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Abstract—The decrease of IC feature size and the increase
of operating frequencies require 3-D electromagnetic methods,
such as the Partial Element Equivalent Circuit (PEEC) method,
for the analysis and design of high-speed circuits. Very large
systems of equations are often produced by 3-D electromagnetic
methods. During the circuit synthesis of large scale digital or
analog applications, it is important to predict the response of the
system under study as a function of design parameters, such as
geometrical and substrate features, in addition to frequency (or
time). Parameterized model order reduction (PMOR) methods
become necessary to reduce large systems of equations with
respect to frequency and other design parameters.

We propose an innovative PMOR technique applicable to
PEEC analysis, which combines traditional passivity-preserving
model order reduction methods and positive interpolation
schemes. It is able to provide parametric reduced order models,
stable and passive by construction over a user defined range
of design parameter values. Numerical examples validate the
proposed approach.

Index Terms—Partial Element Equivalent Circuit method
(PEEC), parameterized model order reduction (PMOR), inter-
polation, passivity.

I. INTRODUCTION

Electromagnetic (EM) methods [1]–[3] have become in-

creasingly indispensable analysis and design tools for a variety

of complex high-speed systems. Users are usually only inter-

ested in a few field (E,H) or circuit (i,v) unknowns at the input

and output ports, in the frequency domain or time domain,

while the use of these methods usually results in the computa-

tion of a huge number of field or circuit unknowns. Therefore,

model order reduction (MOR) techniques are crucial to reduce

the complexity of EM models and the computational cost of

the simulations, while retaining the important physical features

of the original system [4]–[8]. The development of a reduced

order model (ROM) of the EM system has become a topic

of intense research over the last years. Important applica-

tions of EM-based modeling include high-speed packages,
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interconnects, vias, and on-chip passive components [9]–[11].

Among EM methods, the Partial Element Equivalent Circuit

(PEEC) method has gained an increasing popularity among

electromagnetic compatibility engineers due to its capability

to transform the EM system under examination into a passive

RLC equivalent circuit. PEEC uses a circuit interpretation of

the electric field integral equation (EFIE), thus allowing to

handle complex problems involving EM fields and circuits

[2], [12]. The PEEC equivalent circuits are usually connected

with nonlinear circuit devices such as drivers and receivers

in a time domain circuit simulator (e.g. SPICE). However,

inclusion of the PEEC model directly into a circuit simulator

may be computationally intractable for complex structures,

because the number of circuit elements can be in the tens of

thousands. For this reason, MOR techniques are often used

to reduce the size of a PEEC model [8], [13]. A passive

reduced-order interconnect macromodeling algorithm, known

as PRIMA [8], has received great attention due to its capability

to generate passive models of RLC circuits, which is important

because stable, but nonpassive models can produce unstable

systems when connected to other stable, even passive, loads.

Traditional MOR techniques perform model reduction only

with respect to frequency. However, during the circuit syn-

thesis of large scale digital or analog applications, it is also

important to predict the response of the circuit under study as

a function of environmental effects, manufacturing variations,

and fluctuations in the critical dimensions of transmission lines

such as width and height. Typical design process includes

optimization and design space exploration, and thus requires

repeated simulations for different design parameter values.

It is often not feasible to perform multiple simulations of

large circuits due to variations in these parameters. Such

design activities call for parameterized model order reduction

(PMOR) methods that can reduce large systems of equations

with respect to frequency and other design parameters of the

circuit, such as geometrical layout or substrate characteristics.

A number of PMOR methods have been developed. The

perturbation technique [14] is one of the early work to

capture small variation around the nominal circuit values.

Other PMOR techniques are based on statistical performance

analysis [15], [16]. Multiparameter moment-matching methods

presented in [17], [18] use a subspace projection approach

and guarantee the passivity. However, the structure of such

methods may present some computational problems, and the

resulting reduced models usually suffer from oversize when
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the number of moments to match is high, either because high

accuracy (order) is required or because the number of parame-

ters is large. The Compact Order Reduction for parameterized

Extraction (CORE) algorithm [19] is an explicit-and-implicit

scheme. It is numerically stable, but unfortunately it does not

preserve the passivity. The Parameterized Interconnect Macro-

modeling via a two-directional Arnoldi process (PIMTAP)

algorithm presented in [20] is numerically stable, preserves

the passivity of parameterized RLC networks, but, such as all

multiparameter moment-matching based PMOR techniques, it

is suitable only to a low-dimensional design space.

This paper proposes a PMOR method applicable to PEEC

analysis that provides parametric reduced order models, stable

and passive by construction over the design space of interest.

It combines traditional passivity-preserving model order re-

duction methods and interpolation schemes based on a class

of positive interpolation operators [21], to guarantee overall

stability and passivity of the parametric reduced order model.

A method has been recently proposed in [22], [23] based on an

efficient and reliable combination of rational identification and

positive interpolation schemes to build parameterized macro-

models, stable and passive by construction over the design

space of interest, starting from multivariate data samples of the

input-output system behavior and not from system equations

as in all PMOR techniques previously discussed. The PMOR

method proposed in this paper starts by computing a set

of reduced order PEEC models using the PRIMA algorithm

for different design parameters values. The PEEC models

are put into a state-space form for which PRIMA preserves

passivity. The PEEC models and the corresponding reduced

models obtained by means of PRIMA describe an admittance

(Y) representation. Since at microwave frequencies, the Y-

representation cannot be accurately measured, the scattering

parameters (S) representation is used to describe the broad-

band frequency behavior of microwave systems. Therefore,

the reduced models are translated from Y-representation into

S-representation. In the following paper we refer to these

initial S-reduced order models as root ROMs. However, it

should be noted that the proposed PMOR technique is not

bound to PRIMA, other passivity-preserving MOR methods

can be used, such as the Laguerre-SVD MOR [24] or the

passivity-preserving truncated balanced realization algorithms

[25]. Finally, a parametric ROM is built by combining all root

ROMs through an interpolation scheme that preserves stability

and passivity properties over the complete design space.

The paper is organized as follows. Section II describes

the modified nodal analysis (MNA) equations of the PEEC

method. Section III describes the proposed PMOR method.

Finally, some numerical examples are presented in Section IV,

validating the proposed technique.

II. PEEC FORMULATION

The PEEC method [2] starts from the integral equation

form of Maxwell’s equations. It has received an increasing

interest by electrical engineers since it provides a circuit

interpretation of the EFIE equation, thus allowing to handle

complex problems involving both circuits and electromagnetic

fields [2], [12], [26]–[30]. In what follows, we describe a

quasi-static PEEC formulation [2] that approximates the full-

wave PEEC approach [26].

In the standard approach, volumes and surfaces of conduc-

tors and dielectrics are respectively discretized into hexahedra

and patches that represent elementary regions [30] over which

the current and charge densities are expanded into a series of

basis functions. Pulse basis functions are usually adopted as

expansion and weight functions. Such choice of pulse basis

functions corresponds to assume constant current density and

charge density over the elementary volume (inductive) and

surface (capacitive) cells, respectively.

Following the standard Galerkin’s testing procedure, topo-

logical elements, namely nodes and branches, are generated

and electrical lumped elements are identified modeling both

the magnetic and electric field coupling.

Conductor losses are modeled by their ohmic resistance,

while dielectrics requires modeling the excess charge due to

the dielectric polarization. This is done by means of the excess

capacitance which is placed in series to the partial inductance

of each dielectric elementary cell. Magnetic field coupling

between elementary volume cells is characterized by partial

inductances, while electric field coupling is modeled by the

coefficients of potential. An example of PEEC circuit electrical

quantities for a conductor elementary cell is illustrated, in the

Laplace domain, in Fig. 1 where the current controlled voltage

sources sLp,ijIj and the current controlled current sources Icci

model the magnetic and electric field coupling, respectively.

Hence, Kirchoff’s laws for conductors can be re-written as

P−1 dv(t)

dt
−AT i(t)− ie(t) = 0 (1a)

−Av(t)− Lp
di(t)

dt
−Ri(t) = 0 (1b)

where v(t) denotes the node potentials to infinity, i(t) de-

notes the currents flowing in volume cells, P and Lp are

the coefficients of potential and partial inductance matrices,

respectively, R is a diagonal matrix containing the resistances

of volume cells, A is the incidence matrix, ie(t) represents

the external currents. A selection matrix K is introduced to

define the port voltages by selecting node potentials. The same

matrix is used to obtain the external currents ie(t) by the np

port currents ip(t)

vp(t) = Kv(t) (2a)

ie(t) = −KT ip(t) (2b)

When dielectrics are considered, the resistance voltage drop

Ri(t) is substituted by the excess capacitance voltage drop

that is related to the excess charge by vd(t) = C
−1
d qd(t) [31].

As a consequence, the polarization current flowing through the

dielectric is modeled in terms of the excess voltage drop as

well. Hence, for dielectric elementary volumes, equations (1)
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become

P−1 dv(t)

dt
−AT i(t)− ie(t) = 0 (3a)

−Av(t)− Lp
di(t)

dt
− vd(t) = 0 (3b)

i(t) = Cd
dvd(t)

dt
(3c)
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Fig. 1. Illustration of PEEC circuit electrical quantities for a conductor
elementary cell.

A. Descriptor representation of PEEC circuits

Let us assume to have discretized the system under study

consisting of conductors and dielectrics and to have generated

ni volume cells where currents flow and nn surface cells

where charge is located; the resultant number of elementary

cells of conductors and dielectrics is nc and nd, respectively

and that of electrical nodes is nn. Furthermore, let us assume

to be interested in generating an admittance representation

Y(s) having np output currents ip(t) under voltage excitation

vp(t). If the MNA approach [32] is used, the global number

of unknowns is nu = ni + nd + nn + np. In a matrix form,

the previous equations (1)-(3) read




P−1 0nn,ni
0nn,nd

0nn,np

0ni,nn
Lp 0ni,nd

0ni,np

0nd,nn
0nd,ni

Cd 0nd,np

0np,nn
0np,ni

0np,nd
0np,np




︸ ︷︷ ︸
C

d

dt




v(t)
i(t)
vd(t)
ip(t)




︸ ︷︷ ︸
x(t)

=

−




0nn,nn
−AT 0nn,nd

KT

A R Φ 0ni,np

0nd,nn
−ΦT 0nd,nd

0nd,np

−K 0np,ni
0np,nd

0np,np




︸ ︷︷ ︸
G

·




v(t)
i(t)
vd(t)
ip(t)




︸ ︷︷ ︸
x(t)

+

[
0nn+ni+nd,np

−Inp,np

]

︸ ︷︷ ︸
B

·
[
vp(t)

]
︸ ︷︷ ︸
u(t)

(4)

where Inp,np
is the identity matrix of dimensions equal to the

number of ports. Matrix Φ is

Φ =

[
0nc,nd

Ind,nd

]
(5)

In a more compact form, the previous equations can be

rewritten as:

C
dx(t)

dt
= −Gx(t) +Bu(t) (6a)

ip(t) = LTx(t) (6b)

where x(t) = [v(t) i(t) vd(t) ip(t)]
T

and B = L,

B ∈ ℜnu×np . This is an admittance np-port formulation

Y(s) = LT (sC+G)−1B, whereby the only sources are the

voltage sources at the np-port nodes. If we consider N design

parameters g = (g(1), ..., g(N)) in addition to frequency, the

equations (6a)-(6b) become

C(g)
dx(t, g)

dt
= −G(g)x(t, g) +B(g)u(t) (7a)

ip(t, g) = L(g)Tx(t, g) (7b)

B. Properties of PEEC formulation

When performing transient analysis, stability and passivity

must be guaranteed. It is known that, while a passive system

is also stable, the reverse is not necessarily true [33], which is

crucial when the model is to be utilized in a general-purpose

analysis-oriented nonlinear simulator. Passivity refers to the

property of systems that cannot generate more energy than they

absorb through their electrical ports. When a passive system is

terminated on any set of arbitrary passive loads, none of them

will cause the system to become unstable [34], [35]. A linear

network described by admittance matrix Y(s) is passive (or

positive-real) if [36]:

1) Y(s∗) = Y∗(s) for all s, where “∗” is the complex

conjugate operator.

2) Y(s) is analytic in ℜe(s) > 0.
3) Y(s) is a positive-real matrix, i.e. :

z∗T
(
Y(s) +YT (s∗)

)
z ≥ 0 ; ∀s : ℜe(s) > 0 and any

arbitrary vector z.

Provided that the matrices P−1,Lp,Cd,R are symmetric non-

negative definite matrices by construction, it is straightforward

to prove that the matricesC,G satisfy the following properties

C = CT ≥ 0 (8a)

G+GT ≥ 0 (8b)

The properties of the PEEC matrices B = L, C = CT ≥
0, G+GT ≥ 0 ensure the passivity of the PEEC admittance

model Y(s) = LT (sC + G)−1B [37] and allow to exploit

the passivity-preserving capability of PRIMA [8].

III. PARAMETERIZED MODEL ORDER REDUCTION

In this section we describe a parameterized model order

reduction algorithm that is able to include, in addition to

frequency, N design parameters g = (g(1), ..., g(N)) in the re-

duced order model, such as the layout features of a circuit (e.g.

lengths, widths,...) or the substrate parameters (e.g. thickness,

dielectric constant, losses,...). The main objective of the param-

eterized MOR method is to accurately approximate the original

scalable system (having a high complexity) with a reduced
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scalable system (having a low complexity) by capturing the

behaviour of the original system with respect to frequency and

other design parameters. The proposed algorithm guarantees

stability and passivity of the parametric reduced model over

the entire design space of interest. A flowchart that describes

the different steps of the proposed PMOR method is shown in

Fig. 2.

for di®erent design parameters values by means offor di®erent design parameters values by means of
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Fig. 2. Flowchart of the proposed PMOR method.

A. Root ROMs

The proposed PMOR technique starts by computing a bunch

of stable and passive reduced order models of the PEEC

admittance matrix Y(s, g) = LT (g)(sC(g) +G(g))−1B(g)
using the PRIMA algorithm for a set of points in the design

space, that we call estimation design space grid. The design

space D(g) is considered as the parameter space P(s, g)
without frequency. The parameter space P(s, g) contains all

parameters (s, g). If the parameter space is N-dimensional, the

design space is (N-1)-dimensional. Two design space grids

are used in the modeling process: an estimation grid and a

validation grid. The first grid is utilized to build the root

ROMs. The second grid is utilized to assess the capability

of parametric reduced order models of describing the system

under study in a set of points of the design space previously

not used for the construction of the root ROMs. To clarify

the use of these two design space grids, we show in Fig. 3

a possible estimation and validation design space grid in the

case of two design parameters g = (g(1), g(2)). A root ROM

is built for each red (x) point in the design space. The set of

root ROMs is interpolated, as explained in Sections III-C and

III-D, to build a parametric reduced model that is evaluated

and compared with original PEEC models related to the blue

(o) design space points. We note that these blue (o) points are

not used for the generation of the root ROMs.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

g(1)

g(2
)

 

 
Estimation grid
Validation grid

Fig. 3. An example of estimation and validation design space grid.

N-dimensional and scattered design space grids can also be

treated by the proposed PMOR technique that does not impose

any constraint on the number of design parameters and the

distribution of g points in the design space. PRIMA algorithm

is used to reduce the PEEC admittance representation Y(s, g)
for each point g in the estimation design space grid. The

Krylov subspace and a corresponding projection matrix V(g)
are built to perform a congruence transformation on the

original PEEC matrices C(g),G(g),B(g),L(g)

Cr(g) = V(g)
TC(g)V(g)

Gr(g) = V(g)
TG(g)V(g)

Br(g) = V(g)
TB(g)

Lr(g) = V(g)
TL(g) (9)

Since at microwave frequencies, the Y-representation cannot

be accurately measured because the required short-circuit tests

are difficult to achieve over a broad range of frequencies, the

S-representation is used to describe the broadband frequency

behavior of microwave systems. Therefore, the reduced models

are translated from Y-representation into S-representation

preserving stability and passivity by the procedure described

in the following Section III-B. In the paper we refer to these

initial S-reduced order models as root ROMs. This initial step

allows the separation of frequency from the other parameters,

in other words frequency is treated as a special parameter. The

sampling density in the estimation design space grid, which

decides the number of root ROMs, is important to accurately

describe the parameterized behavior of an EM system under

study over the entire design space of interest. A technique

to choose the number of points in the estimation grid, and

consequently the number of root ROMs, can be found in [38].

B. Y-S transformation

The definition of S-representation and its relation to

the other system representations depend on the reference

impedance at each port Z0,i, that in practice is often chosen



F. FERRANTI et al.: PARAMETRIC MODEL ORDER REDUCTION 5

equal to 50 Ω. Let Z0 be a real diagonal matrix such that

Z0(i, i) = Z0,i, the S-representation is related to the Y-

representation by

S(s) =
(
I− Z1/20 Y(s)Z

1/2
0

)(
I+ Z

1/2
0 Y(s)Z

1/2
0

)
−1

(10)

It is possible to obtain a descriptor form

Sr(s, g) = [C̃r(g), G̃r(g), B̃r(g), L̃r(g), D̃r(g)]
from a descriptor form of the reduced order model

Yr(s, g) = [Cr(g),Gr(g),Br(g),Lr(g)] obtained by

means of PRIMA, using the following equations [39]

C̃r(g) = Cr(g)

G̃r(g) = Gr(g) +Br(g)Z0Lr(g)
T

B̃r(g) =
√
2Br(g)Z

1/2
0

L̃r(g) = −B̃r(g)
D̃r(g) = I (11)

We note that the transfer function Y(s) is positive-real if and

only if S(s) is bounded-real [36], i.e.:

1) S(s∗) = S∗(s) for all s, where “∗” is the complex

conjugate operator.

2) S(s) is analytic in ℜe(s) > 0.
3) I− ST (s∗)S(s) ≥ 0 ; ∀s : ℜe(s) > 0.

The bounded-realness property represents the passivity prop-

erty for systems described by scattering parameters. Once a

passive and stable Y-reduced model is obtained by means

of PRIMA, a transformation from Y into S is performed

using the set of equations (11), which results in a reduced

S-representation that is still stable and passive. If Krylov-

subspace-based MOR algorithms (e.g. PRIMA [8], Laguerre-

SVD [24]) are used to build the root ROMs, no error bound is

provided for them. Hence, the selection of the reduced order

for each root ROM is performed by a bottom-up approach, it

is increased as long as the maximum absolute error of each

root ROM (S-representation) is larger than −60 dB over the

frequency range of interest that is suitably sampled.

C. 2-D PMOR

First, we discuss the representation of a bivariate reduced

model and afterwards the generalization to more dimensions.

Once the root ROMs are available, the next step is to find a

bivariate reduced model Sr(s, g) that: 1) is able to accurately

describe the system under study in design space points pre-

viously not used for the generation of the root ROMs (the

validation design space grid is used to test this modeling

capability), 2) is able to preserve stability and passivity over

the entire design space. The bivariate reduced model we adopt

can be written as

Sr(s, g) =

K1∑

k=1

Sr(s, gk)ℓk(g) (12)

where K1 is the number of the root ROMs, and the interpola-

tion kernels ℓk(g) are scalar functions satisfying the following

constraints

0 ≤ ℓk(g) ≤ 1, (13)

ℓk(gi) = δk,i, (14)

K1∑

k=1

ℓk(g) = 1. (15)

A suitable choice is to select the set ℓk(g) as in piecewise

linear interpolation

g − gk−1

gk − gk−1
, g ∈ [gk−1, gk] , k = 2, ...,K1, (16a)

gk+1 − g

gk+1 − gk
, g ∈ [gk, gk+1] , k = 1, ...,K1 − 1, (16b)

0 , otherwise. (16c)

The reduced model in (12) is a linear combination of stable

and passive univariate reduced models by means of a class of

positive interpolation kernels [21]. Stability is automatically

preserved in (12), since it is a weighted sum of stable rational

models of s. The proof of the passivity-preserving property of

the proposed PMOR scheme over the entire design space is

given in Section III-E.

D. (N+1)-D PMOR

The bivariate formulation (12) can easily be generalized

to the multivariate case by using multivariate interpolation

methods. Multivariate interpolation can be realized by means

of tensor product [40] or tessellation [41] methods. Tensor

product multivariate interpolation methods require that the

data points are distributed on a fully filled, but not neces-

sarily equidistant, rectangular grid, while tessellation-based

multivariate interpolation methods can handle scattered or

irregularly distributed data points. For the sake of clarity, we

show in Fig. 4 how a parametric reduced order model is built

in a 2-D design space by means of interpolation of root ROMs.

1) Tensor product multivariate interpolation: The paramet-

ric reduced model can be written as

Sr(s, g) = (17)

=

K1∑

k1=1

· · ·
KN∑

kN=1

Sr(s, g
(1)
k1

, ..., g
(N)
kN
)ℓk1(g

(1)) · · · ℓkN
(g(N))

where ℓki
(g(i)), i = 1, ..., N satisfy all constraints (13)-

(15). A suitable choice is to select each set ℓki
(g(i)) as in

piecewise linear interpolation, which yields to an interpolation

scheme in (17) called piecewise multilinear. This method can

be also seen as a recursive implementation of 1-D piecewise

linear interpolation. We remark that the interpolation process

is local, because the parametric reduced model Sr(s, g) at

a specific point ĝ in the design space D(g) only depends

on the root ROMs at the vertices of the hypercube that

contains the point ĝ. An hypercube in R
N has 2N vertices, 2N

increases exponentially with the number of dimensions, but
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0

0.5
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g(1)

g(2
)

 

 
Estimation grid
Validation grid

(g(1) , g(2))2

(g(1) , g(2))4(g(1) , g(2))5

Sr(g
(1), g(2))5 =

∑4
k=1 Sr(s, (g

(1), g(2))k)ℓk(g(1), g(2))

(g(1) , g(2))1

(g(1) , g(2))3

Fig. 4. Example of a parametric reduced model in a 2-D design space
obtained by means of interpolation of root ROMs.

it still remains much smaller than the number of data points

K1 · K2 · ... · KN in the fully filled design space grid. This

multivariate interpolation method belongs to the general class

of positive interpolation schemes [21].

2) Multivariate simplicial interpolation: Before performing

the multivariate simplicial interpolation process, the design

space is divided into cells using simplices [41], resulting in a

geometric structure that connects the points of the estimation

design space grid. In 2-D this process is called triangulation,

while in higher dimensions it is called tessellation. A simplex,

or N-simplex, is the N-D analogue of a triangle in 2-D and

a tetrahedron in 3-D. Fig. 5 shows a possible triangulation

of a 2-D design space starting from a regular and a scattered

estimation grid, respectively.

A simplex in N dimensions has N+1 vertices. For each

data distribution many tessellations can be constructed. The

minimal requirement is that the simplices do not overlap, and

that there are no holes. Kuhn tessellation [42] can be used for

a fully filled design space grid, such technique splits every

hypercube in R
N into N! simplices. Delaunay tessellation [41]

can be used for an irregular design space grid, such technique

is a space-filling aggregate of simplices and can be performed

using standard algorithms [43]. We indicate a simplex region

of the design space as Ωi, i = 1, ..., P and the corresponding

N+1 vertices as g
Ωi

k , k = 1, ..., N+1. Once the tessellation of

the design space is accomplished, a tessellation-based linear

interpolation (TLI) is used to build a parametric reduced order

model. TLI performs a linear interpolation inside a simplex

using barycentric coordinates [44] as interpolation kernels and

it is therefore a local method. If the N-dimensional volume

of the simplex does not vanish, i.e. it is non-degenerate, any

point enclosed by a simplex can be expressed uniquely as a

linear combination of the N+1 simplex vertices. A parametric

reduced model can be written as:

Sr(s, g) =

N+1∑

k=1

Sr(s, g
Ωi

k )ℓ
Ωi

k (g) (18)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
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g(2
)

 

 
Estimation grid
Triangulation

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

g(1)

g(2
)

 

 
Estimation grid
Triangulation

Fig. 5. Triagulation of a 2-D design space starting from a regular (top) and
a scattered (bottom) estimation grid.

where Ωi is the simplex the contains the point g and the

barycentric coordinates ℓΩi

k (g) satisfy the following properties

0 ≤ ℓΩi

k (g) ≤ 1 (19)

ℓΩi

k (g
Ωi

i ) = δk,i (20)

N+1∑

k=1

ℓΩi

k (g) = 1 (21)

We remark that the interpolation process is local, because the

parametric reduced model Sr(s, g) at a specific point ĝ in the

design space D(g) only depends on the N+1 root ROMs at

the vertices of the simplex that contains the point ĝ. The TLI

method belongs to the general class of positive interpolation

schemes [21]. Stability is automatically preserved in (17)-

(18), since they are weighted sums of stable rational models

of s. The proof of the passivity-preserving property of the

proposed PMOR schemes over the entire design space is given

in Section III-E. We note that the interpolation kernels we

propose only depend on the design space grid points and their

computation does not require the solution of a linear system

to impose an interpolation constraint. The proposed PMOR

technique is able to deal with fully filled and scattered design
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space grids. It is general and any interpolation scheme that

leads to a parametric reduced model composed of a weighted

sum of root ROMs with weights satisfying (13)-(15) can be

used. The error distribution of parametric reduced models

obtained by the proposed PMOR technique is related to the

utilized interpolation scheme and the error of the root ROMs.

E. Passivity-Preserving Interpolation

In this section we prove that the proposed PMOR method

preserves passivity over the entire design space. Concerning

the root ROMs, we have already proven in Section III-B that all

three bounded-realness conditions are satisfied. Condition 1)

is preserved in (12) and the proposed multivariate extensions

(17)-(18), since they are weighted sums with real nonnegative

weights of systems respecting this first condition. Condition

2) is preserved in (12), (17), (18), since they are weighted

sums of stable rational reduced models of s. Condition 3) is

equivalent to ‖S(s)‖∞ ≤ 1 (H∞ norm) [45], i.e., the largest

singular value of S(s) does not exceed one in the right-half

s-plane. Using this equivalent condition, in the bivariate case

we can write

‖Sr(s, g)‖∞ ≤
K1∑

k=1

‖Sr(s, gk)‖∞ ℓk(g) ≤
K1∑

k=1

ℓk(g) = 1

(22)

Similar results are obtained for the proposed multivariate

cases (17)-(18), so condition 3) is satisfied by construction

using our PMOR method. We have demonstrated that all three

bounded-realness conditions are preserved in the novel PMOR

algorithm, using the sufficient conditions (13)-(15) related to

the interpolation kernels.

F. Passivity assessment considerations

The properties of the PEEC matrices, the PRIMA algo-

rithm, the Y − S transformation procedure and the proposed

multivariate interpolation schemes ensure overall stability and

passivity for the parametric reduced order model Sr(s, g)
by construction. Although no passivity check is required for

Sr(s, g), the authors describe in this section a passivity test

for the sake of completeness. Let us assume that Sr(s, g) is

obtained and one wants to carry a passivity test out for a

specific point ĝ in the design space. If the descriptor matrix

C̃r(ĝ) of Sr(s, ĝ) is singular, the procedure described in [46]

is used to convert the descriptor system into a standard state-

space model

dx(t)

dt
= Ax(t) + Bu(t) (23a)

y(t) = Cx(t) +Du(t) (23b)

otherwise the standard state-space model can be obtained by

A = −C̃r(ĝ)−1G̃r(ĝ)
B = C̃r(ĝ)−1B̃r(ĝ)
C = B̃r(ĝ)T

D = D̃r(ĝ) (24)

Once Sr(s, ĝ) is transformed into a standard state-space form,

its passivity can be verified by computing the eigenvalues of

an associated Hamiltonian matrix [45]

H̃ =
[

A− BR−1DT C −BR−1BT

CTQ−1C −AT + CTDR−1BT

]
(25)

with R = DTD − I and Q = DDT − I. This passivity

test can only be applied if DTD − I is not singular. If such

singularity exists, the modified Hamiltonian-based passivity

check proposed in [47] should be used.

IV. NUMERICAL RESULTS

A. 2-D example: Microstrip line

In the first example a microstrip line with a dispersive

DriClad dielectric εr = 4.1 and a length ℓ = 2 cm has been

modeled. Its cross section is shown in Fig. 6. The dielectric and

conductor thickness values are h = 600 µm and t = 100 µm,

respectively. A bivariate reduced order model is built as a

function of frequency and the width of the strip W . Their

corresponding ranges are shown in Table I.

w

t

h

Fig. 6. Cross section of the microstrip.

TABLE I
PARAMETERS OF THE MICROSTRIP STRUCTURE.

Parameter Min Max

Frequency (freq) 1 kHz 4 GHz
Width (W) 50 µm 250 µm

The PEEC method is used to compute the C,G,B,L

matrices in (6a)-(6b) for 30 values of the width. The order

of all original PEEC models is equal to nu = 2532. Then,

we have built reduced models for 12 values of the width by

means of PRIMA, each with a reduced order q = 20. A Y−S
transformation has been performed choosing Z0,1 = Z0,2 =
50 Ω, which results in a set of 12 root ROMs. A bivariate

reduced model Sr(s,W ) is obtained by piecewise linear

interpolation of the root ROMs. The passivity of the parametric

reduced model has been checked by the procedure described

in Section III-F on a dense sweep over the design space and

the theoretical claim of overall passivity has been confirmed.

Fig. 7 shows the magnitude of the parametric reduced model

of S11(s,W ). Fig. 8 shows the magnitude of the parametric

reduced models of S11(s,W ) and S21(s,W ) for the width

values W = {55, 150, 245} µm. These specific width values

have not been used in the root ROMs generation process,

nevertheless an excellent agreement between model and data

can be observed. Fig. 9 shows the absolute error distribution
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for S11(s,W ) and S21(s,W ) over a dense reference grid

composed of 200 × 30 (freq,W ) samples. The maximum

absolute error of the bivariate reduced model of the S matrix

over the reference grid is bounded by −60.57 dB. As clearly

seen, the parametric reduced model captures very accurately

the behavior of the system, while guaranteeing stability and

passivity properties over the entire design space.

0
1

2
3

4

50

100

150

200

250

0

0.2

0.4

Frequency [GHz]

Width [µm]

|S
11

|

Fig. 7. Magnitude of the bivariate reduced model of S11(s, W ).

B. 3-D example: Multiconductor system with variable sepa-

ration

This example reproduces the geometry of a multiconductor

system composed by six conductors with a length ℓ = 2 cm,

a width W = 1 mm and a thickness t = 0.2 mm. The cross

section is shown in Fig. 10 and depends on the two variables

Sx and Sy that represent the horizontal and vertical spacing

between the conductors. A trivariate reduced order model is

built as a function of frequency and the horizontal and vertical

spacing. Their corresponding ranges are shown in Table II.

TABLE II
PARAMETERS OF THE MULTICONDUCTOR SYSTEM.

Parameter Min Max

Frequency (freq) 1 kHz 15 GHz
Horizontal spacing (Sx) 2 mm 3 mm
Vertical spacing (Sy) 1 mm 2 mm

The PEEC method is used to compute the C,G,B,L

matrices in (6a)-(6b) for 15 values of Sx and 15 values of Sy .

The order of all original PEEC models is equal to nu = 702.
Then, we have built reduced models for 5 values of Sx and

8 values of Sy by means of PRIMA, each with a reduced

order q = 54. A Y − S transformation has been performed

choosing Z0,i = 50 Ω, i = 1, ..., 6, which results in a

set of 40 root ROMs. The ports of the system are six and

are defined between a conductor and the corresponding one

above. A trivariate reduced model Sr(s, Sx, Sy) is obtained by

piecewise multilinear and multivariate simplicial interpolation

of the root ROMs. The passivity of the parametric reduced
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Fig. 8. Magnitude of the bivariate reduced models of S11(s, W ) and
S21(s, W ) (W = {55, 150, 245} µm).
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Fig. 9. Histogram : error distributions of the bivariate reduced models
of S11(s, W ) (light grey) and S21(s, W ) (dark grey) over 6000 validation
samples.

models has been checked by the procedure described in

Section III-F on a dense sweep over the design space and

the theoretical claim of overall passivity has been confirmed.

Figs. 11-12 show the magnitude of the parametric reduced

model of the forward crosstalk term S16(s, Sx, Sy) (input
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w

Sx

t

Sy

Sx

Fig. 10. Cross section of the multiconductor system.

port of the first couple of conductors on the left and output

port of the first couple of conductors on the right) obtained

by piecewise multilinear interpolation for the vertical spac-

ing values Sy = {1, 2} mm. Similar results are obtained

using the multivariate simplicial interpolation scheme. Fig.

13 shows the magnitude of the parametric reduced model

of S11(s, Sx, Sy) obtained by multivariate simplicial inter-

polation for the horizontal spacing value Sx = 2.5 mm

and the vertical spacing values Sy = {1.07, 1.5, 1.93} mm.

These specific spacing values have not been used in the root

ROMs generation process. Fig. 14 shows the magnitude of

the parametric reduced model of S16(s, Sx, Sy) obtained by

multivariate simplicial interpolation for the horizontal spacing

values Sx = {2.07, 2.5, 2.93} mm and the vertical spacing

value Sy = 1.5 mm. These specific spacing values have not

been used in the root ROMs generation process. Figs. 15-

16 show the absolute error distribution for S11(s, Sx, Sy) and

S16(s, Sx, Sy) over a reference grid composed of 300×15×15
(freq, Sx, Sy) samples. The maximum absolute error of the

trivariate reduced model of the S matrix over the reference grid

is bounded by −60.5 dB and −61.44 dB, respectively for the

piecewise multilinear and multivariate simplicial interpolation

scheme. As in the previous example, the parametric reduced

order model describes the behavior of the system under

study very accurately, while guaranteeing overall stability and

passivity.
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Fig. 11. Magnitude of the trivariate reduced model of S16(s, Sx, Sy)
(piecewise multilinear interpolation, Sy = 1 mm).
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Fig. 12. Magnitude of the trivariate reduced model of S16(s, Sx, Sy)
(piecewise multilinear interpolation, Sy = 2 mm).
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Fig. 13. Magnitude of the trivariate reduced model of S11(s, Sx, Sy)
(multivariate simplicial interpolation, Sx = 2.5 mm, Sy = {1.07, 1.5, 1.93}
mm).
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Fig. 15. Histogram : error distributions of the trivariate reduced mod-
els of S11(s, Sx, Sy) (piecewise multilinear interpolation, light grey) and
S11(s, Sx, Sy) (multivariate simplicial interpolation, dark grey) over 67500
validation samples.
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Fig. 16. Histogram : error distributions of the trivariate reduced mod-
els of S16(s, Sx, Sy) (piecewise multilinear interpolation, light grey) and
S16(s, Sx, Sy) (multivariate simplicial interpolation, dark grey) over 67500
validation samples.

V. CONCLUSIONS

We have presented a new parameterized model order re-

duction technique applicable to PEEC analysis. The overall

stability and passivity of the parametric reduced order model

is guaranteed by an efficient and reliable combination of tra-

ditional passivity-preserving MOR methods and interpolation

schemes based on a class of positive interpolation operators.

Numerical examples have validated the proposed approach on

practical application cases, showing that it is able to build

very accurate parametric reduced models, while guaranteeing

stability and passivity over the entire design space of interest.
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Università degli Studi dell’Aquila, L’Aquila, Italy,
in 2007. He is currently working towards the Ph.D.
degree in the Department of Information Technology
(INTEC), Ghent University, Ghent, Belgium. His re-
search interests include parametric macromodeling,
parameterized model order reduction, EMC numer-

ical modeling, system identification.

Giulio Antonini (M’94, SM’05) received his Laurea
degree (summa cum laude) in Electrical Engineering
in 1994 from the Università degli Studi dell’Aquila
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