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Abstract
This paper studies the problem of guaranteed cost control for a class of switched
recurrent neural networks with interval time-varying delay. The time delay is a
continuous function belonging to a given interval, but not necessary differentiable.
A cost function is considered as a nonlinear performance measure for the closed-loop
system. The stabilizing controllers to be designed must satisfy some exponential
stability constraints on the closed-loop poles. By constructing a set of augmented
Lyapunov-Krasovskii functionals, a guaranteed cost controller is designed via
memoryless state feedback control, a switching rule for the exponential stabilization
for the system is designed via linear matrix inequalities and new sufficient conditions
for the existence of the guaranteed cost state-feedback for the system are given in
terms of linear matrix inequalities (LMIs). A numerical example is given to illustrate the
effectiveness of the obtained result.

Keywords: neural networks; guaranteed cost control; switching design; stabilization;
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1 Introduction
Stability and control of recurrent neural networks with time delay have attracted consid-
erable attention in recent years [–]. In many practical systems, it is desirable to design
neural networks which are not only asymptotically or exponentially stable but can also
guarantee an adequate level of system performance. In the area of control, signal process-
ing, pattern recognition and image processing, delayed neural networks have many useful
applications. Some of these applications require that the equilibrium points of the de-
signed network be stable. In both biological and artificial neural systems, time delays due
to integration and communication are ubiquitous and often become a source of instabil-
ity. The time delays in electronic neural networks are usually time-varying, and sometimes
vary violently with respect to time due to the finite switching speed of amplifiers and faults
in the electrical circuitry. Guaranteed cost control problem [–] has the advantage of
providing an upper bound on a given system performance index and thus the system per-
formance degradation incurred by the uncertainties or time delays is guaranteed to be
less than this bound. The Lyapunov-Krasovskii functional technique has been among the
popular and effective tools in the design of guaranteed cost controls for neural networks
with time delay. Nevertheless, despite such a diversity of results available, the most ex-
isting works either assumed that the time delays are constant or differentiable [–].
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Although, in some cases, delay-dependent guaranteed cost control for systems with time-
varying delays were considered in [, , ], the approach used there cannot be applied
to systems with interval, non-differentiable time-varying delays. To the best of our knowl-
edge, the guaranteed cost control and state feedback stabilization for switched recurrent
neural networks with interval time-varying delay, non-differentiable time-varying delays
have not been fully studied yet (see, e.g., [–, –] and the references therein). Which
are important in both theories and applications. This motivates our research.
In this paper, we investigate the guaranteed cost control for switched recurrent neural

networks problem. The novel features here are that the delayed neural network under con-
sideration is with various globally Lipschitz continuous activation functions, and the time-
varying delay function is interval, non-differentiable. Specifically, our goal is to develop a
constructive way to design a switching rule to exponentially stabilize the system. A nonlin-
ear cost function is considered as a performance measure for the closed-loop system. The
stabilizing controllers to be designed must satisfy some exponential stability constraints
on the closed-loop poles. Based on constructing a set of augmented Lyapunov-Krasovskii
functionals combined with the Newton-Leibniz formula, new delay-dependent criteria
for guaranteed cost control via memoryless feedback control are established in terms of
LMIs, which allow simultaneous computation of two bounds that characterize the expo-
nential stability rate of the solution and can be easily determined by utilizing MATLABs
LMI control toolbox.
The outline of the paper is as follows. Section  presents definitions and some well-

known technical propositions needed for the proof of the main result. LMI delay-
dependent criteria for guaranteed cost control and a numerical example showing the
effectiveness of the result are presented in Section . The paper ends with conclusions
and cited references.

2 Preliminaries
The following notationwill be used in this paper.R+ denotes the set of all real non-negative
numbers; Rn denotes the n-dimensional space with the scalar product 〈x, y〉 or xTy of two
vectors x, y, and the vector norm ‖ · ‖; Mn×r denotes the space of all matrices of (n × r)
dimensions. AT denotes the transpose of matrixA;A is symmetric ifA = AT ; I denotes the
identity matrix; λ(A) denotes the set of all eigenvalues ofA; λmax(A) =max{Reλ;λ ∈ λ(A)}.
xt := {x(t + s) : s ∈ [–h, ]}, ‖xt‖ = sups∈[–h,] ‖x(t + s)‖; C([, t],Rn) denotes the set of all
R

n-valued continuously differentiable functions on [, t]; L([, t],Rm) denotes the set of
all the Rm-valued square integrable functions on [, t].
Matrix A is called semi-positive definite (A≥ ) if 〈Ax,x〉 ≥  for all x ∈R

n; A is positive
definite (A > ) if 〈Ax,x〉 >  for all x �= ; A > B means A – B > . The notation diag{· · · }
stands for a block-diagonal matrix. The symmetric term in a matrix is denoted by ∗.
Consider the following switched recurrent neural networks with interval time-varying

delay:

ẋ(t) = –Aγ (x(t))x(t) +Wγ (x(t))f
(
x(t)
)

+Wγ (x(t))g
(
x
(
t – h(t)

))
+ Bγ (x(t))u(t), t ≥ , (.)

x(t) = φ(t), t ∈ [–h, ],
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where x(t) = [x(t),x(t), . . . ,xn(t)]T ∈ R
n is the state of the neural, u(·) ∈ L([, t],Rm) is

the control; n is the number of neurons, and

f
(
x(t)
)
=
[
f
(
x(t)
)
, f
(
x(t)

)
, . . . , fn

(
xn(t)

)]T ,
g
(
x(t)
)
=
[
g
(
x(t)
)
, g
(
x(t)

)
, . . . , gn

(
xn(t)

)]T ,
are the activation functions; γ (·) : Rn → N := {, , . . . ,N} is the switching rule, which is a
function depending on the state at each time and will be designed. A switching function
is a rule which determines a switching sequence for a given switching system. Moreover,
γ (x(t)) = j implies that the system realization is chosen as the jth system, j = , , . . . ,N . It
is seen that system (.) can be viewed as an autonomous switched system in which the
effective subsystem changes when the state x(t) hits predefined boundaries.
Aj = diag(aj,aj, . . . ,anj), aij > , represents the self-feedback term; Bj ∈ Rn×m are con-

trol input matrices; Wj, Wj denote the connection weights and the delayed connection
weights, respectively. The time-varying delay function h(t) satisfies the condition

 ≤ h ≤ h(t)≤ h.

The initial functions φ(t) ∈ C([–h, ],Rn), with the norm

‖φ‖ = supt∈[–h,]
√∥∥φ(t)∥∥ + ∥∥φ̇(t)∥∥.

In this paper we consider various activation functions and assume that the activation func-
tions f (·), g(·) are Lipschitzian with the Lipschitz constants fi, ei > :

∣∣fi(ξ) – fi(ξ)
∣∣≤ fi|ξ – ξ|, i = , , . . . ,n,∀ξ, ξ ∈R,∣∣gi(ξ) – gi(ξ)
∣∣≤ ei|ξ – ξ|, i = , , . . . ,n,∀ξ, ξ ∈R.

(.)

The performance index associated with system (.) is the following function:

J =
∫ ∞


f 
(
t,x(t),x

(
t – h(t)

)
,u(t)

)
dt, (.)

where f (t,x(t),x(t – h(t)),u(t)) : R+ × Rn × Rn × Rm → R+, is a nonlinear cost function
satisfying

∃Q,Q, R : f (t,x, y,u)≤ 〈Qx,x〉 + 〈Qy, y〉 + 〈Ru,u〉 (.)

for all (t,x, y,u) ∈ R+ × Rn × Rn × Rm and Q,Q ∈ Rn×n, R ∈ Rm×m, are given symmet-
ric positive definite matrices. The objective of this paper is to design a memoryless state
feedback controller u(t) = Kx(t) for system (.) and the cost function (.) such that the
resulting closed-loop system

ẋ(t) = –(Aj – BjK)x(t) +Wjf
(
x(t)
)
+Wjg

(
x
(
t – h(t)

))
(.)

is exponentially stable and the closed-loop value of the cost function (.) is minimized.
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Remark . It is worth noting that the time delay is a time-varying function belonging to
a given interval, in which the lower bound of delay is not restricted to zero; therefore, the
stability criteria proposed in [–, –, –, –] are not applicable to this system.

Remark. It is worth noting that the time delay is a time-varying function belonging to a
given interval, in which the delay function h(t) is non-differentiable; therefore, the stability
criteria proposed in [, , , –, –, –] are not applicable to this system.

Definition . Given α > . The zero solution of closed-loop system (.) is α-exponen-
tially stabilizable if there exists a positive number N >  such that every solution x(t,φ)
satisfies the following condition:

∥∥x(t,φ)∥∥≤ Ne–αt‖φ‖, ∀t ≥ .

Definition . Consider control system (.). If there exist a memoryless state feedback
control law u(t) = Kx(t) and a positive number J∗ such that the zero solution of closed-
loop system (.) is exponentially stable and the cost function (.) satisfies J ≤ J∗, then
the value J∗ is a guaranteed constant and u(t) is a guaranteed cost control law of the system
and its corresponding cost function.

We introduce the following technical well-known propositions, which will be used in
the proof of our results.

Proposition . (Schur complement lemma []) Given constant matrices X, Y , Z with
appropriate dimensions satisfying X = XT , Y = YT > . Then X +ZTY–Z <  if and only if

(
X ZT

Z –Y

)
< .

Proposition . (Integral matrix inequality []) For any symmetric positive definite ma-
trix M > , scalar σ >  and vector function ω : [,σ ] → R

n such that the integrations
concerned are well defined, the following inequality holds:

(∫ σ


ω(s)ds

)T

M
(∫ σ


ω(s)ds

)
≤ σ

(∫ σ


ωT (s)Mω(s)ds

)
.

3 Design of guaranteed cost controller
In this section, we give a design ofmemoryless guaranteed feedback cost control for neural
networks (.). Let us set

w = –[P + αI]Aj –AT
j [P + αI] – BjBT

j + .BjRBT
j +

∑
i=

Gi,

w = P +AjP + .BjBT
j ,

w = e–αhH + .BjBT
j +AjP,

w = e–αhH + .BjBT
j +AjP,
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w = P.BjBT
j +AjP,

w =
∑

i=

WijDiWT
ij +

∑
i=

hi Hi + (h – h)U – P – BjBT
j ,

w = P, w = P, w = P,

w = –e–αhG – e–αhH – e–αhU +
∑

i=

WijDiWT
ij ,

w = , w = –αhU ,

w =
∑

i=

WijDiWT
ij – e–αhU – e–αhG – e–αhH, w = e–αhU ,

w = –e–αhU +WjDWT
j ,

E = diag{ei, i = , . . . ,n}, F = diag{fi, i = , . . . ,n},
λ = λmin

(
P–),

λ = λmax
(
P–) + hλmax

[
P–

( ∑
i=

Gi

)
P–

]

+ hλmax

[
P–

( ∑
i=

Hi

)
P–

]
+ (h – h)λmax

(
P–UP–).

Theorem . Consider control system (.) and the cost function (.). If there exist sym-
metric positive definitematrices P,U ,G,G,H,H anddiagonal positive definitematrices
Di, i = , , satisfying the following LMIs:

Ej =

⎡
⎢⎢⎢⎢⎢⎢⎣

w w w w w

∗ w w w w

∗ ∗ w w w

∗ ∗ ∗ w w

∗ ∗ ∗ ∗ w

⎤
⎥⎥⎥⎥⎥⎥⎦
< , j = , , . . . ,N , (.)

Sj =

⎡
⎢⎣
–PAj –AT

j P –
∑

i= e–αhiHi PF PQ

∗ –D 
∗ ∗ –Q–



⎤
⎥⎦ < , j = , , . . . ,N , (.)

Sj =

⎡
⎢⎣
WjDWT

j – e–αhU PE PQ

∗ –D 
∗ ∗ –Q–



⎤
⎥⎦ < , j = , , . . . ,N , (.)

then

uj(t) = –


BT
j P

–x(t), t ≥ , j = , , . . . ,N , (.)

is a guaranteed cost control and the guaranteed cost value is given by

J∗ = λ‖φ‖.
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The switching rule is chosen as γ (x(t)) = j. Moreover, the solution x(t,φ) of the system
satisfies

∥∥x(t,φ)∥∥≤
√

λ

λ
e–αt‖φ‖, ∀t ≥ .

Proof Let Y = P–, y(t) = Yx(t). Using the feedback control (.), we consider the following
Lyapunov-Krasovskii functional:

V (t,xt) =
∑
i=

Vi(t,xt),

V = xT (t)Yx(t),

V =
∫ t

t–h
eα(s–t)xT (s)YGYx(s)ds,

V =
∫ t

t–h
eα(s–t)xT (s)YGYx(s)ds,

V = h
∫ 

–h

∫ t

t+s
eα(τ–t)ẋT (τ )YHY ẋ(τ )dτ ds,

V = h
∫ 

–h

∫ t

t+s
eα(τ–t)ẋT (τ )YHY ẋ(τ )dτ ds,

V = (h – h)
∫ t–h

t–h

∫ t

t+s
eα(τ–t)ẋT (τ )YUYẋ(τ )dτ ds.

It is easy to check that

λ
∥∥x(t)∥∥ ≤ V (t,xt)≤ λ‖xt‖, ∀t ≥ . (.)

Taking the derivative of V, we have

V̇ = xT (t)Y ẋ(t)

= yT (t)
[
–PAT

j –AjP
]
y(t) – yT (t)BjBT

j y(t)

+ yT (t)Wjf (·)y(t) + yT (t)Wjg(·)y(t)
V̇ = yT (t)Gy(t) – e–αhyT (t – h)Gy(t – h) – αV;

V̇ = yT (t)Gy(t) – e–αhyT (t – h)Gy(t – h) – αV;

V̇ = hẏ
T (t)Hẏ(t) – he–αh

∫ t

t–h
ẋT (s)Hẋ(s)ds – αV;

V̇ = h ẏ
T (t)Hẏ(t) – he–αh

∫ t

t–h
ẏT (s)Hẏ(s)ds – αV;

V̇ = (h – h)ẏT (t)Uẏ(t) – (h – h)e–αh
∫ t–h

t–h
ẏT (s)Uẏ(s)ds – αV.
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Applying Proposition . and the Leibniz-Newton formula

∫ t

s
ẏ(τ )dτ = y(t) – y(s),

we have, for j = , , i = , ,

–hi
∫ t

t–hi
ẏT (s)Hjẏ(s)ds≤ –

[∫ t

t–hi
ẏ(s)ds

]T
Hj

[∫ t

t–hi
ẏ(s)ds

]

≤ –
[
y(t) – y

(
t – h(t)

)]THj
[
y(t) – y

(
t – h(t)

)]
= –yT (t)Hiy(t) + xT (t)Hjy

(
t – h(t)

)
– yT (t – hi)Hjy(t – hi). (.)

Note that

∫ t–h

t–h
ẏT (s)Uẏ(s)ds =

∫ t–h(t)

t–h
ẏT (s)Uẏ(s)ds +

∫ t–h

t–h(t)
ẏT (s)Uẏ(s)ds.

Applying Proposition . gives

[
h – h(t)

] ∫ t–h(t)

t–h
ẏT (s)Uẏ(s)ds≥

[∫ t–h(t)

t–h
ẏ(s)ds

]T
U
[∫ t–h(t)

t–h
ẏ(s)ds

]

≥ [y(t – h(t)
)
– y(t – h)

]TU[y(t – h(t)
)
– y(t – h)

]
.

Since h – h(t)≤ h – h, we have

[h – h]
∫ t–h(t)

t–h
ẏT (s)Uẏ(s)ds≥ [y(t – h(t)

)
– y(t – h)

]TU[y(t – h(t)
)
– y(t – h)

]
,

then

–[h – h]
∫ t–h(t)

t–h
ẏT (s)Uẏ(s)ds≤ –

[
y
(
t – h(t)

)
– y(t – h)

]TU[y(t – h(t)
)
– y(t – h)

]
.

Similarly, we have

–(h – h)
∫ t–h

t–h(t)
ẏT (s)Uẏ(s)ds≤ –

[
y(t – h) – y

(
t – h(t)

)]TU[y(t – h) – y
(
t – h(t)

)]
.

Then we have

V̇ (·) + αV (·) ≤ yT (t)
[
–PAT

j –AjP
]
y(t) – yT (t)BjBT

j y(t) + yT (t)Wjf (·)

+ yT (t)Wjg(·) + yT (t)

( ∑
i=

Gi

)
y(t) + α

〈
Py(t), y(t)

〉

+ ẏT (t)

( ∑
i=

hi Hi

)
ẏ(t) + (h – h)ẏT (t)Uẏ(t)
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–
∑

i=

e–αhiyT (t – hi)Giy(t – hi)

– e–αh
[
y(t) – y(t – h)

]TH
[
y(t) – y(t – h)

]
– e–αh

[
y(t) – y(t – h)

]TH
[
y(t) – y(t – h)

]
– e–αh

[
y
(
t – h(t)

)
– y(t – h)

]TU[y(t – h(t)
)
– y(t – h)

]
– e–αh

[
y(t – h) – y

(
t – h(t)

)]TU[y(t – h) – y
(
t – h(t)

)]
. (.)

Using equation (.)

Pẏ(t) +AjPy(t) –Wjf (·) –Wjg(·) + .BjBT
j y(t) = ,

and multiplying both sides by [y(t), –ẏ(t), y(t – h), y(t – h), y(t – h(t))]T , we have

yT (t)Pẏ(t) + yT (t)AjPy(t) – yT (t)Wjf (·) – yT (t)Wjg(·)
+ yT (t)BjBT

j y(t) = ,

–ẏT (t)Pẏ(t) – ẏT (t)AjPy(t) + ẏT (t)Wjf (·)
+ ẏT (t)Wjg(·) – ẏT (t)BjBT

j y(t) = ,

yT (t – h)Pẏ(t) + yT (t – h)AjPy(t) – yT (t – h)Wjf (·)
– yT (t – h)Wjg(·) + yT (t – h)BjBT

j y(t) = ,

yT (t – h)Pẏ(t) + yT (t – h)AjPy(t) – yT (t – h)Wjf (·)
– yT (t – h)Wjg(·) + yT (t – h)BjBT

j y(t) = ,

yT
(
t – h(t)

)
Pẏ(t) + yT

(
t – h(t)

)
AjPy(t) – yT

(
t – h(t)

)
Wjf (·)

– yT
(
t – h(t)

)
Wjg(·) + yT

(
t – h(t)

)
BjBT

j y(t) = .

(.)

Adding all the zero items of (.) and f (t,x(t),x(t–h(t)),u(t))– f (t,x(t),x(t–h(t)),u(t)) =
, respectively, into (.) and using the condition (.) for the following estimations:

f 
(
t,x(t),x

(
t – h(t)

)
,u(t)

)≤ 〈Qx(t),x(t)
〉
+
〈
Qx
(
t – h(t)

)
,x
(
t – h(t)

)〉
+
〈
Ru(t),u(t)

〉
=
〈
PQPy(t), y(t)

〉
+
〈
PQPy

(
t – h(t)

)
, y
(
t – h(t)

)〉
+ .

〈
BjRBT

j y(t), y(t)
〉
,


〈
Wjf (x), y

〉≤ 〈WjDWT
j y, y

〉
+
〈
D–

 f (x), f (x)
〉
,


〈
Wjg(z), y

〉≤ 〈WjDWT
j y, y

〉
+
〈
D–

 g(z), g(z)
〉
,


〈
D–

 f (x), f (x)
〉≤ 〈FD–

 Fx,x
〉
,


〈
D–

 g(z), g(z)
〉≤ 〈ED–

 Ez, z
〉
,
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we obtain

V̇ (·) + αV (·)≤ ζT (t)Ejζ (t) + yT (t)Sjy(t) + yT
(
t – h(t)

)
Sjy
(
t – h(t)

)
– f 
(
t,x(t),x

(
t – h(t)

)
,u(t)

)
, (.)

where ζ (t) = [y(t), ẏ(t), y(t – h), y(t – h), y(t – h(t))], and

Ej =

⎡
⎢⎢⎢⎢⎢⎢⎣

w w w w w

∗ w w w w

∗ ∗ w w w

∗ ∗ ∗ w w

∗ ∗ ∗ ∗ w

⎤
⎥⎥⎥⎥⎥⎥⎦
,

Sj = –PAj –AT
j P –

∑
i=

e–αhiHi + PFD–
 FP + PQP,

Sj =WjDWT
j – e–αhU + PED–

 EP + PQP.

Note that by the Schur complement lemma, Proposition ., the conditions Sj <  and
Sj <  are equivalent to the conditions (.) and (.), respectively. Therefore, by condi-
tions (.), (.), (.), we obtain from (.) that

V̇ (t,xt)≤ –αV (t,xt), ∀t ≥ . (.)

Integrating both sides of (.) from  to t, we obtain

V (t,xt)≤ V (φ)e–αt , ∀t ≥ .

Furthermore, taking condition (.) into account, we have

λ
∥∥x(t,φ)∥∥ ≤ V (xt) ≤ V (φ)e–αt ≤ λe–αt‖φ‖,

then

∥∥x(t,φ)∥∥≤
√

λ

λ
e–αt‖φ‖, t ≥ ,

which concludes the exponential stability of closed-loop system (.). To prove the optimal
level of the cost function (.), we derive from (.) and (.)-(.) that

V̇ (t, zt) ≤ –f 
(
t,x(t),x

(
t – h(t)

)
,u(t)

)
, t ≥ . (.)

Integrating both sides of (.) from  to t leads to

∫ t


f 
(
t,x(t),x

(
t – h(t)

)
,u(t)

)
dt ≤ V (, z) –V (t, zt) ≤ V (, z),

http://www.journalofinequalitiesandapplications.com/content/2013/1/292


Niamsup et al. Journal of Inequalities and Applications 2013, 2013:292 Page 10 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/292

due to V (t, zt) ≥ . Hence, letting t → +∞, we have

J =
∫ ∞


f 
(
t,x(t),x

(
t – h(t)

)
,u(t)

)
dt ≤ V (, z) ≤ λ‖φ‖ = J∗.

This completes the proof of the theorem. �

Example . Consider the switched recurrent neural networkswith interval time-varying
delays (.), where

A =

[
. 
 .

]
, A =

[
. 
 .

]
, W =

[
–. .
. –.

]
,

W =

[
–. .
. –.

]
, W =

[
–. .
. –.

]
, W =

[
–. .
. –.

]
,

B =

[
.
.

]
, B =

[
.
.

]
, E =

[
. 
 .

]
, F =

[
. 
 .

]
,

Q =

[
. .
. .

]
, Q =

[
. .
. .

]
, R =

[
. .
. .

]
,

⎧⎨
⎩h(t) = . + . sin t if t ∈ I =

⋃
k≥[kπ , (k + )π ],

h(t) =  if t ∈ R+ \ I .

Note that h(t) is non-differentiable, therefore, the stability criteria proposed in [–, –
, –, –] are not applicable to this system. Given α = ., h = ., h = ., by
using the Matlab LMI toolbox, we can solve for P, U , G, G, H, H, D, and D which
satisfy the conditions (.)-(.) in Theorem ..
A set of solutions is as follows:

P =

[
. –.
–. .

]
, U =

[
. –.
–. .

]
,

G =

[
. .
. .

]
, G =

[
. .
. .

]
,

H =

[
. .
. .

]
, H =

[
. .
. .

]
,

D =

[
. 

 .

]
, D =

[
. 

 .

]
.

Then

u(t) = .x(t) + .x(t), t ≥ ,

u(t) = .x(t) + .x(t), t ≥ ,
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Figure 1 The simulation of the solutions x1(t) and x2(t) with the initial condition φ(t) = [10 5]T ,
t ∈ [0, 10].

are a guaranteed cost control law and the cost given by

J∗ = .‖φ‖.

Moreover, the solution x(t,φ) of the system satisfies

∥∥x(t,φ)∥∥≤ .e–.t‖φ‖, ∀t ≥ .

The trajectories of solution of switched recurrent neural networks is shown in Figure ,
respectively.

4 Conclusions
In this paper, the problemof guaranteed cost control forHopfield neural networks with in-
terval non-differentiable time-varying delay has been studied. A nonlinear quadratic cost
function is considered as a performancemeasure for the closed-loop system. The stabiliz-
ing controllers to be designed must satisfy some exponential stability constraints on the
closed-loop poles. By constructing a set of time-varying Lyapunov-Krasovskii functionals,
a switching rule for the exponential stabilization for the system is designed via linear ma-
trix inequalities. A memoryless state feedback guaranteed cost controller design has been
presented and sufficient conditions for the existence of the guaranteed cost state-feedback
for the system have been derived in terms of LMIs.
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