
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2009-036 August 18, 2009

Guaranteed in-order packet delivery
using Exclusive Dynamic Virtual Channel Allocation
Mieszko Lis, Keun Sup Shim, Myong Hyon Cho,
and Srinivas Devadas

Guaranteed in-order packet delivery

using Exclusive Dynamic Virtual Channel Allocation

Mieszko Lis, Keun Sup Shim, Myong Hyon Cho, and Srinivas Devadas

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

{mieszko, ksshim, mhcho, devadas}@mit.edu

Abstract

In-order packet delivery, a critical abstraction for

many higher-level protocols, can severely limit the per-

formance potential in low-latency networks (common,

for example, in network-on-chip designs with many

cores). While basic variants of dimension-order routing

guarantee in-order delivery, improving performance by

adding multiple dynamically allocated virtual channels

or using other routing schemes compromises this guar-

antee. Although this can be addressed by reorder-

ing out-of-order packets at the destination core, such

schemes incur significant overheads, and, in the worst

case, raise the specter of deadlock or require expensive

retransmission.

We present Exclusive Dynamic VCA, an oblivious

virtual channel allocation scheme which combines the

performance advantages of dynamic virtual allocation

with in-network, deadlock-free in-order delivery. At

the same time, our scheme reduces head-of-line block-

ing, often significantly improving throughput compared

to equivalent baseline (out-of-order) dimension-order

routing when multiple virtual channels are used, and

so may be desirable even when in-order delivery is not

required. Implementation requires only minor, inexpen-

sive changes to traditional oblivious dimension-order

router architectures, more than offset by the removal of

packet reorder buffers and logic.

1. Introduction

In-order packet delivery in a network is a widely as-

sumed basis for a wide range of application protocols,

e.g., file transfer and optimized cache coherence pro-

tocols [7, 10]. Basic dimension-order routing without

virtual channels, an approach popular in network-on-

chip (NoC) designs, always delivers packets between

any two nodes in the order in which they were sent be-

cause all packets follow the same path and are stored

in the same buffers. Because packets from different

flows are buffered in the same queues, however, a single

ill-behaved flow can overwhelm other flows and effec-

tively block them even if they are destined for a differ-

ent egress port, a phenomenon known as head-of-line

blocking.

To address this, multiple virtual channels (VCs)

can be used on each link, either allocated statically (so

that each flow uses only a specific VC in each node)

or dynamically (so that each packet may be assigned

to any available VC). While static VC allocation can

ensure that each flow uses a single VC per node and

packets arrive in order, head-of-line blocking remains a

problem: when the number of flows exceeds the number

of VCs and multiple flows must share one VC, that VC

can be overwhelmed by a single flow even though all

other VCs carry no traffic. Moreover, efficient static VC

allocation requires a priori knowledge of the applica-

tion’s traffic patterns [17], a reasonable assumption for

fixed-application chips but an unrealistic requirement

for general-purpose NoCs. Dynamic VC allocation can

adapt VC usage to the traffic pattern by allocating avail-

able VCs to packets as they arrive, but, for certain traffic

patterns, performance can still suffer significantly be-

cause of head-of-line blocking. Moreover, dynamic VC

allocation forfeits the advantage of in-order packet de-

livery because two packets from the same flow may be

assigned to different VCs in the same node and leave the

VCs in an order different from their arrival sequence;

effectively, dynamic VC allocation creates multiple vir-

tual paths for each flow.

When the routing algorithm itself directs a single

flow via multiple paths (either via different sequences

of nodes or via dynamically allocated VCs in the same

sequence of nodes), in-order delivery can be accom-

plished by resorting to packet reordering. Each packet is

tagged with a sequential serial number, and any packets

that arrive out of order are stored in a reorder buffer at

the destination node until all of their predecessors have

been received. To avoid deadlock scenarios in the event

a reorder buffer fills up, the network must be able to dy-

namically limit the number of outstanding packets of a

given flow, either by dropping and resending packets, or

by sending packets only after enough preceding packets

have been delivered; either case requires some form of

an acknowledgement protocol.

While this approach works well when the process-

ing element (PE) at each node is significantly faster than

the network (as is the case, for example, with multi-

computer networks like the Internet), it is less appropri-

ate for NoCs where the on-chip network fabric is very

fast compared to the PE. While the reordering proto-

col can be implemented in hardware to improve perfor-

mance in such cases, the amount and complexity of the

necessary logic can be daunting.

In this paper, we propose Exclusive Dynamic Vir-

tual Channel Allocation (EDVCA), a VC allocation

scheme which combines the benefits of static and dy-

namic VC allocation regimes by ensuring that a flow is

traveling via at most one path at any one instant. When

combined with multi-VC dimension-order routing, our

method guarantees deadlock-free in-order packet deliv-

ery at a fraction of the hardware cost and complexity of

packet reordering approaches and without the overhead

of including a serial number in each packet. Moreover,

EDVCA significantly improves network performance

for traffic patterns susceptible to head-of-line blocking,

while offering performance equivalent to standard dy-

namic VC allocation on other traffic. In the follow-

ing sections, we outline our scheme, detail implementa-

tion differences relative to a baseline oblivious virtual-

channel router design, and analyze performance via ex-

tensive cycle-accurate simulation with synthetic as well

as realistic traffic patterns.

2. Related work

2.1. Routing algorithms

Perhaps the simplest routing scheme is dimension-

ordered routing (DOR), which applies to a broad

class of networks, including the 2D mesh we consider

here [5]. Packets traverse each dimension in a prede-

fined order, traveling along one dimension until they

have reached the destination node coordinate along that

dimension, at which point they switch to the next di-

mension. In the simplest, one-channel version, DOR

delivers packet in order within each flow, although im-

plementations with dynamically allocated VCs forfeit

this guarantee because packets may pass each other in

neighboring VCs. Although low implementation com-

plexity and in-order packet delivery (under some virtual

channel allocation schemes) have made DOR a very

popular choice in the on-chip network design space,

its simplicity comes at the cost of poor worst-case and

average-case throughput for mesh networks.

By balancing traffic between the XY and YX vari-

ants of DOR routing, O1TURN [16] not only guaran-

tees provable worst-case throughput but also matches

average-case behavior of ROMM for both global and lo-

cal traffic, and generally performs very well in practice

with very little extra hardware cost and no transmission

overhead. Since packets in the same flow may experi-

ence different congestion characteristics along the two

possible routes, however, O1TURN may deliver pack-

ets out of order.

Valiant and Brebner proposed a routing scheme that

chooses an intermediate node at random and employs

DOR to route first to the intermediate node and then

from there to the destination [21]. While this algorithm

achieves optimal worst-case throughput by spreading

all traffic throughout the network, it sacrifices average-

case behavior and latency, since even traffic between

adjacent nodes may incur significant delays in traveling

to and from the intermediate node; in addition, since

different packets from the same flow may use different

intermediate nodes, they may be delivered out of order.

ROMM [13, 14] applies the Valiant algorithm to

minimum routing, limiting intermediate node choices to

the minimum rectangle defined by the source and desti-

nation nodes. Although ROMM guarantees minimum

routes, its load balancing is not optimal, and it may

saturate at a lower throughput than DOR in 2D torus

networks [20] and 2D mesh networks [16]. While in-

creasing the number of phases can reduce congestion,

it comes at the cost of additional hardware complexity

and additional virtual channels. Like Valiant, ROMM

may deliver packets out of order.

Classic adaptive routing schemes include the turn

routing methods [8] and odd-even routing [3]. These

are general schemes that allow packets to take differ-

ent paths through the network while ensuring deadlock

freedom but do not specify the mechanism by which

a particular path is selected. An adaptive routing pol-

icy determines what path a packet takes based on net-

work congestion. Many policies have been proposed

(e.g., [4, 11, 18, 19, 9]). Since adaptive routing algo-

rithms alter the route in response to network conditions,

they can also deliver packets out of order.

2.2. In-order packet delivery

Few routing scheme designs address out-of-order

packet delivery. Within the Network-on-Chip (NoC)

context, Murali et al [12] describe a multi-path in-order

scheme where sequentially numbered packets belong-

ing to a given flow are delayed at switches where dis-

tinct paths used by the same flow join (or cross). This

scheme relies on a static assignment of flows to links;

moreover, their re-ordering method contemplates only

packets within one flow and either does not consider the

possibility of deadlock when separate flows block each

other or makes an unrealistic assumption of a private

virtual channel for each flow.

More generally, ensuring in-order delivery via

buffering out-of-order packets at the destination node

and reordering them (and, if necessary, dropping and

retransmitting) has been around since the dawn of

computer networking, and is employed, for example,

in the Transmission Control Program [2, 1], the pre-

cursor of the ubiquitous Transmission Control Proto-

col [15]. TCP combines destination-buffered reorder-

ing with window-based flow control and acknowledge-

ments piggybacked on return packets.

3. Exclusive Dynamic VC Allocation

In a nutshell, exclusive dynamic VCA prevents

packets from any single flow from using more than one

VC at a given ingress at any given instant. When a snap-

shot of the network is examined, the system appears as

if VCs had been statically allocated: packets from any

given flow use no more than one VC per ingress, and

seem to travel via a single path, which ensures in-order

packet delivery and reduces head-of-line blocking. At

the same time, the VC being used for a specific flow at

a given ingress can change over time, and when the net-

work state is examined over a longer period, flows may

appear to be using multiple VCs at each ingress port,

spreading incoming traffic among available VCs.

In what follows, we assume a standard ingress-

queued virtual-channel router with wormhole routing

and credit-based inter-link flow-control [6]. In such de-

signs, each packet arriving at an ingress port is imme-

diately queued in a VC buffer, and forwarded via five

steps: route computation (RC), virtual channel alloca-

tion (VCA), switch allocation (SA), and switch traver-

sal (ST), sometimes implemented as separate pipeline

stages for efficiency. All flits in a packet are forwarded

contiguously, so the first two stages (RC and VCA) only

perform computation for the head flit of each packet, re-

turning cached results for the remaining flits.

Our scheme differs only in the VCA stage: when

allocating a next-hop VC to a packet from flow f , we

follow the rules below:

• if no next-hop VC contains packets from f , assign

the packet to any available VC; if no VCs are avail-

able, stall the packet and try to allocate again in the

B B C C A A

C C A A B B

VC 0

VC 1

(a) dynamic VCA

C CA A A A

-
 -

B B

VC 0

VC 1

B B

(b) exclusive dynamic VCA

Figure 1. Comparison of VCA schemes

next cycle (emulates dynamic VCA)

• if some next-hop VC v already contains packets

from f , and v is available, assign the packet to v; if

v is not available, stall the packet and try to allocate

again in the next cycle (emulates static allocation

of f to v)

Figure 1 illustrates how our scheme might allo-

cate virtual channels for packets from three hypothet-

ical flows, A, B, and C, for a two-VC ingress port. Tra-

ditional dynamic allocation might assign packets from

each flow to both VCs, as shown in Figure 1(a); ex-

clusive dynamic VCA, on the other hand, will assign

packets from one flow to only one VC, as shown in Fig-

ure 1(b). Thus, when the third packet in flow B arrives,

it is assigned VC 1 because VC 1 already has packets

from B; similarly, the third packet in flow A is assigned

VC 0. When the third C packet arrives, it must wait ei-

ther until VC 0 has space (in which case it can go into

VC 0) or until all other C packets in VC 0 has been for-

warded (in which case it can go into either VC). Note

that, while Figure 1(b) only shows a snapshot at a par-

ticular instant and the VC assignment might change at a

later time (for example, with VC 0 and VC 1 reversed),

exclusive dynamic VCA will never result in the situa-

tion shown in Figure 1(a).

When EDVCA is implemented in a routing regime

where a given flow always follows the same sequence

of nodes (e.g., dimension-order routing), it guarantees

that all packets within one flow will be forwarded and

delivered in the original order. This is of course the

case for a single VC, since, at each node, all packets are

buffered in the same ingress queue and depart in arrival

order; it is also true for static VCA because all packets

in the same flow stay in the same queue. Dynamic VCA

gives up in-order delivery, since it allows packets from

the same flow to be buffered in different VCs, and pack-

ets in different VCs may pass each other; for example,

in Figure 1(a), the packets from flow A could depart in

any of six possible orders. We restore the in-order de-

livery guarantee in EDVCA by observing that the static-

VCA condition above needs to be satisfied only at any

given instant; that is, packets are still delivered in order

if, within each node, all packets in the same flow are

buffered in the same VC at any given time.

While our motivation in this paper is in-order

packet delivery in NoCs and we focus on applying ED-

VCA to dimension-order routing on a mesh, the scheme

is independent of network geometry and route selec-

tion, and can be directly applied to other oblivious rout-

ing algorithms (e.g., O1TURN [16], Valiant [21], or

ROMM [13, 14], more sophisticated table-based static

routing [17]), or adaptive routing schemes like turn

methods [8] or odd-even routing [3].

Finally, our VC allocation scheme is also free of

deadlock provided the underlying routing regime is also

deadlock-free. The only new dependencies are between

packets waiting to be forwarded and the next-hop VCs

they are targeting, a kind of dependency already present

in any kind of ingress-queued router.

In addition to EDVCA, in which each flow exclu-

sively uses a VC at any given time, we also considered

an orthogonal scheme where each VC may only con-

tain one flow at any given time (but gives up in-order

guarantees because packets from the same flow may use

more than one VC), and a scheme that combines both

constraints (thus guaranteeing in-order delivery). While

both schemes still outperformed DOR in most of our

experiments, they did not perform quite as well as ED-

VCA; since flows tended to monopolize VCs and cause

unfairness, we judged these variants to be impractical

and do not detail them here.

4. Implementation cost

Ensuring in-order packet delivery in a fast on-chip

network incurs some additional cost in all but the most

basic routing schemes (e.g., single-VC DOR); for ex-

ample, a store-and-reorder scheme with good perfor-

mance would require both significant buffer space at the

destination and, in order to ensure that the destination

buffers do not overflow, either end-to-end flow control

or retransmission capability, both of which require ad-

ditional memory space at the source. In comparison,

our scheme requires only a modicum of additional hard-

ware, which we detail by highlighting the differences

from a classical virtual channel router [6] with dynamic

VC allocation.

The additional hardware is required to ensure that

packets from a single flow will not be buffered in two

VCs at the same time; that is, during the VCA stage,

the router must check whether any VCs at the next-hop

node already contain the relevant flow, and, if so, restrict

itself to that VC. This can be accomplished with a per-

flow table, where the entry for each flow lists the cur-

rently assigned VC (if any), and the number of flits from

that flow remaining in that VC; Figure 2 illustrates how

- - - - A A

- - - - - -

VC 0

VC 1

Flow ID
 VC
 # of flits

A
 0
 2

B
 –
 –

C
 –
 –

(a) Two flits in flow A departs for next-hop VC 0

- - - - A A

- - - - - B

VC 0

VC 1

Flow ID
 VC
 # of flits

A
 0
 2

B
 1
 1

C
 –
 –

(b) One flit in flow B departs for next-hop VC 1

- - C C A A

- - - - - B

VC 0

VC 1

Flow ID
 VC
 # of flits

A
 0
 2

B
 1
 1

C
 0
 2

(c) Two flits in flow C depart for next-hop VC 0

Flow ID
 VC
 # of flits

A
 –
 –

B
 1
 1

C
 0
 2

- - - - - C

- - - - - B

VC 0

VC 1

C

(d) Two flits in flow A are forwarded from next-hop VC 0

- - - - - C

- - - - - B

VC 0

VC 1

Flow ID
 VC
 # of flits

A
 –
 –

B
 1
 1

C
 0
 1

(e) One flit in flow C is forwarded from next-hop VC 0

Figure 2. Tracking remote VC contents

such a table might be updated when packets depart from

the current node for the next hop, and when they are for-

warded on from the next-hop node. For each head flit,

the VCA stage locates the next available next-hop VC

(same as in traditional dynamic VCA), and, in parallel,

queries the table. If the table lookup returns no entry for

the flow, the next available VC is used; otherwise, the

VC from the table lookup is used if it is available, or no

assignment is made if the VC is busy. Assuming that

the latency of the VCA stage is comparable to that of

the table query, the only additional latency comes from

a small multiplexer arbitrating between the traditional

VCA result and the table lookup.

While at first blush it might appear that in a system

with many flows such a table might have to be quite

large, observe that only flows with any flits in the next-

hop VCs need to be stored. This is relatively few flows:

for a node with 8 eight-flit queues per ingress, at most

64 different flows can be buffered at each ingress.1 Fur-

thermore, the table can be smaller than the number of si-

multaneously buffered flows: if the table becomes full,

the next packet for an unknown flow stalls until there is

space in the table and performance degrades gracefully.

In any event, a table of this size can be efficiently im-

plemented using a content-addressable memory (CAM)

addressed by flow ID, one for each ingress if each flow

has only one entry port (e.g., in DOR), or one bigger ta-

ble for each node if flows can arrive from any direction

(e.g., in some adaptive routing schemes).

The only remaining overhead stems from tracking

the number of flits for each flow in the next-hop VCs

(Figure 2). This can be handled by modifying the exist-

ing credit update system, which allows a node to keep

track of the number of free slots in each next-hop VC.

In the original (non-EDVCA) version, the router decre-

ments a per-remote-VC credit count whenever a flit de-

parts for a next-hop VC and increments it when the

neighboring node removes a flit from that VC and sends

a credit update message. Since EDVCA tracks remote

VC contents for each flow (Figure 2), the credit update

messages carry a flow ID instead of a VC ID, and the

corresponding VC IDs are locally retrieved from the

table and used to update the relevant per-VC credits;

thus, the send events in Figures 2(a)–2(c) cause credit

decrements for the relevant VCs, and the update events

in Figures 2(d)–2(e) trigger credit increments. While

sending flow IDs instead of VC IDs in every credit

update message does increase the number of bits and

therefore the bandwidth used for credit updates, the few

extra wires are cheap in terms of area and do not affect

the size of the crossbar switch; furthermore, if desired,

the wire count can be decreased significantly by sending

credit updates less often, with corresponding graceful

decrease in performance.

These small overheads compare favorably with the

resources and logic required to implement a typical

store-and-reorder scheme for in-order delivery. Unlike

reorder buffer size, the additional table memory does

not grow with maximum packet size, and the additional

VC allocation and credit update logic is much simpler

than the logic needed to reorder, acknowledge, and pos-

sibly retransmit packets.

5. Results

We have evaluated the performance of exclusive

dynamic VCA via extensive simulation on synthetic

benchmarks as well as a load profile obtained from a

1or half of that, assuming a minimum packet length of one routing

(head) flit and one data flit

Topology 8×8 2D mesh

Routing DOR–XY, O1TURN

Link bandwith 2, 4, 8 flits/cycle

VC alloc Dynamic, EDVCA

VC output mux None, 1, 2, 4

Per-hop latency 1 cycle

VCs per port 1, 2, 4, 8

VC buffer size 8 flits

Average packet length 2, 8, 32 flits

Traffic workload transpose, shuffle,

bit-complement,

H.264 decoder profile

Burstiness model Markov modulated

Warmup cycles 10,000

Analyzed cycles 100,000

Table 1. Network configuration summary

parallel implementation of an H.264 video decoder, and

report the results below.

5.1. Experimental setup

For our experiments, we used an in-house cycle-

accurate NoC simulator. The simulator implements a

standard ingress-queued virtual-channel router [6]. To

mitigate crossbar cost with routing schemes that require

multiple VCs to avoid deadlock, a VC output multi-

plexer can optionally choose a subset of the VCs at each

ingress, and present the chosen subset for switch allo-

cation. To avoid unfairness effects resulting from a par-

ticular combination of round-robin strategy and packet

arrival rate, VCs in switch and VC allocation are con-

sidered in random order and greedily matched. While

the simulator can be configured for any desired geom-

etry and a host of oblivious routing and virtual chan-

nel allocation schemes, we focused our experiments on

2 VCs 4 VCs 8 VCs
0

100

200

300

400

500

m
a
x
im

u
m

 R
O

B
 s

iz
e
 (

#
 p

a
ck

e
ts

)

60

132

280

80

196

400

60

132

280

60

184

436
bitcomp
shuffle
transpose
H.264

(a) Maximum number of pack-

ets from any single flow in any

reorder buffer

2 VCs 4 VCs 8 VCs
0

20

40

60

80

100

o
u
t-

o
f-

o
rd

e
r

p
a
ck

e
ts

 (
%

 o
f

to
ta

l
re

ce
iv

e
d
 c

o
u
n
t)

46%

69%

83%

50%

73%

85%

40%

64%

79%

48%

78%

87%
bitcomp
shuffle
transpose
H.264

(b) Percentage of packets re-

ceived out of order for that flow

Figure 3. Reorder costs, XY + dynamic VCA

0 50 100 150 200 250
offered traffic (flits/cycle)

0

10

20

30

40

50

60

70

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY, 1 VC

XY/EDVCA, 2 VCs/mux->1

XY/EDVCA, 2 VCs

XY/EDVCA, 4 VCs/mux->2

XY/EDVCA, 8 VCs/mux->2

XY/EDVCA, 4 VCs

XY/EDVCA, 8 VCs

(a) bitcomp

0 50 100 150 200 250
offered traffic (flits/cycle)

0

10

20

30

40

50

60

70

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY, 1 VC

XY/EDVCA, 2 VCs/mux->1

XY/EDVCA, 2 VCs

XY/EDVCA, 4 VCs/mux->2

XY/EDVCA, 8 VCs/mux->2

XY/EDVCA, 4 VCs

XY/EDVCA, 8 VCs

(b) shuffle

0 50 100 150 200
offered traffic (flits/cycle)

0

10

20

30

40

50

60

70

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY, 1 VC

XY/EDVCA, 2 VCs/mux->1

XY/EDVCA, 2 VCs

XY/EDVCA, 4 VCs/mux->2

XY/EDVCA, 8 VCs/mux->2

XY/EDVCA, 4 VCs

XY/EDVCA, 8 VCs

(c) transpose

0 20 40 60 80 100 120 140 160
offered traffic (flits/cycle)

0

10

20

30

40

50

60

70

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY, 1 VC

XY/EDVCA, 2 VCs/mux->1

XY/EDVCA, 2 VCs

XY/EDVCA, 4 VCs/mux->2

XY/EDVCA, 8 VCs/mux->2

XY/EDVCA, 4 VCs

XY/EDVCA, 8 VCs

(d) H.264 profile

Figure 4. In-order throughput

an 8× 8 mesh network under XY and O1TURN rout-

ing. To estimate the impact of out-of-order packets, we

implemented a store-and-reorder strategy, although re-

order buffer sizes are not limited and so retransmission

is never necessary.

Table 1 summarizes the configurations used for our

experiments. Although we analyzed performance for a

variety of link bandwidths and flit sizes, for clarity of

exposition we avoid plotting data that are similar, and

show only results for link bandwidth of 8 flits/cycle and

packet sizes of 2 flits (for the synthetic benchmarks with

1, 2, and 4 VCs) and 8 (for 8 VCs and the H.264 pro-

file load). For the synthetic benchmarks, we simulated

constant and Markov-chain-modulated bursty traffic.

5.2. Out-of-order packet delivery

To understand the cost of a store-and-reorder in-

order implementation in DOR2 with dynamic VC allo-

cation, we asked how many packets arrived out of order

(that is, before all of their predecessors were delivered).

Figure 3(a) shows, for each load and VC count, the

highest number of packets from any one flow simul-

taneously waiting in any reorder buffer in any of our

2We considered only DOR when examining out-of-order packet

rates to ensure a fair comparison with EDVCA, since EDVCA cannot

guarantee in-order delivery under O1TURN routing.

0 100 200 300 400 500 600
offered traffic (flits/cycle)

0

10

20

30

40

50

60

70

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY, 1 VC

XY/EDVCA, 2 VCs/mux->1

XY/EDVCA, 2 VCs

XY/EDVCA, 4 VCs/mux->2

XY/EDVCA, 8 VCs/mux->2

XY/EDVCA, 4 VCs

XY/EDVCA, 8 VCs

(a) bitcomp

0 100 200 300 400 500 600
offered traffic (flits/cycle)

0

10

20

30

40

50

60

70

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY, 1 VC

XY/EDVCA, 2 VCs/mux->1

XY/EDVCA, 2 VCs

XY/EDVCA, 4 VCs/mux->2

XY/EDVCA, 8 VCs/mux->2

XY/EDVCA, 4 VCs

XY/EDVCA, 8 VCs

(b) shuffle

0 100 200 300 400 500
offered traffic (flits/cycle)

0

10

20

30

40

50

60

70

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY, 1 VC

XY/EDVCA, 2 VCs/mux->1

XY/EDVCA, 2 VCs

XY/EDVCA, 4 VCs/mux->2

XY/EDVCA, 8 VCs/mux->2

XY/EDVCA, 4 VCs

XY/EDVCA, 8 VCs

(c) transpose

Figure 5. In-order burst throughput

experiments; that is, it indicates the minimum reorder

buffer size required to avoid dropping and retransmit-

ting packets in all experiments. Figure 3(b) shows the

percentage of packets that arrived out of order for the

corresponding flow in the corresponding experiment.

The buffer size observations confirm that out-of-order

packet arrival is a significant problem across a wide va-

riety of loads, and shows that per-flow reorder buffers

at each destination must be relatively large to avoid ex-

pensive retransmission. The high percentage of packets

received out of order indicates that the reorder buffer

and reordering logic must operate at close to line rate,

effectively excluding any software-level solution. Since

one such buffer may have to be implemented for each

flow arriving at a given destination, and the efficiency

demands would require very fast storage, the cost of re-

order buffer space alone in a store-and-reorder scheme

would be significant.

5.3. Comparison among in-order variants

To examine the performance potential when in-

order delivery is a must, we compared EDVCA with

different number of VCs against the only other network-

level routing that conserves packet order, DOR with one

VC (Figures 4–5). We found that EDVCA performance

scaled with the number of VCs, and so allows in-order

delivery to be implemented at any chosen cost vs. per-

0 10 20 30 40 50 60 70
offered traffic (flits/cycle)

5

10

15

20

25

30

m
e
a
n
 p

a
ck

e
t

la
te

n
cy

 (
cy

cl
e
s)

XY, 1 VC

XY/EDVCA, 2 VCs/mux->1

XY/EDVCA, 2 VCs

XY/EDVCA, 4 VCs/mux->2

XY/EDVCA, 8 VCs/mux->2

XY/EDVCA, 4 VCs

XY/EDVCA, 8 VCs

(a) bitcomp

0 10 20 30 40 50 60
offered traffic (flits/cycle)

5

10

15

20

25

30

m
e
a
n
 p

a
ck

e
t

la
te

n
cy

 (
cy

cl
e
s)

XY, 1 VC

XY/EDVCA, 2 VCs/mux->1

XY/EDVCA, 2 VCs

XY/EDVCA, 4 VCs/mux->2

XY/EDVCA, 8 VCs/mux->2

XY/EDVCA, 4 VCs

XY/EDVCA, 8 VCs

(b) shuffle

0 10 20 30 40 50 60
offered traffic (flits/cycle)

5

10

15

20

25

30

m
e
a
n
 p

a
ck

e
t

la
te

n
cy

 (
cy

cl
e
s)

XY, 1 VC

XY/EDVCA, 2 VCs/mux->1

XY/EDVCA, 2 VCs

XY/EDVCA, 4 VCs/mux->2

XY/EDVCA, 8 VCs/mux->2

XY/EDVCA, 4 VCs

XY/EDVCA, 8 VCs

(c) transpose

0 2 4 6 8 10 12 14
offered traffic (flits/cycle)

5

10

15

20

25

30

m
e
a
n
 p

a
ck

e
t

la
te

n
cy

 (
cy

cl
e
s)

XY, 1 VC

XY/EDVCA, 2 VCs/mux->1

XY/EDVCA, 2 VCs

XY/EDVCA, 4 VCs/mux->2

XY/EDVCA, 8 VCs/mux->2

XY/EDVCA, 4 VCs

XY/EDVCA, 8 VCs

(d) H.264 profile

Figure 6. In-order latency

formance tradeoff. Although chip area and therefore

system cost increases with the number of VCs, a large

portion of this is due to increase in the size of the cross-

bar switch, which can be mitigated by placing a multi-

plexer between the VCs and the crossbar; for example,

two-VC EDVCA with such a multiplexer (violet dia-

monds in Figure 4) is much closer in cost to one-VC

DOR, but still offers better performance. The higher

throughput enabled by using more virtual channels with

EDVCA also tends to lower latency (Figure 6).3.

5.4. Comparison on equivalent hardware

We next examined performance when the system

cost was held constant, and in-order delivery was not

considered. XY/EDVCA still tended to outperform

both dynamic-VCA XY and O1TURN4 under heavy

load in most scenarios where load caused VC con-

tention (Figures 7 and 8), except for the highly asym-

metric transpose pattern (Figure 9). When the number

of VCs sufficiently exceeds flow load, EDVCA suffers

3Our latency measures encompass the end-to-end delay between,

the time the packet is queued in the input buffer and the time the last

flit is received at the destination, and include the time spent waiting to

be injected into the network at the source core.
4Note that O1TURN is at a disadvantage under an equivalent-

hardware comparison, as it requires twice as many VCs as DOR to

avoid deadlock.

0 50 100 150 200 250
offered traffic (flits/cycle)

2

4

6

8

10

12

14

16

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY
XY/EDVCA
O1TURN
O1TURN/EDVCA

(a) 2 VCs, 2-to-1 mux

0 50 100 150 200 250
offered traffic (flits/cycle)

0

5

10

15

20

25

30

35

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY
XY/EDVCA
O1TURN
O1TURN/EDVCA

(b) 2 VCs, no mux

0 50 100 150 200 250
offered traffic (flits/cycle)

0

5

10

15

20

25

30

35

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY
XY/EDVCA
O1TURN
O1TURN/EDVCA

(c) 4 VCs, 4-to-2 mux

0 50 100 150 200 250
offered traffic (flits/cycle)

0

5

10

15

20

25

30

35

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY
XY/EDVCA
O1TURN
O1TURN/EDVCA

(d) 8 VCs, 8-to-2 mux

0 50 100 150 200 250
offered traffic (flits/cycle)

0

10

20

30

40

50

60

70

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY
XY/EDVCA
O1TURN
O1TURN/EDVCA

(e) 4 VCs, no mux

0 100 200 300 400 500 600 700
offered traffic (flits/cycle)

0

20

40

60

80

100

120

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY
XY/EDVCA
O1TURN
O1TURN/EDVCA

(f) 8 VCs, no mux

Figure 7. Same HW: bit-complement

from the restriction that each flow must only travel via

one VC, and is outperformed by XY and O1TURN,

which can use all VCs; the H.264 profile throughput

(Figure 10) offers a good example. Even here, however,

when VCs are multiplexed prior to competing for the

crossbar, as is the case in many routers, EDVCA per-

forms better than XY routing (e.g., Figure 10(d)).

Although in the regimes where EDVCA offers

higher throughput when the network is oversubscribed

it also improves latency for delivered packets when

the network is oversubscribed, this is irrelevant to an

end-to-end packet latency measurement as in Figure 6,

which would be dominated by the waiting time of pack-

ets that are never sent because the network cannot han-

dle any more traffic. Instead, end-to-end latency is only

relevant in a small regime of load factors, at the point

0 50 100 150 200 250
offered traffic (flits/cycle)

0

5

10

15

20

25

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY
XY/EDVCA
O1TURN
O1TURN/EDVCA

(a) 2 VCs, 2-to-1 mux

0 50 100 150 200 250
offered traffic (flits/cycle)

0

5

10

15

20

25

30

35

40

45

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY
XY/EDVCA
O1TURN
O1TURN/EDVCA

(b) 2 VCs, no mux

0 50 100 150 200 250
offered traffic (flits/cycle)

0

5

10

15

20

25

30

35

40

45

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY
XY/EDVCA
O1TURN
O1TURN/EDVCA

(c) 4 VCs, 4-to-2 mux

0 50 100 150 200 250
offered traffic (flits/cycle)

0

10

20

30

40

50

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY
XY/EDVCA
O1TURN
O1TURN/EDVCA

(d) 8 VCs, 8-to-2 mux

0 50 100 150 200
offered traffic (flits/cycle)

0

10

20

30

40

50

60

70

80

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY
XY/EDVCA
O1TURN
O1TURN/EDVCA

(e) 4 VCs, no mux

0 100 200 300 400 500 600 700
offered traffic (flits/cycle)

0

20

40

60

80

100

120

140

160

180

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY
XY/EDVCA
O1TURN
O1TURN/EDVCA

(f) 8 VCs, no mux

Figure 8. Same HW: shuffle

where the network becomes overloaded and stops deliv-

ering traffic at the rate of 100%; in the throughput plots

in Figures 7–10, this is the point at which the initial

offered-vs-received traffic line decreases in slope. Fig-

ure 11 illustrates this point: in Figure 11(a), EDVCA

matches the underlying latency of DOR because 100%

packet delivery begins to fail at the same injection rate,

while in Figure 11(b) DOR offers low latency longer

because it fails at a higher injection rate (cf. Figure 7).

6. Conclusion

Although applications that require packets to ar-

rive in the order in which they were sent are ubiquitous,

guaranteeing in-order packet delivery has received com-

paratively little attention in routing algorithm design,

0 50 100 150 200
offered traffic (flits/cycle)

0

5

10

15

20

25

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY
XY/EDVCA
O1TURN
O1TURN/EDVCA

(a) 2 VCs, 2-to-1 mux

0 50 100 150 200
offered traffic (flits/cycle)

0

5

10

15

20

25

30

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY
XY/EDVCA
O1TURN
O1TURN/EDVCA

(b) 2 VCs, no mux

0 50 100 150 200
offered traffic (flits/cycle)

0

10

20

30

40

50

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY
XY/EDVCA
O1TURN
O1TURN/EDVCA

(c) 4 VCs, 4-to-2 mux

0 50 100 150 200
offered traffic (flits/cycle)

0

10

20

30

40

50

60

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY
XY/EDVCA
O1TURN
O1TURN/EDVCA

(d) 8 VCs, 8-to-2 mux

0 50 100 150 200
offered traffic (flits/cycle)

0

10

20

30

40

50

60

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY
XY/EDVCA
O1TURN
O1TURN/EDVCA

(e) 4 VCs, no mux

0 100 200 300 400 500 600
offered traffic (flits/cycle)

0

20

40

60

80

100

120

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY
XY/EDVCA
O1TURN
O1TURN/EDVCA

(f) 8 VCs, no mux

Figure 9. Same HW: transpose

and, with the exception of single-VC dimension-order

routing and static VC assignment, has generally been

relegated to a higher level of abstraction. As ultra-fast

on-chip networks become common, however, buffer-

based packet reordering can become a significant bot-

tleneck. By combining the benefits of dynamic and

static virtual channel allocation schemes, Exclusive Dy-

namic Virtual Channel Allocation allows dynamic VC

assignment while guaranteeing in-order packet delivery

at the network transport level. Ensuring in-order deliv-

ery at the network level obviates the need for expensive

buffers and retransmission logic, promising better per-

formance at a lower cost than a traditional higher-level

store-and-reorder scheme in the niche of fast on-chip

networks.

0 100 200 300 400 500
offered traffic (flits/cycle)

6

8

10

12

14

16

18

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY
XY/EDVCA

(a) 2 VCs, 2-to-1 mux

0 100 200 300 400 500
offered traffic (flits/cycle)

5

10

15

20

25

30

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY
XY/EDVCA

(b) 2 VCs, no mux

0 100 200 300 400 500
offered traffic (flits/cycle)

5

10

15

20

25

30

35

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY
XY/EDVCA

(c) 4 VCs, 4-to-2 mux

0 100 200 300 400 500
offered traffic (flits/cycle)

5

10

15

20

25

30

35

40

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY
XY/EDVCA

(d) 8 VCs, 8-to-2 mux

0 100 200 300 400 500
offered traffic (flits/cycle)

0

10

20

30

40

50

60

70

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY
XY/EDVCA

(e) 4 VCs, no mux

0 100 200 300 400 500
offered traffic (flits/cycle)

0

20

40

60

80

100

120

re
ce

iv
e
d
 t

ra
ff

ic
 (

fl
it

s/
cy

cl
e
)

XY
XY/EDVCA

(f) 8 VCs, no mux

Figure 10. Same HW: H.264 profile

References

[1] V. G. Cerf, Y. Dalal, and C. Sunshine. Specification of

Internet Transmission Control Program. RFC 675, In-

ternet Engineering Task Force, December 1974.

[2] V. G. Cerf and R. E. Kahn. A Protocol for Packet Net-

work Communication. IEEE Trans. Comm., 22:637–

648, May 1974.

[3] Ge-Ming Chiu. The Odd-Even Turn Model for Adaptive

Routing. IEEE Trans. Parallel Distrib. Syst., 11(7):729–

738, 2000.

[4] W. J. Dally and H. Aoki. Deadlock-free adaptive rout-

ing in multicomputer networks using virtual channels.

IEEE Transactions on Parallel and Distributed Systems,

04(4):466–475, 1993.

[5] William J. Dally and Charles L. Seitz. Deadlock-

Free Message Routing in Multiprocessor Interconnec-

tion Networks. IEEE Trans. Computers, 36(5):547–553,

0 5 10 15 20
offered traffic (flits/cycle)

0

5

10

15

20

25

30

35

40

m
e
a
n
 p

a
ck

e
t

la
te

n
cy

 (
cy

cl
e
s)

XY

XY/EDVCA

O1TURN

O1TURN/EDVCA

(a) 2 VCs, 2-to-1 mux

0 20 40 60 80 100
offered traffic (flits/cycle)

0

5

10

15

20

25

30

35

40

m
e
a
n
 p

a
ck

e
t

la
te

n
cy

 (
cy

cl
e
s)

XY

XY/EDVCA

O1TURN

O1TURN/EDVCA

(b) 8 VCs, no mux

Figure 11. Same HW latency: bitcomp

1987.

[6] William J. Dally and Brian Towles. Principles and Prac-

tices of Interconnection Networks. Morgan Kaufmann,

2003.

[7] Natalie D. Enright Jerger, Li-Shiuan Peh, and Mikko H.

Lipasti. Virtual tree coherence: Leveraging regions

and in-network multicast trees for scalable cache co-

herence. In MICRO ’08: Proceedings of the 2008 41st

IEEE/ACM International Symposium on Microarchitec-

ture, pages 35–46, Washington, DC, USA, 2008. IEEE

Computer Society.

[8] Christopher J. Glass and Lionel M. Ni. The turn model

for adaptive routing. J. ACM, 41(5):874–902, 1994.

[9] P. Gratz, B. Grot, and S. W. Keckler. Regional Conges-

tion Awareness for Load Balance in Networks-on-Chip.

In In Proc. of the 14th Int. Symp. on High-Performance

Computer Architecture (HPCA), pages 203–214, Febru-

ary 2008.

[10] John L. Hennessy and David A. Patterson. Computer

Architecture, Fourth Edition: A Quantitative Approach.

Morgan Kaufmann, September 2006.

[11] H. J. Kim, D. Park, T. Theocharides, C. Das, and

V. Narayanan. A Low Latency Router Supporting Adap-

tivity for On-Chip Interconnects. In Proceedings of

Design Automation Conference, pages 559–564, June

2005.

[12] S. Murali, D. Atienza, L. Benini, and G. De Micheli.

A multi-path routing strategy with guaranteed in-order

packet delivery and fault-tolerance for networks on chip.

In Proceedings of DAC 2006, pages 845–848, July 2006.

[13] Ted Nesson and S. Lennart Johnsson. ROMM Routing:

A Class of Efficient Minimal Routing Algorithms. In in

Proc. Parallel Computer Routing and Communication

Workshop, pages 185–199, 1994.

[14] Ted Nesson and S. Lennart Johnsson. ROMM rout-

ing on mesh and torus networks. In Proc. 7th Annual

ACM Symposium on Parallel Algorithms and Architec-

tures SPAA’95, pages 275–287, 1995.

[15] J. Postel. Transmission Control Protocol. RFC 793, In-

ternet Engineering Task Force, September 1981.

[16] Daeho Seo, Akif Ali, Won-Taek Lim, Nauman Rafique,

and Mithuna Thottethodi. Near-Optimal Worst-Case

Throughput Routing for Two-Dimensional Mesh Net-

works. In Proceedings of the 32nd Annual Inter-

national Symposium on Computer Architecture (ISCA

2005), pages 432–443, 2005.

[17] K. S. Shim, M. H. Cho, M. Kinsy, T. Wen, M. Lis, G. E.

Suh, and S. Devadas. Static Virtual Channel Alloca-

tion in Oblivious Routing. In Proceedings of the 3rd

ACM/IEEE International Symposium on Networks-on-

Chip, May 2009.

[18] Arjun Singh, William J. Dally, Amit K. Gupta, and Brian

Towles. GOAL: a load-balanced adaptive routing algo-

rithm for torus networks. SIGARCH Comput. Archit.

News, 31(2):194–205, 2003.

[19] Arjun Singh, William J. Dally, Brian Towles, and

Amit K. Gupta. Globally Adaptive Load-Balanced

Routing on Tori. IEEE Comput. Archit. Lett., 3(1), 2004.

[20] Brian Towles and William J. Dally. Worst-case traffic for

oblivious routing functions. In SPAA ’02: Proceedings

of the fourteenth annual ACM symposium on Parallel

algorithms and architectures, pages 1–8, 2002.

[21] L. G. Valiant and G. J. Brebner. Universal schemes

for parallel communication. In STOC ’81: Proceedings

of the thirteenth annual ACM symposium on Theory of

computing, pages 263–277, 1981.

