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Guaranteed and robust a posteriori bounds

for Laplace eigenvalues and eigenvectors:

conforming approximations∗

Eric Cancès† Geneviève Dusson‡§ Yvon Maday‡¶‖ Benjamin Stamm∗∗

Martin Vohraĺık††

December 15, 2016

Abstract

This paper derives a posteriori error estimates for conforming numerical approximations of the Laplace
eigenvalue problem with a homogeneous Dirichlet boundary condition. In particular, upper and lower
bounds for an arbitrary simple eigenvalue are given. These bounds are guaranteed, fully computable,
and converge with optimal speed to the given exact eigenvalue. They are valid without restrictions
on the computational mesh or on the approximate eigenvector; we only need to assume that the ap-
proximate eigenvalue is separated from the surrounding smaller and larger exact ones, which can be
checked in practice. Guaranteed, fully computable, optimally convergent, and polynomial-degree ro-
bust bounds on the energy error in the approximation of the associated eigenvector are derived as
well, under the same hypotheses. Remarkably, there appears no unknown (solution-, regularity-, or
polynomial-degree-dependent) constant in our theory, and no convexity/regularity assumption on the
computational domain/exact eigenvector(s) is needed. Two improvements of the multiplicative constant
appearing in our estimates are presented. First, it is reduced by a fixed factor under an explicit, a pos-
teriori calculable condition on the mesh and on the approximate eigenvector–eigenvalue pair. Second,
when an elliptic regularity assumption on the corresponding source problem is satisfied with known
constants, the multiplicative factor can be brought to the optimal value of one. Inexact algebraic solvers
are taken into account; the estimates are valid on each iteration and can serve for the design of adaptive
stopping criteria. The application of our framework to conforming finite element approximations of
arbitrary polynomial degree is provided, along with a numerical illustration on a set of test problems.

Key words: Laplace eigenvalue problem, a posteriori estimate, eigenvalue error, eigenvector error, guar-
anteed bound, conforming finite element method, inexact solver, stopping criteria

1 Introduction

Precise numerical approximation of eigenvalues and eigenvectors is crucial in countless applications. Thus,
there has been a long-standing interest in answering the question: what is the size of the errors in computed

∗This work was supported by the ANR project MANIF “Mathematical and numerical issues in first-principle molecular
simulation”. The last author has also received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement No 647134 GATIPOR).

†Université Paris Est, CERMICS, Ecole des Ponts and INRIA, 6 & 8 Av. Pascal, 77455 Marne-la-Vallée, France
(cances@cermics.enpc.fr).

‡Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, 4 place Jussieu 75005,
Paris, France (dusson@ann.jussieu.fr, maday@ann.jussieu.fr).

§Sorbonne Universités, UPMC Univ. Paris 06, Institut du Calcul et de la Simulation, 75005, Paris, France.
¶Institut Universitaire de France, 75005, Paris, France.
‖Division of Applied Mathematics, Brown University, 182 George St, Providence, RI 02912, USA.

∗∗Center for Computational Engineering Science, RWTH Aachen University, Aachen, Germany and Computational
Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszen-
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eigenvalues and eigenvectors? This question is usually tackled via a posteriori error estimates. For elliptic
source problems such as the Laplace one, conclusive answers are today given by, in particular, the theory
of equilibrated fluxes following Prager and Synge [49], see Destuynder and Métivet [19], Braess et al. [8],
Ern and Vohraĺık [22], and the references therein. The structure of the Laplace eigenvalue problem appears
rather richer in comparison with the elliptic source case.

Recently, though, there has been an important progress in obtaining guaranteed lower bounds for the
eigenvalues, especially for the first one: Luo et al. [42], Hu et al. [32, 33], Carstensen and Gedicke [16],
Yang et al. [63], or Liu [39] achieve so via the lowest-order nonconforming finite element method, Kuznetsov
and Repin [37] and Šebestová and Vejchodský [54, 55] give numerical-method-independent estimates based
on flux (functional) estimates, Liu and Oishi [41] elaborate fine a priori approximation estimates for lowest-
order conforming finite elements, and, most recently, Xie et al. [62] also rely on fluxes. Earlier work comprises
Kato [34], Forsythe [24], Weinberger [61], Bazley and Fox [4], Fox and Rheinboldt [25], Moler and Payne [45],
Kuttler and Sigillito [35, 36], Still [57], Goerisch and He [27], Plum [48], Behnke et al. [5], and Armentano
and Durán [1], see also the references therein. Sometimes, though, restrictions may apply. A condition on
relative closeness to the (first) eigenvalue is necessary in [37, Remark 3.2], [54, condition (3.6)], and [55,
condition (5.23)] (in these references, the bounds actually do not converge with the correct speed); solution
of an auxiliary eigenvalue problem for nonconvex domains is requested [41]; potential overestimation on
adaptively generated meshes may hamper the bounds of [41, 16, 39], relying on a priori estimates and
employing the largest mesh element diameter; an auxiliary global flux problem needs to be solved in [62]; a
saturation assumption may be necessary, see the discussion in [32].

The question of precision for both eigenvalues and eigenvectors has also been investigated previously.
For conforming finite elements, relying on the a priori error estimates resumed in Babuška and Osborn [2]
and Boffi [7], see also the references therein, a posteriori error estimates have been obtained by Verfürth [60],
Maday and Patera [43], Larson [38], Heuveline and Rannacher [31], Durán et al. [20], Grubǐsić and Ovall [29],
Rannacher et al. [50], and Šoĺın and Giani [56], see also the references therein. These estimates, though,
systematically contain uncomputable terms, typically higher order on fine enough meshes.

Let Ω ⊂ R
d, d = 2, 3, be a polygonal/polyhedral domain with a Lipschitz boundary, and let λi, ui

be the eigenvalues and associated eigenvectors of the Laplace operator −∆ on Ω with Dirichlet boundary
conditions. The purpose of the present paper is to derive guaranteed and optimally convergent a posteriori
bounds on both an arbitrary separated Laplace eigenvalue and the associated eigenvector for conforming
(variational) methods. Nonconforming methods including nonconforming, discontinuous Galerkin, or mixed
finite elements are treated in Cancès et al. [12]. We describe the setting in details in Section 2. Section 3 and
Section 4 then contain a collection of equivalence inequalities between respectively the i-th eigenvalue error
and the square of the i-th eigenvector energy error, the i-th eigenvector energy error and dual norm of the
residual, and between the dual norm of the residual and its computable estimates. These results are valid
under one key assumption: λih needs to be confined like λi−1 < λih < λi+1 (the left inequality of course
only needs to hold when i > 1), see (5.2) below. This can be guaranteed in many cases of practical interest
by a domain inclusion argument Ω− ⊆ Ω ⊆ Ω+ with known smaller and larger eigenvalues λi−1 ≤ λi−1(Ω

−)
and λi+1(Ω

+) ≤ λi+1 and by requesting λi−1 =: λi−1(Ω
−) < λih < λi+1 := λi+1(Ω

+). Numerical bounds

λi−1 ≥ λi−1 (typically available during the calculation) and λi+1 ≤ λi+1 (obtained a on a coarse mesh by
the approach of [41, 16, 39]) can also be used, see Remarks 5.3 and 5.4 below. We also suppose that the
approximation spaces consist of appropriate piecewise polynomials. For improved versions of our bounds,
we additionally need to check the smallness of the L2(Ω)-norm of the Riesz representation of the residual,
see the a posteriori calculable conditions (5.6) and (5.9) below. These can be always satisfied by refining the
computational mesh/increasing the polynomial degree of the approximate solution. Note that no condition
of Galerkin orthogonality of the residual to the finite element hat functions needs to be satisfied: the entire
analysis is presented in the context of inexact algebraic solvers. Our estimates are valid on each iteration
subject to the above inclusion of λih and can be used for efficient adaptive stopping criteria of iterative
eigenvalue solvers, as promoted in, e.g., Mehrmann and Miedlar [44] or Carstensen and Gedicke [16].

In Section 5, the results of Section 3–Section 4 are turned into actual a posteriori bounds. First,
upper and lower bounds for the i-th eigenvalue are given in Theorems 5.1 and 5.2. For a finite element
approximation with an exact algebraic solver for simplicity, we obtain

λih − η2i ≤ λi ≤ λih − η̃2i , (1.1a)

with ηi= mih‖∇uih + σih,dis‖ and η̃i= η̃i(rih) being fully computable quantities. Here uih is the approxima-
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tion of the i-th exact eigenvector ui, ‖·‖ is the L2(Ω)-norm, σih,dis is an equilibrated flux reconstruction by
mixed finite element local residual problems, and rih is formed by conforming finite element local residual
liftings. The associated eigenvector energy estimates are given next, with Theorem 5.6 revealing

‖∇(ui − uih)‖ ≤ ηi, ηi ≤ Ci‖∇(ui − uih)‖, (1.1b)

where Ci is a constant that only depends on λ1, λi−1, λih, λi+1, on the space dimension d, and on some
Poincaré–Friedrichs-type constant Ccont,PF together with a discrete stability constant Cst, both only de-
pending on the shape regularity of the mesh. In particular, Ci is independent of the polynomial degree
of uih, leading to the polynomial-degree robustness. Moreover, a computable bound on Ci is given. The
constant Ci, however, deteriorates for increasing eigenvalues. We distinguish three different cases. In Cases
A and B of Theorems 5.1, 5.2, and 5.6, the multiplicative factor mih of the estimator ηi contains the fac-
tor max{( λih

λi−1
− 1)−1, (1 − λih

λi+1
)−1} and similarly for η̃i; Case B improves the overall size of mih under

the fine-enough-mesh condition (5.6). The results of these two cases hold without any assumption on the
convexity of the computational domain Ω and on the regularity of the weak solutions. If, additionally, el-
liptic regularity of the corresponding source problem is known, the interpolation and stability constants are
computable (typically when d = 2 and Ω is convex), and the condition (5.9) holds, the factor mih in front
of the principal term ‖∇uih + σih,dis‖ has the optimal behavior

√
1 +O(h2), as summarized in Case C of

Theorems 5.1, 5.2, and 5.6.
We show how to apply the above general results to conforming finite elements of arbitrary order in Sec-

tion 6. Numerical experiments presented in Section 7 fully support the theoretical findings; in particular the
necessary conditions hold from quite coarse meshes. We only treat here simple eigenvalues and associated
eigenvectors; clustered and multiple eigenvalues will be dealt with in a forthcoming contribution. Finally,
building on these results, guaranteed error bounds and fully adaptive strategies with dynamic stopping
criteria may become possible for nonlinear eigenvalue problems; some of our first results in this direction
are summarized in [11].

2 Setting

We denote by H1(Ω) the Sobolev space of L2(Ω) functions with weak gradients in [L2(Ω)]d and by V :=
H1

0 (Ω) its zero-trace subspace. Similarly, H(div,Ω) stands for the space of [L2(Ω)]d functions with weak
divergences in L2(Ω). The notations ∇ and ∇· are used respectively for the weak gradient and divergence.
Moreover, for ω ⊂ Ω, (∇u,∇v)ω stands for

∫
ω
∇u·∇v dx and (u, v)ω for

∫
ω
uv dx; we also denote ‖∇v‖2ω

:=
∫
ω
|∇v|2 dx and ‖v‖2ω :=

∫
ω
v2 dx and drop the index whenever ω = Ω.

2.1 The Laplace eigenvalue problem

We consider here the problem: find eigenvector and eigenvalue pairs (uk, λk), with uk satisfying a homoge-
neous Dirichlet boundary condition over ∂Ω and subject to the constraint ‖uk‖ = 1, such that −∆uk = λkuk
in Ω. In a weak form, (uk, λk) ∈ V × R

+ with ‖uk‖ = 1 and

(∇uk,∇v) = λk(uk, v) ∀v ∈ V. (2.1)

Actually, cf. Gilbarg and Trudinger [26], Babuška and Osborn [2], Boffi [7], or Strang and Fix [58], uk, k ≥ 1,
form a countable orthonormal basis of L2(Ω) consisting of vectors from V , whereas 0 < λ1 < λ2 ≤ λ3 ≤ . . .
going to +∞. The smallest eigenvalue λ1 is positive and simple and the associated eigenvector uk to each
simple λk is unique up to the sign that we fix here by the condition (uk, χk) > 0, where χk ∈ L2(Ω) is
typically a characteristic function of Ω (for k = 1) or of its subdomain (for k > 1). Note that it follows
from (2.1) and the scaling ‖uk‖ = 1 that ‖∇uk‖2 = λk.

Below, we shall often employ the Parseval identity, giving for any v ∈ L2(Ω)

‖v‖2 =
∑

k≥1

(v, uk)
2. (2.2)

3



As (uk/
√
λk)k≥1 form an orthonormal basis of V , for which one in particular uses that (∇uk,∇ul) =

λk(uk, ul) = 0 for k 6= l, for any v ∈ V , we also obtain

‖∇v‖2 =
∑

k≥1

(∇v,∇uk)2
λk

=
∑

k≥1

λk(v, uk)
2. (2.3)

2.2 Residual and its dual norm

The derivation of a posteriori error estimates usually exploits the concept of the residual and of its dual
norm. We will proceed in this way as well. Let V ′ stand for the dual of V .

Definition 2.1 (Residual and its dual norm). For any pair (uih, λih) ∈ V × R, define the residual
Res(uih, λih) ∈ V ′ by

〈Res(uih, λih), v〉V ′,V := λih(uih, v)− (∇uih,∇v) ∀v ∈ V. (2.4a)

Its dual norm is then
‖Res(uih, λih)‖−1 := sup

v∈V, ‖∇v‖=1

〈Res(uih, λih), v〉V ′,V . (2.4b)

We will also often work with the Riesz representation of the residual r(ih) ∈ V ,

(∇r(ih),∇v) = 〈Res(uih, λih), v〉V ′,V ∀v ∈ V, (2.5a)

‖∇r(ih)‖ = ‖Res(uih, λih)‖−1. (2.5b)

3 Generic equivalences

In extension of some classical results, see [26, 2, 7, 58], we establish in this section generic equivalence results
between the following three quantities: the i-th eigenvalue error ‖∇uih‖2 − λi, which can potentially be
negative, the square of the i-th eigenvector energy error ‖∇(ui − uih)‖2, and the square of the dual norm
of the residual ‖Res(uih, λih)‖2−1. These equivalences may for the moment contain uncomputable terms
like the eigenvalues λi−1, λi, λi+1 or the Riesz representation norm ‖r(ih)‖, but all such terms will be
removed later. To proceed in an abstract way allowing for inexact algebraic solvers, we rather work with
the eigenvalue error given by ‖∇uih‖2 − λi instead of λih − λi; of course these coincide when the discrete
Rayleigh quotient link ‖∇uih‖2 = λih holds, typically upon solver convergence. A generalization to any
self-adjoint operator with compact resolvent can be found in Cancès et al. [12].

Our first two lemmas are similar in parts to the developments in [35, 37, 54, 55], giving a computable
bound on the L2(Ω) error ‖ui − uih‖. Let i ≥ 1 and define

Cih := min

{(
1− λih

λi−1

)2

,

(
1− λih

λi+1

)2
}
. (3.1)

The left term needs to be disregarded for i = 1.

Lemma 3.1 (L2(Ω) bound via a quadratic residual inequality). Let (uih, λih) ∈ V ×R
+ with ‖uih‖ = 1 and

(ui, uih) ≥ 0 be the i-th approximate eigenvector-eigenvalue pair, i ≥ 1. Let λi be simple and let λi−1 < λih
when i > 1 and λih < λi+1. Then

‖ui − uih‖ ≤ αih :=
√
2C

− 1
2

ih ‖r(ih)‖. (3.2)

Proof. Characterizations (2.1), (2.4a), and (2.5a) give

(r(ih), uk) =
(∇uk,∇r(ih))

λk
=

(λih(uih, uk)− (∇uih,∇uk))
λk

=

(
λih
λk

− 1

)
(uih, uk). (3.3)

Consequently, the Parseval equality (2.2) with v = r(ih) yields

‖r(ih)‖2 =
∑

k≥1

(r(ih), uk)
2 =

∑

k≥1

(
1− λih

λk

)2

(uih, uk)
2. (3.4)
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Observe that the function x ∈ R
+ 7→

(
1− λih

x

)2
reaches its minimum at x = λih and is decreasing on

(0, λih] and increasing on [λih,∞). Thus the constant Cih in (3.1) equals mink≥1, k 6=i
(
1− λih

λk

)2
. Further,

employing the scalings ‖ui‖ = 1 and ‖uih‖ = 1,

(uih − ui, ui) = (uih, ui)− ‖ui‖2 = (uih, ui)−
‖ui‖2
2

− ‖uih‖2
2

= −1

2
‖ui − uih‖2. (3.5)

As (ui, uk) = 0 for k ≥ 1, k 6= i from the orthogonality of uk, elaborating (3.4) further while adding and
subtracting Cih(uih − ui, ui)

2 and using (3.1) and (3.5) gives

‖r(ih)‖2 =

(
λih
λi

− 1

)2

(uih, ui)
2 +

∑

k≥1, k 6=i

(
1− λih

λk

)2

(uih − ui, uk)
2

≥
(
λih
λi

− 1

)2

(uih, ui)
2 + Cih

∑

k≥1

(uih − ui, uk)
2 − Cih(uih − ui, ui)

2 (3.6)

=

(
λih
λi

− 1

)2

(uih, ui)
2 + Cih‖ui − uih‖2 −

Cih
4

‖ui − uih‖4,

where we have also employed (2.2) with v = uih−ui. Dropping the first (nonnegative and presumably small)
term on the right-hand side and denoting eih := ‖ui−uih‖2, we conclude the validity of the quadratic residual
inequality in eih

Cih
4
e2ih − Ciheih + ‖r(ih)‖2 ≥ 0. (3.7)

From the sign assumption (ui, uih) ≥ 0, employing ‖ui‖ = ‖uih‖ = 1,

eih = ‖ui − uih‖2 = 2− 2(ui, uih) ≤ 2, (3.8)

so that Ciheih ≤ 2‖r(ih)‖2, i.e., (3.2). Note that inspecting more closely the quadratic inequality (3.7), the

improved bound eih ≤ 2 −
√
4− 2α2

ih (
√
2-times better for eih approaching zero) follows under condition

‖r(ih)‖2 < Cih that we prefer to avoid.

In addition to (3.1), define also (disregarding again the left term for i = 1)

C̃ih := min

{
λi−1

(
1− λih

λi−1

)2

, λi+1

(
1− λih

λi+1

)2
}
. (3.9)

Lemma 3.2 (L2(Ω) bound with respect to ‖∇r(ih)‖). Under the assumptions of Lemma 3.1, there also
holds

‖ui − uih‖ ≤ αih :=
√
2C̃

− 1
2

ih ‖∇r(ih)‖. (3.10)

Proof. Developing (2.3) for v = r(ih) via (3.3) gives

‖∇r(ih)‖2 =
∑

k≥1

λk(r(ih), uk)
2 =

∑

k≥1

λk

(
1− λih

λk

)2

(uih, uk)
2. (3.11)

Next, mink≥1, k 6=i λk
(
1− λih

λk

)2
= C̃ih. Thus, similarly to (3.6)–(3.7), with eih := ‖ui − uih‖2, C̃ih

4 e2ih −
C̃iheih + ‖∇r(ih)‖2 ≥ 0. One then concludes as in Lemma 3.1.

Recall the sign characterization (ui, χi) > 0 with χi ∈ L2(Ω), i ≥ 1. The sign condition (ui, uih) ≥ 0
necessary in Lemmas 3.1 and 3.2 is typically always satisfied; the following lemma can be used for its
rigorous verification:

Lemma 3.3 (Sign verification). Let (uih, λih) ∈ V × R
+ satisfy ‖uih‖ = 1, (uih, χi) > 0, λi−1 < λih when

i > 1 and λih < λi+1, and αih ≤ ‖χi‖−1(uih, χi) for αih given by (3.2) or (3.10). Then the sign condition
(ui, uih) ≥ 0 is satisfied.
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Proof. Suppose −(ui, uih) > 0. Then the bounds of Lemmas 3.1 and 3.2 hold for −uih in place of uih, i.e.,
‖ui + uih‖ ≤ αih. Consequently, a contradiction follows,

(uih, χi) = −(ui, χi) + (ui + uih, χi) < (ui + uih, χi) ≤ ‖ui + uih‖‖χi‖ ≤ (uih, χi).

3.1 i-th eigenvalue error equivalences

We first show how to exploit the L2(Ω) bound for equivalence between the eigenvalue error and the eigen-
vector error.

Theorem 3.4 (Eigenvalue bounds). Let uih ∈ V with ‖uih‖ = 1, i ≥ 1, be arbitrary subject to ‖ui−uih‖ ≤
αih for some αih ∈ R

+. Then

‖∇(ui − uih)‖2 − λiα
2
ih ≤ ‖∇uih‖2 − λi ≤ ‖∇(ui − uih)‖2. (3.12)

Under the additional assumption α2
1h ≤ 2, there also holds, for the first eigenpair,

1

2

(
1− λ1

λ2

)(
1− α2

1h

4

)
‖∇(u1 − u1h)‖2 ≤ ‖∇u1h‖2 − λ1. (3.13)

Proof. Using the weak solution characterization (2.1) and (3.5),

‖∇uih‖2 − λi = ‖∇(uih − ui)‖2 + 2(∇(uih − ui),∇ui)
= ‖∇(uih − ui)‖2 + 2λi(ui, uih − ui)

= ‖∇(uih − ui)‖2 − λi‖ui − uih‖2.
(3.14)

Dropping the (nonpositive and presumably small) last term, the upper bound in (3.12) follows; estimating
it using ‖ui − uih‖ ≤ αih, we arrive at the lower bound in (3.12).

The bound (3.13) only seems to hold for the first eigenpair. To prove it, we use (2.2)–(2.3) for v = u1−u1h.
First,

‖∇(u1 − u1h)‖2−λ1‖u1 − u1h‖2=
∑

k≥1

(λk−λ1)(u1−u1h, uk)2=
∑

k≥2

(λk−λ1)(u1−u1h, uk)2. (3.15)

Using λk ≥ λ2 for k ≥ 2, λ2 > λ1, (3.5) for i = 1, and the Cauchy–Schwarz inequality,

‖∇(u1−u1h)‖2−λ1‖u1−u1h‖2 ≥ (λ2−λ1)
∑

k≥1

(u1−u1h, uk)2−(λ2−λ1)(u1−u1h, u1)2

= (λ2 − λ1)‖u1 − u1h‖2 −
λ2 − λ1

4
‖u1 − u1h‖4.

Using ‖u1 − u1h‖ ≤ α1h and reemploying (2.2) for v = u1 − u1h, we arrive at, second,

‖∇(u1 − u1h)‖2 − λ1‖u1 − u1h‖2 ≥ (λ2 − λ1)‖u1 − u1h‖2 − α2
1h

λ2 − λ1
4

‖u1 − u1h‖2

=
∑

k≥1

(λ2 − λ1)

(
1− α2

1h

4

)
(u1 − u1h, uk)

2.

Summing this with (3.15) with weights 1
2 yields

‖∇(u1 − u1h)‖2 − λ1‖u1 − u1h‖2 ≥
∑

k≥1

{
λk − λ1

2
+
λ2 − λ1

2

(
1− α2

1h

4

)}
(u1 − u1h, uk)

2.

Now notice that, using (2.3) for v = u1 − u1h,

1

2

(
1− λ1

λ2

)(
1− α2

1h

4

)
‖∇(u1 − u1h)‖2 =

∑

k≥1

λk
2

(
1− λ1

λ2

)(
1− α2

1h

4

)
(u1 − u1h, uk)

2.
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A simple calculation (note 1
2 ≤

(
1− α2

1h

4

)
≤ 1) shows that

λk − λ1
2

+
λ2 − λ1

2

(
1− α2

1h

4

)
≥ λk

2

(
1− λ1

λ2

)(
1− α2

1h

4

)
k ≥ 1.

Thus

‖∇(u1 − u1h)‖2 − λ1‖u1 − u1h‖2 ≥ 1

2

(
1− λ1

λ2

)(
1− α2

1h

4

)
‖∇(u1 − u1h)‖2,

and (3.13) follows using (3.14).

3.2 i-th eigenvector error equivalences

We next investigate the equivalence between the eigenvector error ‖∇(ui − uih)‖ and the dual norm of the
residual ‖Res(uih, λih)‖−1. Recall the definition (3.1) and also set

Cih := 1 if i = 1, Cih := max

{(
λih
λ1

− 1

)2

, 1

}
if i > 1. (3.16)

Furthermore, let

γih :=

{
‖∇(ui − uih)‖2 if λi ≤ ‖∇uih‖2 is known to hold,

max{‖∇(ui − uih)‖2, λiα2
ih} otherwise;

(3.17)

we refer to Remark 5.4 below for the discussion when λi ≤ ‖∇uih‖2.

Theorem 3.5 (Eigenvector bounds). Let (uih, λih) ∈ V ×R
+ with ‖uih‖ = 1, i ≥ 1, be arbitrary subject to

‖ui − uih‖ ≤ αih for some αih ∈ R
+. Then

‖∇(ui − uih)‖2 ≤ ‖Res(uih, λih)‖2−1 + (λih + λi)α
2
ih, (3.18a)

‖Res(uih, λih)‖2−1 ≤
(∣∣λih − ‖∇uih‖2

∣∣+ γih
)2

λi
+ Cih‖∇(ui − uih)‖2. (3.18b)

Let λi−1 < λih when i > 1, λih < λi+1, and α
2
ih ≤ 2λ1

λi
. Then there also holds

‖∇(ui − uih)‖2 ≤ C−1
ih

(
1− λi

λ1

α2
ih

4

)−1

‖Res(uih, λih)‖2−1. (3.19)

Proof. Starting from (3.11), adding and subtracting Cihλi(uih−ui, ui)2, using (ui, uk) = 0 for k ≥ 1, k 6= i,
(3.5), and the Cauchy–Schwarz inequality, we observe

‖∇r(ih)‖2 ≥ λi

(
λih
λi

− 1

)2

(uih, ui)
2 + Cih

∑

k≥1

λk(uih − ui, uk)
2 − Cihλi(uih − ui, ui)

2

= λi

(
λih
λi

− 1

)2

(uih, ui)
2 + Cih‖∇(ui − uih)‖2 −

Cih
4
λi‖ui − uih‖4

≥ Cih‖∇(ui − uih)‖2 −
Cih
4
λi‖ui − uih‖4.

Using the Poincaré–Friedrichs inequality ‖ui − uih‖2 ≤ 1
λ1
‖∇(ui − uih)‖2,

‖∇r(ih)‖2 ≥ Cih‖∇(ui − uih)‖2 −
Cih
4

λi
λ1

‖∇(ui − uih)‖2α2
ih,

where we have also employed ‖ui − uih‖ ≤ αih. Thus (3.19) follows via (2.5b).
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The proof of Lemma 3.1 gives supk≥1, k 6=i

(
1− λih

λk

)2
= Cih, recalling (3.16). Thus, (3.11) together with

the Cauchy–Schwarz inequality and ‖ui‖ = ‖uih‖ = 1 give

‖∇r(ih)‖2 ≤ λi

(
λih
λi

− 1

)2

+ Cih
∑

k≥1, k 6=i
λk(uih − ui, uk)

2

≤ (λih − λi)
2

λi
+ Cih‖∇(ui − uih)‖2.

Using the inequalities (3.12) and the definition (3.17) of γih,

|λih − λi| ≤
∣∣λih − ‖∇uih‖2

∣∣+ |‖∇uih‖2 − λi| ≤
∣∣λih − ‖∇uih‖2

∣∣+ γih,

so that (3.18b) is proven.
Finally, (3.18a) can be seen as in, e.g., Carstensen and Gedicke [15, Lemma 3.1] combined with ‖ui −

uih‖ ≤ αih [–].

4 Dual norm of the residual equivalences

We now estimate the dual residual norm ‖Res(uih, λih)‖−1, for uih ∈ V a piecewise polynomial of degree
p ≥ 1 and λih ∈ R. For the upper bound, following [49, 19, 8, 22] and [21, 47, 46] for inexact solvers, see also
the references therein, we introduce an equilibrated flux reconstruction. This is a vector field σih constructed
from the local residual of (uih, λih) by solving patchwise mixed finite element problems such that

σih ∈ Vh ⊂ H(div,Ω), (4.1a)

∇·σih = λihuih − ρih, λ
− 1

2
1 ‖ρih‖ sufficiently small. (4.1b)

Inversely, local conforming residual liftings following [3, Section 5.1], [51, Section 4.1.1], [22, Section 3.3]
will allow us to construct rih ∈ Xh ⊂ V leading to a lower bound on ‖Res(uih, λih)‖−1.

4.1 Meshes and discrete spaces

We first introduce some more notation. Let henceforth {Th}h be a family of matching simplicial partitions
of the domain Ω, shape regular in the sense that the ratio of each element diameter to the diameter of
its largest inscribed ball is uniformly bounded by a constant κT > 0. We denote by K a generic element
of Th. The set of vertices is denoted by Vh, with interior vertices V int

h , vertices located on the boundary
Vext
h , and a generic vertex a. We call Ta the patch of elements of Th which share the vertex a ∈ Vh, ωa

the corresponding subdomain, and nωa
its outward unit normal. We often tacitly extend functions defined

on ωa by zero outside of ωa, whereas Vh(ωa) stands for the restriction of the space Vh to ωa. Next, ψa for
a ∈ Vh stands for the piecewise affine “hat” function taking value 1 at the vertex a and zero at the other
vertices. Remarkably, (ψa)a∈Vh

form a partition of unity via
∑

a∈Vh
ψa = 1|Ω.

Let Ps(K), s ≥ 0, stand for polynomials of total degree at most s on K ∈ Th, and Ps(Th) for piecewise
polynomials on Th, without any continuity requirement. Let also Vh ×Qh ⊂ H(div,Ω) × L2(Ω) stand for
the Raviart–Thomas–Nédélec (RTN) mixed finite element spaces of for degree p + 1, i.e., Vh := {vh ∈
H(div,Ω);vh|K ∈ [Pp+1(K)]d + Pp+1(K)x} and Qh := Pp+1(Th), see Brezzi and Fortin [10] or Roberts and
Thomas [52]. We also denote by ΠQh

the L2(Ω)-orthogonal projection onto Qh.

4.2 Equilibrated flux reconstruction for inexact solvers

Let rih ∈ Pp(Th) be a discontinuous piecewise p-degree polynomial that lifts the misfit in the Galerkin
orthogonality of the residual Res(uih, λih), i.e.

〈Res(uih, λih), vh〉V ′,V = λih(uih, vh)− (∇uih,∇vh) = (rih, vh) ∀vh ∈ Pp(Th) ∩ V. (4.2)

A simple elementwise construction of rih is proposed in [47, equation (5.2)]. Typically, rih = 0 for an “exact”
discrete algebraic solve that we do not suppose here.
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We construct σih in two steps. First, solve the following homogeneous local Neumann (Neumann–
Dirichlet close to the boundary) discrete problems on patches ωa:

Definition 4.1 (Equilibrated flux reconstruction). [–] For a ∈ Vh, set

Va

h := {vh ∈ Vh(ωa); vh·nωa
= 0 on ∂ωa},

Qa

h := {qh ∈ Qh(ωa); (qh, 1)ωa
= 0}, a ∈ V int

h ,

Va

h := {vh ∈ Vh(ωa); vh·nωa
= 0 on ∂ωa \ ∂Ω},

Qa

h := Qh(ωa),
a ∈ Vext

h .

Then define σih,dis :=
∑

a∈Vh
σa

ih,dis ∈ Vh, where σa

ih,dis ∈ Va

h solve

σa

ih,dis := arg min
vh∈V

a

h,

∇·vh=ΠQh
(λihuihψa−∇uih·∇ψa−rihψa)

‖ψa∇uih + vh‖ωa
∀a ∈ Vh. (4.3)

Note that the Euler–Lagrange equations for (4.3) give the standard mixed finite element formulation,
cf. [22, Remark 3.7]: find σa

ih,dis ∈ Va

h and pah ∈ Qa

h such that

(σa

ih,dis,vh)ωa
− (pah,∇·vh)ωa

= −(ψa∇uih,vh)ωa
∀vh ∈ Va

h, (4.4a)

(∇·σa

ih,dis, qh)ωa
= (λihuihψa −∇uih·∇ψa−rihψa, qh)ωa

∀qh ∈ Qa

h. (4.4b)

Consequently, ∇·σih,dis = λihuih−rih, cf., e.g., [46, Lemma 3.6].
Now, proceeding as in [46, Section 3.2], one can construct in a multilevel way a second flux reconstruction

σih,alg ∈ Vh such that ∇·σih,alg = rih. Consequently, setting σih := σih,dis + σih,alg, (4.1b) follows with
ρih = 0. Other strategies are pursued in [21, 47], where the algebraic residual is included differently
into (4.3)/(4.4b). These approaches yield

∇·σih,alg = rih − ρih (4.5)

with ρih 6= 0 and are based on precomputing some algebraic solver iterations in order to ensure that ‖ρih‖ is
sufficiently small with respect to the two other contributions in (4.9a) below, more precisely verifying (4.9b).

4.3 Conforming local residual liftings

To estimate ‖Res(uih, λih)‖−1 from below, we solve conforming primal counterparts of problems (4.4),
without the term with rih. On each patch ωa around the vertex a ∈ Vh, define

H1
∗ (ωa) := {v ∈ H1(ωa); (v, 1)ωa

= 0}, a ∈ V int
h , (4.6a)

H1
∗ (ωa) := {v ∈ H1(ωa); v = 0 on ∂ωa ∩ ∂Ω}, a ∈ Vext

h , (4.6b)

and let Xa

h be an arbitrary discrete subspace of H1
∗ (ωa), typically Pp+1(Ta) ∩H1

∗ (ωa).

Definition 4.2 (Conforming local Neumann problems). Define raih ∈ Xa

h by

(∇raih,∇vh)ωa
= 〈Res(uih, λih), ψavh〉V ′,V ∀vh ∈ Xa

h

for each a ∈ Vh. Then set rih :=
∑

a∈Vh
ψar

a

ih.

The functions raih are discrete Riesz projections of the local residual with hat-weighted test functions.
As all ψar

a

ih ∈ H1
0 (ωa), rih ∈ V , though raih 6∈ V .

4.4 Dual norm of the residual equivalences

Following Carstensen and Funken [13, Theorem 3.1], Braess et al. [8, Section 3], or [22, Lemma 3.12], there
exists a constant Ccont,PF only depending on the mesh regularity parameter κT such that

‖∇(ψav)‖ωa
≤ Ccont,PF‖∇v‖ωa

∀v ∈ H1
∗ (ωa), ∀a ∈ Vh. (4.7)
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Moreover, the key result of Braess et al. [8, Theorem 7], see [23, Theorem 2.2] for three space dimensions,
states that the reconstructions of Definition 4.1 satisfy the following stability property,

‖ψa∇uih + σa

ih,dis‖ωa
≤ Cst sup

v∈H1
∗(ωa); ‖∇v‖ωa

=1

{〈Res(uih, λih), ψav〉V ′,V−(rih, ψav)ωa
}. (4.8)

The constant Cst > 0 again only depends on κT , and a computable upper bound on Cst is given in [22,
Lemma 3.23]. We can summarize the main result of this section:

Theorem 4.3 (Residual equivalences). Let (uih, λih) ∈ Pp(Th) ∩ V × R be arbitrary. Then, for σih,dis of
Definition 4.1 and rih of Definition 4.2,

‖Res(uih, λih)‖−1 ≤ ‖∇uih + σih,dis‖+‖σih,alg‖+ λ
− 1

2
1 ‖ρih‖, (4.9a)

‖∇uih + σih,dis‖+‖σih,alg‖+ λ
− 1

2
1 ‖ρih‖ ≤ 3(d+ 1)CstCcont,PF‖Res(uih, λih)‖−1

when ‖σih,alg‖+λ−
1
2

1 ‖ρih‖ ≤ (2(d+ 1)CstCcont,PF)
−1‖∇uih + σih,dis‖, (4.9b)

〈Res(uih, λih), rih〉V ′,V

‖∇rih‖
≤ ‖Res(uih, λih)‖−1. (4.9c)

Proof. Fix v ∈ V with ‖∇v‖ = 1. Using definition (2.4a), adding and subtracting (σih,∇v), and employing
the Green theorem and the equilibrium (4.1b) yields

〈Res(uih, λih), v〉V ′,V = λih(uih, v)− (∇uih,∇v) = (ρih, v)− (∇uih + σih,∇v).

Thus, definition (2.4b) of the dual norm of the residual and the Cauchy–Schwarz, Poincaré–Friedrichs, and
triangle inequalities yield the bound (4.9a). This actually also holds for Vh being the cheaper RTN space
of order p and not p + 1, as (4.1b) still holds. To prove (4.9b), we proceed as in [46, Theorem 7.2], while
treating the weak norm ‖Res(uih, λih)‖−1 as in Ciarlet and Vohraĺık [18, Theorems 4.7 and 5.1]. One builds
here crucially on inequalities (4.7) and (4.8) and relies on the choice p+1 for Vh. Finally, the bound (4.9c)
is trivial from (2.4b) by taking v = rih ∈ V . Importantly, this can further be bounded from below by
a Hilbertian sum of ‖∇raih‖ωa

, which can be seen as in [47, proof of Theorem 2]. Thus, this bound is
meaningful.

5 Guaranteed and fully computable upper and lower bounds

We combine here the different results of the previous sections to derive the actual guaranteed and fully
computable bounds for eigenvalues (in Section 5.1) and eigenvectors (in Section 5.2). A discussion of the
results is provided in Section 5.3. We will sometimes use ζ(ih) ∈ V , the solution of the Laplace source
problem −∆ζ(ih) = r(ih) in Ω, ζ(ih) = 0 on ∂Ω, i.e.,

(∇ζ(ih),∇v) = (r(ih), v) ∀v ∈ V. (5.1)

We also denote by Vh := P1(Th) ∩ V the lowest-order conforming finite element space, i.e., the span of ψa

over all a ∈ V int
h , and by h the maximal diameter of all K ∈ Th.

5.1 Eigenvalues

We first tackle the upper and lower bounds for the i-th eigenvalue λi. We discuss the necessary auxiliary
bounds below in Remark 5.3.

Theorem 5.1 (Guaranteed lower bounds for the i-th eigenvalue). Let the i-th eigenvalue, i ≥ 1, be simple
and suppose the auxiliary bounds λ1 ≤ λ1, λi ≤ λi, λi+1 ≤ λi+1, as well as λi−1 ≤ λi−1 when i > 1, for

λ1, λi, λi+1, λi−1 > 0. Let (uih, λih) be any element of Pp(Th) ∩ V × R
+ verifying [–] ‖uih‖ = 1 and the

inequalities
λi−1 < λih when i > 1, λih < λi+1. (5.2)
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Let next σih,dis and rih be respectively constructed following Definitions 4.1 and 4.2, let σih,alg ∈ Vh

verify (4.5) for an inexact solver, and define

ηi,res := ‖∇uih + σih,dis‖+‖σih,alg‖+ λ
− 1

2
1 ‖ρih‖.

Set

cih := max

{(
λih

λi−1

− 1

)−1

,

(
1− λih

λi+1

)−1
}
, (5.3a)

c̃ih := max

{
λi−1

− 1
2

(
λih

λi−1

− 1

)−1

, λ
− 1

2
i+1

(
1− λih

λi+1

)−1
}
, (5.3b)

with the left terms in the max disregarded for i = 1. Then

‖∇uih‖2 − η2i ≤ λi, (5.4)

where we distinguish the following three cases:
Case A (No smallness assumption) If (ui, uih) ≥ 0 is known to hold, define αih :=

√
2c̃ihηi,res; if only

(uih, χi) > 0 holds, set αih :=
√
2(1−‖uih−Πiuih‖)−

1
2 c̃ihηi,res, where Πiuih stands for the L2(Ω)-orthogonal

projection of uih on the span of χi. Then (5.4) holds with

η2i := η2i,res +
(
λih + λi

)
α2
ih. (5.5)

Case B (Improved estimates under a smallness assumption) Let (uih, χi) > 0, define αih :=
√
2c̃ihηi,res and

request

αih ≤ min

{(
2λ1
λi

) 1
2

, ‖χi‖−1(uih, χi)

}
. (5.6)

Then, (5.4) holds with

η2i := c2ih

(
1− λi

λ1

α2
ih

4

)−1

η2i,res. (5.7)

Case C (Optimal estimates under elliptic regularity assumption) Let (uih, χi) > 0 and assume that the
solution ζ(ih) of problem (5.1) belongs to the space H1+δ(Ω), 0 < δ ≤ 1, so that the approximation and
stability estimates

min
vh∈Vh

‖∇(ζ(ih) − vh)‖ ≤ CIh
δ|ζ(ih)|H1+δ(Ω), (5.8a)

|ζ(ih)|H1+δ(Ω) ≤ CS‖r(ih)‖ (5.8b)

are satisfied. Define αih :=
√
2cih

[
CICSh

δηi,res +λ
− 1

2
1

(
‖σih,alg‖+ λ

− 1
2

1 ‖ρih‖
)]

and let

αih ≤ ‖χi‖−1(uih, χi). (5.9)

Then (5.4) holds with η2i given by (5.5).

Theorem 5.2 (Improved guaranteed upper bounds for the i-th eigenvalue). Let the assumptions of The-
orem 5.1 be satisfied, with the auxiliary bounds λ1 ≤ λ1, λi ≤ λi ≤ λi, for λ1, λi, λi > 0. Let also
λi ≤ ‖∇uih‖2, see Remark 5.4. Set

cih := 1 if i = 1, cih := max

{(
λih
λ1

− 1

)2

, 1

}
if i > 1, (5.10a)

dih := λ2i c
2
ih + 4λi

〈Res(uih, λih), rih〉2V ′,V

‖∇rih‖2
+ 4λicih

∣∣λih − ‖∇uih‖2
∣∣ . (5.10b)
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Then
λi ≤ ‖∇uih‖2 − η̃2i , (5.11)

with, in Cases A and C,

η̃2i := max

{
−λiα2

ih +
1

2

(√
dih −

(
λicih + 2

∣∣λih − ‖∇uih‖2
∣∣)
)
, 0

}
, (5.12)

and, in Case B, for i = 1 only,

η̃21 := max

{
1

4

(
1− ‖∇u1h‖2

λ2

)(
1− α2

1h

4

)(√
d1h −

(
λ1 + 2

∣∣λ1h − ‖∇u1h‖2
∣∣)
)
, 0

}
. (5.13)

Remark 5.3 (Auxiliary bounds λ1, λi, and λi+1). A straightforward consequence of the min–max principle
for self-adjoint operators, see, e.g., Gilbarg and Trudinger [26], is that Ω ⊆ Ω+ ⇒ λk(Ω

+) ≤ λk and Ω− ⊆ Ω
⇒ λk ≤ λk(Ω

−) for all k ≥ 1, where λk(Ω
±) is the k-th eigenvalue on Ω±. We can then obtain all λ1, λi,

and λi+1 necessary in Theorem 5.1 by this domain inclusion for Ω+ with known exact eigenvalues (typically
rectangular d-parallelepipeds or d-spheres, cf. [59]). In what concerns λi, a very precise choice is to use
λi := ‖∇uih‖2 − η2i , where η

2
i was first computed with a rather rough bound λi. For λi+1, if the analytic

bounds are too rough to be useful, guaranteed and easily computable numerical bounds can be used from Liu
and Oishi [41] (on convex domains for d = 2), Carstensen and Gedicke [16], or Liu [39], typically on a
quite coarse mesh. Finally, as a “practical gratis” strategy for λi+1, one may simply use λ(i+1)h computed
by the linear algebra toolbox when solving for (λih, uih), see, e.g., Saad [53] and the references therein. Then
Theorem 5.1 (and 5.6 below) may no longer hold stricto sensu, but sharp upper and lower bounds are still
expected/observed in practice.

Remark 5.4 (Auxiliary bounds λi−1 and λi). When (uih, λih) is given by the conforming finite element
method of Section 6 below, with an exact solver leading to satisfaction of (6.1) with (uih, ujh) = δij, there
holds λi ≤ λih = ‖∇uih‖2 and similarly λi−1 ≤ λ(i−1)h = ‖∇u(i−1)h‖2, leading to rather precise auxiliary

bounds λi and λi−1. For the first eigenvalue, there holds λ1 ≤ ‖∇u1h‖2 for an arbitrary u1h ∈ H1
0 (Ω). For

the i-th eigenvalue, i > 1, we in general need to resort to the min–max principle giving

λi ≤ max
ξ∈Ri, ‖ξ‖=1

‖∇∑i
k=1 ξkukh‖2

‖
∑i
k=1 ξkukh‖2

for an arbitrary linearly independent i-tuple (u1h, . . . , uih), where ‖ξ‖2 =
∑i
k=1 ξ

2
k.

Remark 5.5 (Constants CI and CS). Let Ω be a convex polygon in R
2. Then it is classical that the

solution ζ(ih) of (5.1) belongs to H2(Ω) and |ζ(ih)|H2(Ω) = ‖∆ζ(ih)‖ = ‖r(ih)‖, so that δ = 1 and CS = 1,
see Grisvard [28, Theorem 4.3.1.4]. In this situation, calculable bounds on CI can be found in Liu and
Kikuchi [40] and Carstensen et al. [17], see also Liu and Oishi [41, Section 2] and the references therein;
in particular, for a mesh formed by isosceles right-angled triangles, CI ≤ 0.493√

2
.

We now prove Theorems 5.1 and 5.2, separately for each case:

Proof (Case A). 1) Lower bound of Theorem 5.1. If (ui, uih) ≥ 0 is known to hold, we can start from the
L2(Ω) bound (3.10). If this is not the case but (uih, χi) > 0 holds, we first inspect the proof of Lemma 3.2
to obtain an alternative L2(Ω) estimate. We have −2(ui, uih) = −2(ui, uih − Πiuih) −2(ui,Πiuih). Note
that the second term is negative by the sign assumption (ui, χi) > 0 on ui. So, instead of (3.8), as ‖ui‖ = 1
and ‖uih −Πiuih‖ < 1,

‖ui − uih‖2 ≤ 2 + 2‖uih −Πiuih‖ =: δih < 4.

Consequently, the quadratic inequality in the proof of Lemma 3.2 implies ‖ui − uih‖2 ≤ ‖∇r(ih)‖2C̃−1
ih (1−

δih/4)
−1. Thus, the bound (4.9a) and assumption (5.2) enable us to give a computable upper bound on

the L2(Ω) error by the estimator αih; note that min{a, b}− 1
2 = max{a− 1

2 , b−
1
2 }, linking the constant C̃ih

of (3.9) with c̃ih of (5.3b). Consequently, the bound in (5.4) follows by combining the upper bounds in (3.12),
(3.18a), and once again (4.9a).
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2) Upper bound of Theorem 5.2. We start from the lower bound in (3.12). We then need to bound
‖∇(ui−uih)‖2 from below, for which we use (3.18b). Relying on the simplifying assumption λi ≤ ‖∇uih‖2,
satisfied namely in cases discussed in Remark 5.4, γih of (3.17) simplifies to ‖∇(ui − uih)‖2. Thus (3.18b)
forms a quadratic inequality for ‖∇(ui − uih)‖2, yielding, in combination with (4.9c),

‖∇(ui − uih)‖2 ≥ 1

2

(√
dih −

(
λicih + 2

∣∣λih − ‖∇uih‖2
∣∣)
)
. (5.14)

Thus (5.11) with the estimator (5.12) follows.

Proof (Case B). The proof proceeds as above. Note that conditions in (5.6) imply that αih ≤
√
2λ1

λi
and

αih ≤ ‖χi‖−1(uih, χi) for αih of (3.10). We can thus use Lemma 3.3 to find that (ui, uih) is indeed non-
negative, Lemma 3.2 for the L2(Ω) bound, and the improved estimates (3.19) of Theorem 3.5 and (3.13) of
Theorem 3.4. For the latter, that seems only to hold for the first eigenpair, we also employ the inequality

1− ‖∇u1h‖2

λ2
≤ 1− λ1

λ2
and (5.14) for i = 1.

Proof (Case C). The proof is as in Case A (with (ui, uih) ≥ 0), but it relies on Lemma 3.1 instead of
Lemma 3.2. It additionally uses the Aubin–Nitsche trick, cf. [9, Theorem 5.4.8], [28, Theorem 4.3.1.4],
or [6]. By (5.1), (2.5a), and (4.2)

‖r(ih)‖2 = (∇ζ(ih),∇r(ih)) = (∇(ζ(ih) − ζih),∇r(ih)) + (rih, ζih),

where ζih ∈ Vh is the minimizer in (5.8a). Employing (4.5), the Green theorem, the Poincaré–Friedrichs

inequality ‖ζih‖ ≤ λ
− 1

2
1 ‖∇ζih‖, and the stability ‖∇ζih‖ ≤ ‖∇ζ(ih)‖

(rih, ζih) = −(σih,alg,∇ζih) + (ρih, ζih) ≤
(
‖σih,alg‖+ λ

− 1
2

1 ‖ρih‖
)
‖∇ζ(ih)‖.

Noting that (5.1) gives ‖∇ζ(ih)‖ ≤ λ
− 1

2
1 ‖r(ih)‖, the Cauchy–Schwarz inequality, estimates (5.8), and the

characterization (2.5b) altogether give

‖r(ih)‖ ≤ CICSh
δ‖Res(uih, λih)‖−1+λ

− 1
2

1

(
‖σih,alg‖+ λ

− 1
2

1 ‖ρih‖
)
.

5.2 Eigenvectors

We now summarize our estimate on the energy error in the approximation of the i-th eigenvector, as well
as its efficiency and robustness:

Theorem 5.6 (Guaranteed and robust bound for the i-th eigenvector error). Let the assumptions of The-
orem 5.1 be verified. Then the energy error can be bounded via

‖∇(ui − uih)‖ ≤ ηi, (5.15)

where ηi is defined in the Cases A and C by (5.5) and in Case B by (5.7), with appropriate αih. Under
condition (4.9b), all these estimators ηi are efficient as

η2i,res ≤ 32(d+ 1)2C2
stC

2
cont,PF

((∣∣λih − ‖∇uih‖2
∣∣+ γih

)2

λi
+ Cih‖∇(ui − uih)‖2

)
. (5.16)

Proof. The guaranteed error bound (5.15) follows as in Theorem 5.1 upon combining the upper bounds
in estimates (3.18) or (3.19) together with (4.9a). The efficiency (5.16) is a consequence of (4.9b) and
of (3.18b).

13



5.3 Comments

We collect here comments about Theorems 5.1, 5.2, and 5.6.

Remark 5.7 (Inexact solvers). The results of Theorems 5.1, 5.2, and 5.6 are presented in a general context
of an inexact algebraic solver. Shall the algebraic residual representer rih in (4.2) be zero and the Rayleigh
quotient link ‖∇uih‖2 = λih hold, many simplifications apply. Namely, σih,alg = 0, ρih = 0, and ‖∇uih‖2
can be systematically replaced by λih, making in particular disappear numerous terms in the estimators ηi
and η̃i. The polynomial-degree-robust efficiency (5.16) holds under the condition (4.9b) only, which is a
typical inexactness (stopping) criterion. For the elliptic regularity Case C, though, it appears wise to only

stop the iterations when λ
− 1

2
1

(
‖σih,alg‖+ λ

− 1
2

1 ‖ρih‖
)
is comparable to the first term in αih.

Remark 5.8 (Sharpness and comparison of the different bounds of Theorems 5.1 and 5.6). The advantage
of Case A is that it holds on an arbitrarily coarse mesh, provided that only the structural assumption (5.2)
holds. It may, however, lead to a larger overestimation of the error. Case B, under the “fine enough
mesh” condition (5.6), then significantly improves the multiplicative factor in front of the central term

ηi,res = ‖∇uih + σih,dis‖+‖σih,alg‖+ λ
− 1

2
1 ‖ρih‖, in limit to the factor cih given by (5.3a). The bound of

Case B still holds without any regularity/convexity/dimension assumption and all the quantities appearing
are known. Finally, also the factor cih is asymptotically removed in Case C, when δ > 0 and h→ 0. Here,
however, elliptic regularity is needed, see Remark 5.5.

Remark 5.9 (Dependence on the maximal element diameter h). The maximal element diameter h is not
present at all in Cases A and B of Theorem 5.1 and it does not necessarily need to tend to zero in Case C:
it only appears as a multiplicative factor of the principal estimator ηi,res. [–] This stands in contrast to
previous guaranteed results like [41, Theorem 4.3], [16, Theorem 3.2], or [39, Theorem 2.1].

Remark 5.10 (Polynomial-degree robustness). The multiplicative factor in the parenthesis in (5.16) takes

the form ‖∇(ui−uih)‖2
(
Cih+

‖∇(ui−uih)‖2

λi

)
for an exact algebraic solver in the context of the finite element

method (6.1) below. Noting that ‖∇(ui−uih)‖2

λi
≤ 2(λi+λih)

λi
(in fact this term becomes negligible with mesh

refinement/increasing the polynomial degree), we conclude that the result of Theorem 5.6 is fully robust with
respect to the polynomial degree p of uih: all the constants in the comparison between the error ‖∇(ui−uih)‖
and the estimate featuring ‖∇uih + σih,dis‖ are independent of p. Note, though, that the factor Cih given
by (3.16) deteriorates for higher eigenvalues.

Remark 5.11 (Error localization and mesh adaptivity). Since there holds η2i,res≤ 3
∑
K∈Th

(
‖∇uih +

σih,dis‖2K +‖σih,alg‖2K + λ−1
1 ‖ρih‖2K

)
, a crucial advantage of the estimators of Theorems 5.1 and 5.6 is that

these local contributions can be used in adaptive mesh refinement based on marking strategies. This is tightly
linked to Remark 5.9.

6 Application to conforming finite elements

We verify in this section the conditions of the application of our results to the conforming finite element
method.

Let Vh := Pp(Th) ∩ V for a given polynomial degree p ≥ 1. In the finite element method, the exact i-th
eigenpair (uih, λih) ∈ Vh × R

+ is such that (uih, ujh) = δij , 1 ≤ i, j ≤ dimVh, and

(∇uih,∇vh) = λih(uih, vh) ∀vh ∈ Vh, (6.1)

with the signs ideally fixed by (ui, uih) ≥ 0, practically by (uih, χi) > 0. Thus, upon verifying (5.2) and
possibly checking (5.6) or (5.9), all the results of Theorems 5.1, 5.2, and 5.6 hold for any p ≥ 1. Note that
an inexact solution of (6.1) in the form (4.2) is taken into account. Shall (6.1) hold, rih in (4.2) vanishes
and, moreover, choosing vh = uih in (6.1) yields ‖∇uih‖2 = λih.
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N h ndof λ
2
− λ1h (5.2) ‖χ1‖−1(u1h, χ1)− α1h (5.9)

λ1=1.5π2

λ2=4.5π2

3 0.4714 16 19.04 (X) -0.64 (×)
4 0.3536 25 21.55 (X) 0.12 (X)
5 0.2828 36 22.69 (X) 0.40 (X)

λ1=0.5π2

λ2=3π2

3 0.4714 16 4.233 (X) -3.49 (×)
4 0.3536 25 6.743 (X) -0.66 (×)
5 0.2828 36 7.887 (X) 0.02 (X)

Table 1: [Unit square, structured mesh] Validation of assumptions (5.2) and (5.9)

7 Numerical experiments

We finally numerically illustrate the estimates of Theorems 5.1, 5.2, and 5.6 on three test cases in R
2, for

conforming finite elements (6.1) of order p = 1. We actually only use the cheaper Raviart–Thomas–Nédélec
space of degree p = 1 for the flux equilibration instead of p+ 1. This still gives guaranteed bounds, see the
proof of Theorem 4.3, and we do not observe any asymptotic loss of efficiency. The implementation was
done in the FreeFem++ code [30]. When we only consider one eigenvalue, it is implicitly assumed that we
have chosen χ1 = 1 for the sign characterization. We consider five test settings with an exact solver and
illustrate the use of an inexact solver in a sixth one.

7.1 First eigenvalue on the unit square

We start by testing the framework on a unit square Ω = (0, 1)2 and focus on the first eigenvalue. The
eigenvalues on a square of size H being π2(k2+ l2)/H2, k, l = 1, . . . ,∞, the first and second eigenvalues are
λ1 = 2π2 and λ2 = 5π2, respectively. In consequence, we can easily choose different λ1 ≤ λ1 and λ2 ≤ λ2 for
the auxiliary eigenvalue bounds and analyze the sensitivity of our results with respect to these choices. The
first eigenfunction is given by u1(x, y) = sin(πx) sin(πy). We focus here on the refined elliptic regularity of
Case C, since d = 2 and the domain is convex, with constants CS = 1 and δ = 1 given in Remark 5.5.

7.1.1 Structured mesh

We first illustrate in Table 1 how quickly the computable conditions (5.2) and (5.9) are satisfied under a
uniform refinement of a structured mesh. We take CI =

0.493√
2

following Remark 5.5 and consider N = 3, 4, 5

subdivisions of each boundary of Ω for the two choices λ1 = 1.5π2, λ2 = 4.5π2 and λ1 = 0.5π2, λ2 = 3π2,
respectively. Note that the finite element space on the coarsest mesh such that all conditions are satisfied
contains 25, respectively 36, degrees of freedom only. Indeed, it turns out that our conditions are rather
mild.

Next, Figure 1 (left) illustrates the convergence of the error λ1h − λ1 as well as of its lower and upper
bounds η̃21 , η

2
1 given by Case C of Theorems 5.1 and 5.2. We also plot the energy error in the eigenfunction

‖∇(u1 − u1h)‖ and its upper bound η1 of Theorem 5.6, Case C. The convergence rates are optimal as
expected from the theory.

We present in Table 2 precise numbers of the lower and upper bounds λ1h − η21 ≤ λ1 ≤ λ1h − η̃21 on the
exact eigenvalue λ1, the effectivity indices of the lower and upper bounds η̃21 ≤ λ1h − λ1 ≤ η21 of the error
λ1h − λ1, and the effectivity index of the upper bound ‖∇(u1 − u1h)‖ ≤ η1, given respectively by

Ilbλ,eff :=
λ1h − λ1

η̃21
, Iubλ,eff :=

η21
λ1h − λ1

, Iubu,eff :=
η1

‖∇(u1 − u1h)‖
. (7.1)

We observe rather sharp results, and this also for the relative size of the first eigenvalue confidence interval

Eλ,rel := 2
(λ1h − η̃21)− (λ1h − η21)

(λ1h − η̃21) + (λ1h − η21)
. (7.2)
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Figure 1: [Unit square] Error in the eigenvalue and eigenvector approximation, its lower bound (eigenvalue
only), and its upper bound for the choice λ1 = 1.5π2, λ2 = 4.5π2; sequence of structured (left) and
unstructured but quasi-uniform (right) meshes; Case C

N h ndof λ1 λ1h λ1h − η2
1

λ1h − η̃2
1

Ilb
λ,eff

Iub
λ,eff

Eλ,rel Iubu,eff

10 0.1414 121 19.7392 20.2284 19.3256 19.9566 1.80 1.85 3.21e-02 1.35
20 0.0707 441 19.7392 19.8611 19.7058 19.7539 1.14 1.27 2.44e-03 1.13
40 0.0354 1681 19.7392 19.7697 19.7349 19.7404 1.04 1.14 2.79e-04 1.07
80 0.0177 6561 19.7392 19.7468 19.7384 19.7394 1.02 1.11 4.91e-05 1.05

160 0.0088 25921 19.7392 19.7411 19.7390 19.7392 1.02 1.10 1.14e-05 1.05

Table 2: [Unit square, structured mesh] Lower and upper bounds on the exact eigenvalue λ1, the effectivity
indices, and size of the relative λ1 confidence interval; λ1 = 1.5π2, λ2 = 4.5π2; Case C

7.1.2 Unstructured mesh

Consider now a sequence of unstructured quasi-uniform meshes, obtained by an initial partition of each
boundary edge into N intervals. Conditions (5.2) and (5.9) turn here to be satisfied similarly as in Table 1.

The convergence plots for this case are presented in Figure 1 (right), showing a similar behavior as
for the structured meshes. This time, we use the upper bound on CI according to [40, Eqn. (46)]: CI =

0.493maxK∈Th

1+| cos(θK)|
sin(θK)

√
ν+(αK ,θK)

2

h
[40]
K

hK
. We refer to [40] for the definition of h

[40]
K and other notation.

We observe in Table 3 that the results are similar to structured meshes; in particular the case of λ1 = 0.5π2,
λ2 = 3π2 is less sensitive to the unstructured mesh (not presented).

7.2 First eigenvalue on an L-shaped domain: mesh adaptivity

We next consider the L-shaped domain Ω := (−1, 1)2 \ [0, 1]× [−1, 0], where λ1 ≈ 9.6397238440 is known to
high accuracy [59]. Including Ω into the square Ω+ = (−1, 1)2, cf. Remark 5.3, we take λ1 = λ1(Ω

+) = π2/2,
whereas λ2 = 15.1753 from Table 1 of [39] is employed. We test here the Cases A and B within an adaptive
refinement strategy. To do so, we use the local character of our estimators, see Remark 5.11. We employ
the Dörfler marking with θ = 0.6 and the newest vertex bisection mesh refinement.

Table 4 illustrates whether the conditions (5.2) and (5.6) are satisfied under this adaptive refinement.
Figure 2 (right) illustrates the error in the eigenvalue and the eigenvector and their bounds (5.4), (5.11),
and (5.15). Optimal convergence rates are indicated by dashed lines. The initial mesh is structured with 22
degrees of freedom and the conditions (5.2) and (5.6) are all satisfied starting from 140 degrees of freedom.
The transition from Case A to Case B in Theorems 5.1, 5.2, and 5.6 is marked by a dotted line. Figure 2
(left) then depicts an adaptively refined mesh and Table 5 presents more details on the errors and efficiencies.
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N h ndof λ1 λ1h λ1h − η2
1

λ1h − η̃2
1

Ilb
λ,eff

Iub
λ,eff

Eλ,rel Iubu,eff

10 0.1698 143 19.7392 20.0336 17.9458 20.6491 – 7.09 1.40e-01 2.65
20 0.0776 523 19.7392 19.8139 19.6366 19.7909 3.24 2.37 7.83e-03 1.54
40 0.0413 1975 19.7392 19.7573 19.7307 19.7434 1.30 1.47 6.42e-04 1.21
80 0.0230 7704 19.7392 19.7436 19.7383 19.7396 1.10 1.20 6.41e-05 1.09

160 0.0126 30666 19.7392 19.7403 19.7391 19.7393 1.07 1.12 1.04e-05 1.06

Table 3: [Unit square, unstructured mesh] Lower and upper bounds on the exact eigenvalue λ1, the effectivity
indices, and size of the relative λ1 confidence interval; λ1 = 1.5π2, λ2 = 4.5π2; Case C

Level h ndof λ
2
− λ1h (5.2) α1h

√

λ1h/2λ1
(5.6) ‖χ1‖−1(u1h, χ1)− α1h (5.6)

1 0.7500 22 1.8223 (×) 2.97 (×) -6.17 (×)
4 0.7071 34 3.8799 (X) 0.94 (X) -1.27 (×)

10 0.5000 140 5.2053 (X) 0.33 (X) 0.13 (X)

Table 4: [L-shaped domain, adaptive mesh refinement] Validation of the assumptions (5.2) and (5.6) for
λ1 = π2/2 and λ2 = 15.1753

7.3 First eigenvalue on a domain with a hole: mesh adaptivity

We next consider a domain with a polygonal hole, see Figure 3 (left) illustrating the mesh used at iteration
20 of our adaptive mesh refinement strategy. The lower bounds λ1 and λ2 on the first and second eigenvalue
have been obtained once and for all before starting the adaptive algorithm following the estimates derived
in [39], on a uniform mesh with 1143 nodes. Figure 3 (right) shows the interval between our lower (λ1h−η21)
and upper (λ1h − η̃21) bounds on the first eigenvalue, relying on Case B of Theorems 5.1 and 5.2, whose
assumptions hold starting from 2494 degrees of freedom; Table 6 states the numbers. Note that the interval
size (λ1h − η̃21)− (λ1h − η21) = η21 − η̃21 behaves like 1/ndof.

7.4 Higher eigenvalues

We now test the upper and lower bounds for higher eigenvalues. First we consider the unit triangle with
vertices (0, 0), (1, 0), (0, 1) and a family of structured meshes. The auxiliary lower bounds are obtained by
a computation on a fixed coarse mesh with 2145 triangles following [39], which results in

λ1 = 49.2883, λ2 = 98.4296, λ3 = 127.937, λ4 = 166.975, λ5 = 196.439.

Figure 4 gives the convergence plots for the first four eigenvalues and Table 7 provides more details on
absolute numbers and efficiency. As the domain is convex (case C), we obtain excellent upper bounds for
the error in all four eigenvalue/eigenvector pairs. The lower bound of the eigenvalue error (the improved
eigenvalue upper bound of Theorem 5.2) is, however, degrading for higher eigenvalues.

We now apply the same setting to the L-shaped domain where we obtain again the auxiliary lower
bounds by the method presented in [39] for a coarse structured mesh with 3201 triangles resulting in

λ1 = 9.60692, λ2 = 15.1695, λ3 = 19.6932, λ4 = 29.4166, λ5 = 31.7363.

Figure 5 plots the convergence of the errors the estimators whereas Table 8 provides more details on the
efficiency. We now observe that the efficiency also degrades for the upper bound of the eigenvalue and
eigenvector error. Further, improved lower bounds of the eigenvalue error are not available for the considered
meshes for i > 1. This appears as the resulting η̃i are all equal to zero, see (5.12), respectively (5.13), so
that our eigenvalue upper bound stays that of the finite element method. For all meshes and all considered
eigenvalues, though, our estimates still give a rather tight guaranteed eigenvalue confidence interval and
quite reasonable eigenvector effectivity indices. We can also observe by a jump of the blue curve (η2i ) the
change between the cases A and B. The critical mesh size where this change occurs seems to degrade with
increasing eigenvalues.
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Figure 2: [L-shaped domain, adaptive mesh refinement] Mesh of the adaptive algorithm on step 18 (left)
and error in the first eigenvalue and eigenvector approximation, its lower bound (eigenvalue only), and its
upper bound (right); Cases A and B

Level ndof λ1 λ1h λ1h − η2
1

λ1h − η̃2
1

Ilb
λ,eff

Iub
λ,eff

Eλ,rel Iubu,eff
10 140 9.6397 9.9700 6.3175 9.9260 7.50 11.06 4.44e-01 3.31
15 561 9.6397 9.7207 9.0035 9.7075 6.17 8.86 7.53e-02 2.98
20 2188 9.6397 9.6601 9.4887 9.6566 5.88 8.43 1.75e-02 2.88
25 8513 9.6397 9.6449 9.6019 9.6440 5.77 8.31 4.37e-03 2.75
30 24925 9.6397 9.6415 9.6266 9.6412 5.73 8.26 1.51e-03 2.51

Table 5: [L-shaped domain, adaptive mesh refinement] Lower and upper bounds on the first exact eigenvalue
λ1, the effectivity indices, and the size of the relative λ1 confidence interval; λ1 = π2/2 and λ2 = 15.1753,
Case B

7.5 Inexact algebraic eigenvalue solvers

We finally consider inexact eigenvalue solvers. Since we are using FreeFem++, we rely on an algebraic
eigenvalue solver based on the ARPACK package that is built in FreeFem++. Here a user-specified tolerance
can be provided and we choose it in a mesh-dependent way as tol(h) = h2 to materialize an inexact solver.
We set σih,dis following Definition 4.1. In order to compute σih,alg in (4.5), we proceed as in [47] and the
references therein and first compute a second reconstructed flux σ̂ih,dis corresponding to some additional
algebraic iterations (here corresponding to the tolerance h2/100 in ARPACK); then σih,alg := σ̂ih,dis−σih,dis.
Figure 6 demonstrates that we still obtain excellent lower and upper bounds. Adaptive stopping criteria of
the form (4.9b), leading to savings in algebraic solver iterations, are not investigated here.

7.6 Comparison with existing results

We finally compare our results with some existing ones from [16, 41, 39]. In what concerns the unit square
and the first eigenvalue of Section 7.1, our estimates appear sharper while comparing Table 2 with the
estimates presented in [16], see Figure 6.2 therein. For the L-shaped domain and uniformly refined meshes
of Section 7.4 for the first eigenvalue, we also obtain better results than those presented in [16, Figure 6.4],
where an efficiency issue appears; compared to the results presented in [41, Table 5.5], we observe that our
lower bound λ1h − η21 of the exact eigenvalue is a little less sharp, whereas the upper bound λ1h − η̃21 is
not present in [41]. Recall also from Section 1 that our estimates are much cheaper here than those of [41]
(there is no auxiliary eigenvalue problem to solve). For adaptive meshes, we observe that our efficiency of
the confidence interval for the first eigenvalue as measured in [16] by 1

2 (η
2
1 − η̃21)/|λ1 − λ1h +

1
2 (η̃

2
1 + η21)| is

approaching 1.086 which is much better than in [16, Figure 6.5].
To facilitate the comparisons, we finally present in Tables 9 and 10 several methods for the tests of [41,
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Figure 3: [Domain with a hole, adaptive mesh refinement] Mesh of the adaptive algorithm at iteration 20
(left) and the lower and upper bounds for the exact eigenvalue λ1 (right); Case B

ndof 2494 3390 4508 5879 7602 10047 13640 18163 23494 30533
λ1h − η̃2

1
60.541 60.494 60.455 60.422 60.401 60.387 60.376 60.367 60.359 60.354

λ1h − η2
1

37.223 43.710 48.428 52.058 54.275 55.680 56.799 57.719 58.436 58.910

Table 6: [Domain with a hole, adaptive mesh refinement] Lower and upper bounds on the exact eigenvalue
λ1 as a function of the degrees of freedom; Case B

Table 5.2 (h = 1/64) and Table 5.3 (h = 1/32)]. We compare in particular the approach presented in
this article, lowest-order conforming finite elements from [41], and the lowest-order Crouzeix–Raviart (CR)
method presented in [16], with explicit upper bound of the interpolation constants derived in either [14]
or [39]. For the eigenvalue upper bounds in the CR case, we evaluate the Rayleigh quotient on the P1

conforming nodal averaging of the original eigenvectors.
On the convex triangle, the present approach seems to give the sharpest results, whereas on the L-shaped

domain, the method based on the CR finite elements with the constant from [39] is better for the lower
bound. Recall, though, that important advantages of the present theory are that it additionally gives a
guaranteed control of the eigenvector error by the same estimators, is not specific to a particular scheme
but yields general results that are here applied to any order conforming finite element method and extended
in [12] to basically any numerical scheme, and achieves polynomial-degree robustness. It can also be noted
that the present estimators take elementwise form immediately suitable for adaptive mesh refinement.
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Figure 5: [L-shaped domain, unstructured meshes] Error in the first four eigenvalue and eigenvector ap-
proximations, their lower bounds (eigenvalues only), and their upper bounds
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applications to Friedrichs, Poincaré, trace, and similar constants, SIAM J. Numer. Anal., 52 (2014),
pp. 308–329.

[55] , Two-sided bounds of eigenvalues – local efficiency and convergence of adaptive algorithm. ArXiv
preprint 1606.01739v1, 2016.

[56] P. Solin and S. Giani, An iterative adaptive finite element method for elliptic eigenvalue problems,
J. Comput. Appl. Math., 236 (2012), pp. 4582–4599.

[57] G. Still, Computable bounds for eigenvalues and eigenfunctions of elliptic differential operators, Nu-
mer. Math., 54 (1988), pp. 201–223.

[58] G. Strang and G. Fix, An analysis of the finite element method, Wellesley-Cambridge Press, Welles-
ley, MA, second ed., 2008.

[59] L. N. Trefethen and T. Betcke, Computed eigenmodes of planar regions, in Recent advances
in differential equations and mathematical physics, vol. 412 of Contemp. Math., Amer. Math. Soc.,
Providence, RI, 2006, pp. 297–314.

[60] R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of
elliptic equations, Math. Comp., 62 (1994), pp. 445–475.

[61] H. F. Weinberger, Upper and lower bounds for eigenvalues by finite difference methods, Comm. Pure
Appl. Math., 9 (1956), pp. 613–623.

[62] H. Xie, M. Yue, and N. Zhang, Fully computable error bounds for eigenvalue problem. ArXiv
Preprint 1601.01561v1, 2016.

[63] Y. Yang, J. Han, H. Bi, and Y. Yu, The lower/upper bound property of the Crouzeix–Raviart
element eigenvalues on adaptive meshes, J. Sci. Comput., 62 (2015), pp. 284–299.

25




