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Abstract— This paper is concerned with guaranteed param-
eter estimation in nonlinear dynamic systems in a context of
bounded measurement error. The problem consists of finding—
or approximating as closely as possible—the set of all possible
parameter values such that the predicted outputs match the
corresponding measurements within prescribed error bounds.
An exhaustive search procedure is applied, whereby the pa-
rameter set is successively partitioned into smaller boxes and
exclusion tests are performed to eliminate some of these boxes,
until a prespecified threshold on the approximation level is
met. Exclusion tests rely on the ability to bound the solution

set of the dynamic system for a given parameter subset and
the tightness of these bounds is therefore paramount. Equally
important is the time required to compute the bounds, thereby
defining a trade-off. It is the objective of this paper to investigate
this trade-off by comparing various bounding techniques based
on interval arithmetic, Taylor model arithmetic and ellipsoidal
calculus. When applied to a simple case study, ellipsoidal and
Taylor model approaches are found to reduce the number of
iterations significantly compared to interval analysis, yet the
overall computational time is only reduced for tight approxi-
mation levels due to the computational overhead.

I. INTRODUCTION

Process model development has become an integral part of

modern process design methodologies as well as for control

system design and operations optimization. A typical model

development procedure is divided into two main phases,

namely specification of the model structure and estimation of

the unknown/uncertain model parameters. The latter phase,

also known as model fitting, normally proceeds by determin-

ing parameter values for which the model predictions closely

match the observed process. Failure to find an acceptable

agreement calls for a revision of the model structure, and

the parameter estimation is then repeated.

Most commonly, the parameter estimation problem is

posed as an optimization problem that determines the param-

eter values minimizing the gap between the measurements

and the model predictions, for instance in the least-square

sense. Nonetheless, several factors can jeopardize a success-

ful and reliable estimation procedure. First of all, structural

model mismatch is inherent to the modeling exercise, and it

would be an illusion to seek for the ‘true’ parameter values in
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this context. Even in the absence of model mismatch, fitting

a set of experimental data exactly is generally not possible

due to various sources of uncertainty. A measurement’s

accuracy is always tied to the resolution of its corresponding

measuring apparatus. Moreover, measured data are typically

corrupted with noise, for instance Gaussian white noise or

more generally colored noise, let alone the presence of

systematic offsets or temporal drifts caused by faulty or

poorly calibrated sensors.

Among the possible approaches accounting for uncertainty

in parameter estimation, the focus in this paper is on guar-

anteed parameter estimation [1], namely the determination

of all parameter values—referred to as the solution set

subsequently—that are consistent with the measurements

under given uncertainty scenarios. More specifically, we

consider the case that the uncertainty enters the estimation

problem in the form of bounded measurement errors. In

small-scale applications, the problem of approximating the

solution set by a box partition, at an arbitrary precision, has

been shown to be tractable by Walter and coworkers [1], [2]

using set inversion techniques based on exhaustive search.

These authors [2] also identify the computation of bounds on

the solutions to the dynamic system as the main bottleneck

in terms of convergence speed and accuracy of the resulting

solution set approximation.

Computing exact bounds on the solution set of nonlinear

parametric ODEs belongs to the class of computationally

intensive problems (nonconvex optimization problem). In

response to this, approximate methods that overestimate the

solution set of parametric ordinary differential equations

(ODEs), yet provide sufficiently tight bounds, have been

developed over the years. These methods differ in the shape

of the enclosing sets, for instance interval boxes [3], [4],

Taylor models [5]–[7] or ellipsoids [8], and also in the

way these sets are propagated through the flow of the

ODEs. Interval bounds derived from Taylor models were first

used by Lin and Stadtherr [9] in the context of guaranteed

parameter estimation.

The main emphasis in the paper is on so-called bound-

then-discretize methods, whereby auxiliary (nonparametric)

ODEs are formulated whose solutions enclose those of the

original parametric ODEs. Specifically, we consider classical

differential inequalities [3], [4] and their combinations with

Taylor models as described in [10], as well as the ellipsoidal

bounding technique proposed in [8].

The rest of the paper is organized as follows. The problem

of guaranteed parameter estimation is stated in Sect. II and

the numerical solution procedure is also outlined. The various
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bounding techniques for parametric ODEs are described in

Sect. III. A comparison of these techniques on a simple case

study is presented in Sect. IV and the results are discussed.

Finally, Sect. V concludes the paper.

II. GUARANTEED PARAMETER ESTIMATION

A. Problem Statement

Consider a model of the observed process described by

parametric ODEs of the form

ẋ(t) = f(x(t),p), x(t0) = h(p), (1a)

ŷ(t) = g(x(t),p), (1b)

where x denotes the nx-dimensional vector of process states;

p, the np-dimensional vector of process (a priori unknown)

parameters; and ŷ, the ny-dimensional vector of model

outputs (predictions).

Given a set of output measurements ym at N time points

t1, . . . , tN , classical parameter estimation seeks for one par-

ticular instance pe of the parameters for which the (possibly

weighted) normed difference between these measurements

and the corresponding model outputs ŷ is minimized. This

optimization problem, for instance in the least-square sense,

is given by:

pe ∈ arg min
p∈P 0

N
∑

i=1

‖ym(ti)− ŷ(ti)‖22, (2a)

s.t. model (1), (2b)

where the interval box P 0 := [pL
0 ,p

U
0 ] denotes the a priori

set of admissible values for the parameters. (The superscripts
L and U representing the lower and upper bounds of an

interval box are understood component-wise throughout.)

In contrast, guaranteed (bounded-error) parameter estima-

tion accounts for the fact that the actual process outputs, yp,

are only known within some bounded measurement errors

e ∈ E := [eL, eU ], so that

yp(ti) ∈ ym(ti) + [eL, eU ] =: Y i. (3)

Here, the main objective is to estimate the set P e of all

possible parameter values p such that ŷ(ti) ∈ Y i for every

i = 1, . . . , N ; that is,

P e :=
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(4)

Depicted in red on the top plot of Figure 1 is the set of all

output trajectories satisfying ŷ(ti) ∈ Y i, i = 1, . . . , N , and

on the bottom plot the corresponding set P e projected in the

(p1, p2) space.

In the case that P e is nonempty, this set turns to be the

same as the set of all global minimizers of the problem

min
p∈P 0

N
∑

i=1

‖Y i − ŷ(ti)‖22, (5a)

s.t. model (1), (5b)

yi(t)

t

Ŷbnd

Ŷint

Ŷout
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p2
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P ∈ Pout

P e

P ∈ Pbnd

P 0

Fig. 1. Illustration of guaranteed parameter estimation concepts in the
space of output trajectories (top plot) and parameters (bottom plot).

with the 2-norm of a compact set X ⊂ R
n defined as

‖X‖2 := max
x,y∈X

‖x− y‖2. (6)

Obtaining an exact characterization of the set P e is not

possible in general, and one has to resort to approximation

techniques to make the problem computationally tractable.

Existing algorithms providing such approximations use either

set inversion techniques based on (4), or global optimization

methods based on (5). The focus in the remainder of the

paper is on the former.

B. Algorithmic Procedure

We consider a variant of the Set Inversion Via Interval

Analysis (SIVIA) algorithm by [1] in order to approximate

as closely as possible the solution set P e. Let F t denote the
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mapping associated to the ODE model (1), such that

∀p ∈ P 0 : F t(p) = ŷ(t), (7)

for each t ∈ [t0, tN ]. It follows that characterizing P e via (4)

is equivalent to intersecting the inverse images F−1
ti

(Y i) of

Y i via F ti for each i = 1, . . . , N ,

P e =

(

N
⋂

i=1

F−1
ti

(Y i)

)

∩ P 0. (8)

The algorithm proceeds as follows:

Input: Termination tolerances ǫbox > 0 and ǫbnd > 0
Initialization: Set partitions Pbnd = {P 0}, Pint = Pout = ∅;

Set iteration count k = 0
Main Loop:

1) Select a parameter box P in the partition Pbnd and

remove it from Pbnd

2) Compute enclosures Ŷ (ti) ⊇ F ti(P ), for each

i = 1, . . . , N
3) Exclusion Tests:

a) If Ŷ (ti) ⊆ Y i for all i ∈ {1, . . . , N}, insert

P into Pint

b) Else if Ŷ (ti) ∩ Y i = ∅ for some i ∈
{1, . . . , N}, insert P into Pout

c) Else bisect P and insert subsets back into Pbnd

4) Termination Tests:

a) If Pbnd = ∅, stop

b) If Vbnd :=
∑

P∈Pbnd
volume(P ) < ǫbnd, stop

c) If width(P ) < ǫbox for all P ∈ Pbnd, stop

5) Increment counter k+ = 1; return to step 1

Output: Partitions Pint and Pbnd; Iteration count k

An illustration of parameter subboxes belonging to the

partitions Pint, Pbnd, and Pout is shown on the bottom plot in

Figure 1, together with the corresponding output trajectories

on the top plot using the same color code. Upon termination,

this algorithm returns partitions Pint and Pbnd such that

⋃

P∈Pint

P ⊆ P e ⊆
(

⋃

P∈Pint

P

)

∪
(

⋃

P∈Pbnd

P

)

. (9)

A number of remarks are in order:

• Multiple heuristics can be used regarding the selection

of a parameter box in step 1 or the bisection in step 3c.

Here, we select the widest parameter box in step 1 and

bisect at the mid-point along the least reduced axis in

step 3c.

• Step 2 involves bounding the solution set of the para-

metric ODEs (1) for the current parameter box P . Note

that the algorithm will terminate finitely if the output

enclosures Ŷ (ti) shrink as ‖P ‖ → 0. This is the case

for all of the bounding techniques detailed later on in

Sect. III.

• Test 4b is an addition to the original SIVIA algo-

rithm [1], which interrupts the iterations when a spec-

ified level of approximation of the solution set P e is

reached. The level of approximation is measured here as

the total volume Vbnd of the boxes in the partition Pbnd,

with corresponding threshold ǫbnd. In contrast, stopping

the algorithm when a minimum box width is reached

does not give any guarantee on the approximation level

because of the overestimation in step 2.

Variants of this algorithm exist that improve its conver-

gence rate by introducing additional exclusion tests. One

such test involves checking whether the interval gradient of

the objective function in (5) for a given subbox P does

not contain 0, in which case P ∈ Pout—this is because

there cannot exist any global optimizer of (5) in P in this

case. Interval contractors based on interval gradients were

also proposed in [2]. The downside of these heuristics is the

need to compute enclosures of the first-order sensitivities

of model (1), which can cause a significant computational

overhead.

III. BOUNDING PARAMETRIC ODES

This section describes various techniques for enclosing

the solution set of parametric ODEs, as needed in step 2

of the guaranteed parameter estimation algorithm. The main

difficulty is to compute bounds on the state trajectories x,

since bounds on the output trajectories y are easily computed

from the state and parameter bounds when the function g is

tree-decomposable.

A. Interval Bounds

It is well known that interval bounds for (1) can be

computed by application of the following classical result

from the theory of differential inequalities [3], [4].

Theorem 1: Consider the parametric ODEs (1), where f :
D × P → R

nx is a continuous vector function and satisfy

a uniqueness condition on D × P , with D ⊂ R
nx . Let the

functions xL,xU : R → R
nx be continuous on some open

set containing [t0, tN ] and satisfy [xL(t),xU (t)] ⊂ D for

all t ∈ [t0, tN ]. If xL(t0) ≤ h(p) ≤ xU (t0) for all p ∈ P

and

ẋL
i (t) ≤min

{

fi(z,p) | p ∈ P , z ∈ [xL,xU ], zi = xL
i (t)

}

,

(10)

ẋU
i (t) ≥max

{

fi(z,p) | p ∈ P , z ∈ [xL,xU ], zi = xU
i (t)

}

,

(11)

for almost all t ∈ [t0, tN ] and i = 1, . . . , nx, then x(t) ∈
[xL(t),xU (t)] for all (t,p) ∈ [t0, tN ]× P . ⋄

In practice, bounds on the right-hand sides of the dif-

ferential inequalities can be obtained via natural interval

extensions. Alternatively, centered forms [11] can be used to

obtain tighter bounds on Ŷ . Although simple to implement,

the bounds obtained with the method of differential inequali-

ties only converge to the exact state bounds at a linear rate as

‖P‖ → 0 in general. This motivates the use of Taylor model-

based approaches, which enjoy higher-order convergence.

B. Taylor Model-based Bounds

Given a non-empty set P ∈ R
np and a Cq+1 function

φ : X → R, with q ≥ 0, the pair (Pq
φ,P ,Rq

φ,P ) is called a

qth-order Taylor model of φ on P if [12]
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• the np-variate polynomial Pq
φ,P is such that

∀p ∈ P : Pq
φ,P (p) =

∑

κ∈N
np ,

|κ|≤q

∂κφ(p∗)

κ!
(p− p∗)κ,

(12)

for some p∗ ∈ P , with multi-index notation used;

• the remainder interval Rq
φ,Y is such that

∀p ∈ P : φ(p)− Pq
φ,P (p) ∈ Rq

φ,P . (13)

Similar to interval analysis, Taylor models can be constructed

recursively for factorable functions, which are defined by a

finite recursive composition of binary sums, binary products,

and a given library of univariate intrinsic functions such as

exp(·), √·, etc. This recursive procedure is initiated with a

known Taylor model, which can be the Taylor model of a

variable or, in the case of a composite function, a Taylor

model of the inner function.

An extension of the theory of differential inequalities was

recently proposed in [10], which allows their combination

with Taylor models.

Theorem 2: Consider the parametric ODEs (1), where

f : D×P → R
nx is a Cq+1 vector function, with D ⊂ R

nx

and q ≥ 0. For each i = 1, . . . , nx and each t ∈ [t0, tN ], let

Pq

xi(t),P
: P → R be the np-variate polynomial of order q

matching the truncated Taylor expansion of xi(t) at some

p∗ ∈ P . Let also rL, rU : R → R
nx be differentiable

functions on some open set containing [t0, tN ], which satisfy

Pq

xi(t),P
(p)+[rL(t), rU (t)] ⊂ D for all (t,p) ∈ [t0, tN ]×P .

If rL(t0) ≤ h(p)−Pq

x(t0),P
(p) ≤ rU (t0) for all p ∈ P and

ṙLi (t) ≤ min
{

fi

(

Pq

xi(t),P
(p) + z,p

)

− Ṗq

xi(t),P
(p) |

p ∈ P , z ∈ [rL(t), rU (t)], zi = rLi (t)
}

,

(14)

ṙUi (t) ≥ max
{

fi

(

Pq

xi(t),P
(p) + z,p

)

− Ṗq

xi(t),P
(p) |

p ∈ P , z ∈ [rL(t), rU (t)], zi = rUi (t)
}

,

(15)

for almost every t ∈ [t0, tN ] and all i = 1, . . . , nx, then

(Pq

x(t),P , [rL(t), rU (t)]) is a qth-order Taylor model of x(t)

on P for all t ∈ [t0, tN ]. ⋄
Taylor model methods are appealing in that the overesti-

mation in the remainder term Rq

xi(t),P
converges to zero at

order (at least) q+1 as ‖P‖ → 0 [12]. However, in order to

derive interval bounds from a Taylor model, the polynomial

part must be bounded. Because computing the exact range

of a multivariate polynomial is NP hard, approximate range

bounders are used in practice; for instance, the linear and

diagonal quadratic terms can be bounded exactly, and the

remaining terms estimated using natural interval extensions,

as proposed in [6].

C. Ellipsoidal-based Bounds

Given a positive semi-definite matrix Q ∈ S
nx

+ and a

vector c ∈ R
nx , the set

E(Q, c) := {c+Q
1

2 v | ∃v ∈ R
nx : vTv ≤ 1}, (16)

defines an nx-dimensional ellipsoid centered at c and with

shape matrix Q. A technique for computing ellipsoidal

enclosures for the solution set of nonlinear parametric ODEs

was recently proposed by [8].

Theorem 3: Consider the parametric ODEs (1), where f :
D × P → R

nx is a C2 vector function, with D ⊂ R
nx .

Let Q : [t0, tN ] → S
nx

+ , S : [t0, tN ] → R
nx×np

+ and x∗ :
[t0, tN ] → R

nx , and define X(t) such that

Xi(t) =
√

Qii[−1, 1] + Si(t)[P − p∗] + x∗
i (t), (17)

for each i = 1, . . . , nx and all t ∈ [t0, tN ]. Suppose that Q,

S and x∗ satisfy

Q̇(t) � ∂f

∂x
(x∗(t),p∗)Q(t) +Q(t)

∂f

∂x
(x∗(t),p∗)T

+
1
TradRt
√

trQ(t)
Q(t) + diag[radRt]

√

trQ(t), (18)

Ṡ(t) =
∂f

∂x
(x∗(t),p∗)S(t) +

∂f

∂p
(x∗(t),p∗), (19)

ẋ∗(t) = f(x∗(t),p∗), (20)

for almost every t ∈ [t0, tN ], as well as the initial conditions

Q(t0) = diag[radR0]
2, S(t0) = ∂h

∂p
(p∗) and x(t0) =

h(p∗), where Rt and R0 denote, respectively, the remainder

term in a 1st-order Taylor model of f on X(t) × P at

(x∗(t),p∗) and the remainder term in a 1st-order Taylor

model of h on P at p∗. Then, x(t) ∈ X(t) for all (t,p) ∈
[t0, tN ]× P . ⋄

The convergence rate of such ellipsoidal bounds to the

exact state bounds is typically quadratic as ‖P‖ → 0, and

they are advantageous in terms of computational overhead

compared with Taylor model-based bounds. A comparison of

these three bounding techniques in a context of guaranteed

parameter estimation is presented in the next section for a

simple case study.

IV. CASE STUDY

A. Problem Definition

A dynamic model involving two state variables x =
(x1, x2)

T and three uncertain model parameters p =
(p1, p2, p3)

T ∈ [0.01, 1]3 is considered [2]:

ẋ1(t) =− (p1 + p3)x1(t) + p2x2(t), x1(0) = 1, (21a)

ẋ2(t) =p1x1(t)− p2x2(t), x2(0) = 0. (21b)

The system has a single output variable ŷ, which corresponds

to the state variable x2, ŷ(t) = x2(t), with N = 15
measurements corresponding to the times ti = 1, . . . , 15.

Synthetic experimental data are generated by simulating the

model (21) with parameter values p0 = (0.6, 0.15, 0.35)T,

and then rounding the output y(ti) up or down to the nearest

value by retaining two significant digits only.

B. Numerical Implementation

The guaranteed parameter estimation algorithm in Sect. II-

B is implemented in a C++ program, which uses the

PROFIL/BIAS library [13] for (validated) interval computa-

tions and the MC++ library (http://www3.imperial.
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ac.uk/people/b.chachuat/research) for compu-

tations involving Taylor models. Moreover, the code calls

the ODE integration methods in the GNU Scientific Library

(GSL) to bound the parametric ODEs based on the tech-

niques outlined in Sect. III. All of the numerical results pre-

sented next use the explicit embedded Runge-Kutta-Fehlberg

(4,5) method, with both the relative and absolute tolerances

set to 1 × 10−9. All the reported results are obtained on

workstation Intel Xeon CPU X5660 with 2.80 GHz and

16 GB RAM.

Exclusion tests based on gradient information (see Sect. II-

B) are also implemented as a means to enhance the conver-

gence of the algorithm. However, this was found to have

an adverse effect on the overall execution time due to the

need for bounding first-order sensitivity equations of the

dynamic model (21). Further research is clearly warranted

in order to reduce the associated computational overhead,

possibly by using adjoint-based sensitivity. In particular, the

results reported hereafter do not consider such gradient-based

exclusion tests.

C. Comparative Analysis

The algorithm is run with ODE bounding techniques based

on classical differential inequalities, ellipsoidal techniques,

and differential inequalities with Taylor models, for Taylor

model orders of q = 1, . . . , 4. In order to allow for fair

comparisons, termination criteria are defined in terms of the

level of accuracy ǫbnd of the solution set in the range 5 ×
10−6 to 1× 10−3, while termination criteria in terms of the

minimum box size ǫbox are set to 0.

The number of iterations and CPU time for the various

methods are reported on the top and bottom plots of Figure 2,

respectively, as a function of the required accuracy ǫbnd. It

is evident that classical differential inequalities require by

far the largest number of iterations at any accuracy level.

Despite this large number of iterations, this method remains

the fastest for accuracies ǫbnd > 10−4 mainly due to its

simplicity. At higher accuracy levels, bounding techniques

based on ellipsoidal calculus and Taylor model arithmetic,

which exhibit faster convergence rates, are seen to become

competitive. At an accuracy level of ǫbnd = 1 × 10−5, for

instance, the use of classical differential inequalities requires

over 900,000 iterations and 15 hours to terminate; moreover,

a case with ǫbnd = 5× 10−6 could not be run till completion

with this bounding technique.

A significant reduction in the number of iterations is

obtained when differential inequalities with Taylor models

are used. As expected, the reduction gets larger as the Taylor

model order increases. However, the observed trend is also

that the reduction becomes marginal as Taylor model orders

greater than q = 3 are used. At the same time, it is evident

from the bottom plot of Figure 2 that higher-order Taylor

model incur a significant computational overhead. In terms

of the overall computational efficiency, the best trade-off is

obtained for q = 2 here. Note that the performance with 1st-

order Taylor models is comparable, even though the number
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Fig. 2. Comparison of guaranteed parameter estimation algorithm for
various bounding techniques. Top: Number of iterations vs. convergence
threshold. Bottom: CPU time vs. convergence threshold.

of iterations is much larger compared to 2nd-order Taylor

models.

The performance with ellipsoidal techniques is also com-

parable with that of 2nd-order Taylor model, both in terms of

computational effort and number of iterations. This suggests

a good potential for improvement of calculating bounds on

the solutions of parametric ODEs by combining these two

techniques. A bounding of Taylor model remainders using

ellipsoidal calculus might be investigated in the future work.

The top and bottom plots in Figure 3 show the projections

of the approximate solution set—Pint and Pbnd are shown

using the same color code as in Fig. 1—on the (p1, p2)

and (p2, p3) subspaces, respectively, for different levels of

accuracy ǫbnd. Note first that, for each reported ǫbnd, the

parameter values p0 used to generate the experimental data

are part of the solution set. The solution set for this problem

turns out to be disconnected, thereby suggesting a poten-

tial structural identifiability problem. Interestingly, this non-
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connectedness of the solution sets can only be detected when

the accuracy level ǫbnd is 5× 10−5 or less, which again calls

for the use of Taylor model and ellipsoidal techniques whose

convergence rate is faster. More generally, these results also

support the use of guaranteed parameter estimation as a tool

for analyzing structural identifiability. Another interesting

observation is that Pint remains empty when the threshold

level ǫbnd is greater than 1× 10−6.
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Fig. 3. Guaranteed parameter set obtained for different values of the
tolerance ǫbnd. Top: Projections into (p1, p2) space (top plot) and (p2, p3)
space (bottom plot).

V. CONCLUSIONS

This paper has considered the problem of guaranteed

parameter estimation, where one seeks for all parameter

values of a dynamic model that are consistent with some

experimental data, within specified error bounds. The focus

has been on set inversion techniques based on exhaustive

search, for which the ability to compute tight bounds on

the solution set of the dynamic model is critical. Various

bounding techniques based on interval analysis, ellipsoidal

calculus and Taylor model arithmetic have been compared

on a case study. Due to its simplicity, the former proved

to be the fastest for obtaining coarse approximations of the

solution set. On the other hand, the latter two techniques

were found to greatly reduce the number of iterations and

the overall computational time when more accurate approx-

imations are sought. From these results, which ought to be

confirmed on more complex parameter estimation problems,

the development of hybrid approaches combining various

bounding techniques appears promising. In order to further

enhance the convergence of these algorithms, the application

of efficient domain reduction techniques and other heuristics

from the area of branch-and-bound in global optimization

will also be investigated as a part of future work.
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