whole segment, from request to finish) is compared to
the switch ratio (claimed rate of proposed quality / claimed
rate of current quality). The quality switch decision is made
based on the comparison of the two ratio values.

We used the same experimental environment and the same



simulation parameters for the four algorithms. We con-
ducted the same experiments as for our algorithms, and the
same curves were plotted for comparison.
The following performance metrics were used for the eval-

uation.

• Achieved segment quality level along the routes accord-
ing to time.

• Ratio of Bandwidth utilization refers to the ratio of
the bitrate of selected quality level to the actual band-
width.

• Rate of video quality level shift refers to the number
of quality switches divided by the number of segment
switches.

Nswitch

Nsegment − 1

This is used to quantify the frequency of quality switches.

4.4 Experimental Results

A. Path Prediction Results
It is well known that channel conditions can change very

quickly in a wireless environment. To investigate the tempo-
ral property of dynamic changing bandwidth, we measured
the bandwidth for a single location for 7 days. Figure 6
shows how the measured bandwidth for a single location can
vary dramatically during the time of a day, but the chang-
ing pattern tends to repeat on different days. That is, the
bandwidth measurements during the same time period of
different days shows little change. Based on this property,
bandwidth measurement points in adjacent time periods of
different days can be used as input for bandwidth prediction
as described in the second point of Section 3.2.
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Figure 6: Bandwidth statistics for a single location
at different times of 7 days.

Figure 7(a) shows the correct location prediction rate for
different prediction time interval T values. When the pre-
diction time becomes longer, more uncertainties will appear.
For example, the user may speed up, slow down or stop. As
a result the correct prediction rate decreases as T increases.
In a later section, we will show the quality adaptation results
for different T values.

B. Bandwidth Prediction Results
Next we investigate the impact of different parameters on

the performance of the bandwidth prediction. Figure 7(b)
shows the correct bandwidth prediction rate for different k
values. When k is less than 3, the obtained input samples
for bandwidth prediction are too few, resulting in a correct

rate lower than 80%. On the other hand, when the k value
is large (e.g., larger than 12), the prediction accuracy de-
creases, which is likely because too many noisy values are
included into the calculation. Therefore, we set the default
k value as 5, with the highest correct prediction rate of 94%.

Figure 7(c) shows the correct bandwidth prediction rate of
different selected adjacent time period Tp values. When Tp

is small, we do not have enough samples to obtain accurate
prediction results. On the other hand, when the Tp value
is large (e.g., larger than 15), the prediction accuracy is not
satisfied either, which is probably because too many noisy
values are taken into consideration. Hence we set the default
Tp value as 3, which results in a comparably high correct
prediction rate of 95%.

C. Quality Adaptation Results
Figure 8 shows the bandwidth prediction and quality se-

lection results for the four quality adaptation algorithms.
Liu’s algorithm uses conservative step-wise up switching and
aggressive down switching (Figure 8(b)). The video quality
is very stable, but the average video bitrate is very low.
This is because the algorithm is too conservative and can
not make full use of the bandwidth. In Adobe’s algorithm
(Figure 8(c)), the next segment to be downloaded is the one
whose bitrate is closest to the recent bandwidth, with no
considerations to stability or safety margins. As a result, the
users’ quality of experience suffers due to buffer underflow
and too frequent oscillations in quality. To a certain extent,
the 1-predict bandwidth (Figure 8(d)) is a smoothed version
of the original TCP throughput (Figure 8(a)). Based on such
a smoothed bandwidth trace, the 1-predict algorithm can
achieve more stable quality switches compared to Adobe’s
algorithm. Furthermore, with the N-predict algorithm (Fig-
ure 8(e)), the video quality is smoothed out considerably as
the algorithm can use enough predicted bandwidth in the
calculation. It successfully achieves our goals: higher band-
width utilization, avoiding switching too often, and avoiding
the rapid fluctuations that are known to annoy users. Simi-
lar results can be seen from Figure 9 for Track 2.

Figure 10 presents the cumulative distribution function of
the video data in each quality level for the four algorithms.
For both tracks, the average quality level used in Liu’s al-
gorithm is much lower than the other three. The positive
aspect is that it ensures the fluency of the playback. The
CDF of the quality level is about the same for Adobe’s and
the 1-predict algorithm, while the performance of N-predict
is slightly better than the other two. Especially, the amount
of high quality level segments selected by 1-predict and N-
predict are obviously more than for the other two, through
which our algorithms can provide users a better viewing ex-
perience.

Liu Adobe 1-predict N-predict

Track 1 60.1% 73.4% 85.6% 92.0%
Track 2 67.8% 78.5% 86.1% 93.3%

Table 2: Ratio of bandwidth utilization (higher
numbers are better).

Table 2 shows the ratio of bandwidth utilization for the
four algorithms. As we discussed above, the N-predict algo-
rithm almost fully utilizes the available bandwidth (92.0%),
and the ratio of bandwidth utilization for the 1-predict al-
gorithm (85.6%) is higher than the other two.
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Figure 7: Evaluation results for path prediction and bandwidth prediction.
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Figure 8: Video quality level for four algorithms for
Track 1.
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Figure 9: Video quality level for four algorithms for
Track 2.
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Figure 10: Cumulative distribution function of quality (higher is better).

Liu Adobe 1-predict N-predict

Track 1 31.4% 76.3% 50.8% 12.5%
Track 2 43.3% 72.9% 53.2% 11.9%

Table 3: Rate of video quality level shift (lower num-
bers are better).

In order to quantify the frequency of quality switching for
each algorithm, we calculate the percentage of quality level
switching by the number of quality switches divided by the
number of segment switches ( Nswitch

Nsegment−1
). From Table 3, we

can tell that the switch percentage of the 1-predict algorithm
(50.8%) is lower than Adobe’s algorithm (76.3%), but higher
than Liu’s algorithm (31.4%). While the N-predict algo-
rithm (10.0%) performs better than the other three, making
it the most stable scheduler that can provide a good viewing
experience.
From the above observation, we find that the bandwidth

prediction method is helpful to improve the stabilization of
the video quality, and to increase the bandwidth utilization.
We next turn our attention to the impact of the prediction
time range on the N-predict algorithm. For different N val-
ues, Figure 11 shows the video quality level selection results
for Track 2. As the prediction time increases, the stabi-
lization of the streaming quality improves, i.e., it results in
long intervals of the same quality. However, the chance of
false bandwidth prediction also increases, and the chance of
buffer underflow increases (210s in Figure 11(d) and 110s in
Figure 11(e)). This reinforces the notion that more precise
bandwidth detection results lead to better streaming quality.

4.5 Discussion
In our experiments we did not make any specific assump-

tions about the users’ moving behavior and video viewing
behavior. The robustness of our approach with respect to
various anomalies is of course of significant importance. We
have some preliminary indication that our method is quite
robust. However, we will only have a clearer picture of these
issues once we collect a much larger repository of data.
In our current implementation, we do not consider the bat-

tery life of mobile devices. For example, GPS is very energy-
consuming. Energy-efficient data collection and transmis-
sion on mobile device have been discussed in many existing
works [10, 9], which we will address in the future.

What we describe in this paper is a pipelined system
with several components. To customize the service, one can
replace the algorithm of each component with other algo-
rithms. For example, different map-matching or path pre-
diction methods could be used.

5. CONCLUSIONS
In this paper we have presented GTube, a design frame-

work to enable geo-predictive mobile streaming. We have
shown how to collect bandwidth data and build a bandwidth
map, how to perform path and bandwidth prediction, and
further how to use the prediction results to help improve
the DASH streaming. We evaluated our scheme via exper-
iments on real-world datasets, and compared it with two
other algorithms. Our experiments show that the technique
is effective to achieve continuous playback and to provide
higher and stabilized media quality to the end user.

For future work we plan to extend our approach in sev-
eral aspects. First, due to the power-consuming property of
mobile streaming, it is necessary to provide energy-efficient
streaming solutions for mobile devices. We plan to take the
battery life into consideration for the geo-bandwidth data
collection, upload and quality adaptation module. Second,
we will investigate the problem of the frequency of geo-
bandwidth data uploads and the frequency of bandwidth
map updates, as they will affect the interaction between
server and clients and further affect the users’ perceived ex-
perience. Nevertheless, we expect our approach of leverag-
ing location information to facilitate efficient mobile video
delivery to be useful for a wide range of novel applications.
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