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Abstract. Conventionally, the parameters of a sliding mode controller (SMC) are
selected so as to reduce the time spent in the reaching mode. Although, an upper
bound on the time to reach (reaching time) the sliding surface is easily derived, per-
formance guarantee in the state/error space needs more consideration. This paper
addresses the design of constant plus proportional rate reaching law-based SMC for
second-order nonlinear systems. It is shown that this controller imposes a bound-
ing second-order error-dynamics, and thus guarantees robust performance during
the reaching phase. The choice of the controller parameters based on the time to
reach a desirable level of output tracking error (OTE), rather than on the reaching
time is proposed. Using the Lyapunov theory, it is shown that parameter selec-
tions, based on the reaching time criterion, may need substantially larger time to
achieve the OTE. Simulation results are presented for a nonlinear spring-mass-
damper system. Itis seen that parameter selections based on the proposed OTE cri-
terion, result in substantially quicker tracking, while using similar levels of control
effort.

Keywords. Reaching mode; sliding mode controlled systems; output tracking
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1. Introduction

Sliding mode control (SMC) originated in the Soviet literature (Utkin 1978). Some sur-
vey/review on this topic can be found in the references, Utkin (1977), De€tdl(1988),
Hunget al(1993), and more recently by Youegal (1997). The SMC design method involves

two steps, (i) the selection of a stable hyperplane in the state/error space on which motion
should be restricted, called the sliding surface (SS), and (ii) the synthesis of a control law
which makes the selected surface attractive. In this method a trajectory, starting from a non-
zero initial condition, evolves in two phases:
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e A reaching phase, in which it reaches the SS, and
e Asliding phase, in which the trajectory on reaching the SS, remains there for all further
times and thus evolves according to the dynamics specified by the SS.

Invariance to matched external disturbances and uncertainties is guaranteed (Drazenovic
1969) during the sliding phase. The system evolution in the reaching phase depends on the
system uncertainties and the selected reaching laws. A smaller reaching time would imply
that sliding begins earlier and this has been conventionally used to select the SMC parameters.

Many mechanical systems are modeled as second-order systems e.g. as in the trajectory
following robots, or the angular position control in aircrafts as nose pointing or pitch hold
autopilots. Other examples include the classical inverted pendulum, or the antenna pointing
of satellites among others. The SMC method has been used for many such applications (Gao
& Hang 1993; Hunget al 1993; Younget al 1999). Thus it is of particular interest to study
the effect of the SMC parameters for this class of systems. Gao & Hung (1993) propose a
reaching law method which specifies the error dynamics in the reaching phase. They suggest
three structures — the constant rate reaching, constant plus proportion@ rateR), and
the power rate reaching. The time taken to reach the SS is also evaluated. By appropriately
selecting parameters the dynamic quality of the SMC system can be controlledetGhioi
(1994) suggest the use of a stepwise time-varying SS, in which the SS is shifted and/or rotated
as afunction of time. They applied this method to a nonlinear spring mass damper system and
reported a substantial decrease in time to achieve zero tracking error. However, the resulting
controlleris cumbersome to implement because the parameters of the SS need to be calculated
at each time instant. Bartoszewicz (1995) proposed a continuously time-varying SS that gives
still faster tracking. The choice of the time varying SS is extended by Bartoszewicz (1995) so
asto minimize the integral of the absolute error. However, the parameter selection is dependent
onthe initial error conditions. A similar approach is reported by Yilmaz & Hurmuzlu (2000) to
eliminate the reaching phase from SMC. Maetal (2001) used trajectory planning strategy
for evolution during the reaching phase for differentially flat systems.

This paper studies the design of constant plus proportional rate reachif@4alRR— RL)
for second-order systems. Using Lyapunov theory, it is established in § 3. th&RC- RL
imposes a bounding second-order dynamics on the error variables and thus guarantees a
robust performance in the reaching phase also. It is shown that the selection of controller
parameters based on minimizing the reaching time may not result in smaller times to reach
a desired level of output tracking error (OTE). A new method of selection of the control law
parameters based on the criterion of time to a specified OTE is proposed. To illustrate the
method, itis applied to a nonlinear spring mass problem (Ehai1994). Simulation results
show that the proposed method of selection of controller parameters results in considerably
faster tracking performances, for similar peak levels of control effort.

2. The reaching law-based SMC design method
Consider a single input, second-order input-affine nonlinear system of the form
X=f(x,x)+ g, X)u+dy, Q)

whereu is the control input, and; represents the uncertainties and external disturbances
which are assumed to be bounded with| < D. Since the uncertainties and/or disturbances
which are in the range space of the input are called matched, it is obvious that any uncertainty
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entering the scalar system as given above is matched. The argumgraad$ are dropped
from now on for brevity. The uncertainty in the input distribution functiors expressed as
g = &1+ g), whereg represents its nominal value, and the uncertainty bounded as
|g] < G,withG < 1.0.

Defining the state variables as = x andx, = x, (1) can be written in the state space

form as
X X2
<x:):<f+gu+df>' @

Let the trajectory to be followed (desired trajectory) be givemaandx,; = x14. Then the
error between the actual and the desired trajectories can be expressedas— x1, and
é = x» — xp4. In vector form,

= (8)=(). g

Taking the time derivative of the above equation and using results of (2) in the following
error-dynamics,

y.:<§>:<f+gufdf—5f'1d>' @

The switching function for second-order systems is conventionally defined as a combination
of the error variables (defined in (3)) (Slotine & Li 1991; Gao & Hung 1993) as

s =¢+ae, %)

whereo > 0 sets the dynamics in the sliding phase<0). The SS selected above should be
made attractive so that trajectories starting from a non-zero valu@mbroach the SS, and
then stay on = O for all future time instants. For this, usiggrom (4), the time derivative

s is obtained from (5) as

s =¢+ae, OF

=f+gutds—iy+oae,

=f+§(l+§)u+df—jc'1d+aé. (6)
The inputz remains to be chosen so as to makm® to zero for sliding. The normal procedure
for its selection (Slotine & Li 1991) is to express the inpuds a sum of two terms. The first
term is chosen, using the nominal plant parameters, so as tosnak& whens = 0. This
is called the equivalent control and is seen t@bé&(i1; — f — aé). The second term is then
chosen to tackle the uncertainties in the system and introduce a reaching law. The constant

plus proportional rate reaching law (Gao & Hung 1993) is imposed by selecting the second
term asg~1(—es — K'sgn[s]). The complete: thus becomes

u=g Yy — f—aé—es — Ksgn[s]), (7)

where,e, K > 0 are positive real numbers to be selected, and sgn[-] is the sifimation.
Note that the: in the above equation may be simplified by using the definitioniof(5)
and definingz andb as

a =we, and
b=a+e, 8)
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both of which are obviously positive real numbers. Thusecomes
u=g Y — f—ae—be— K sgn[s)). 9)

The positive scalak should be chosen such that the time evolution sétisfies the G-
PR—RL as,

§ = —es — n sgn[s], (20)

where,n is a positive real number to be selected later. THusnay be selected (Slotine &
Li 1991) as

G|R|+ D
K= |R| + +77‘

TG (11)
where,
R =¥y — f —ae — beé. (12)
With K as selected above, the switching functiopdyolves as,
s = —es — ' sgn[4, (13)

wheren’ > 5. Note thaty’ as defined above can be shown to be bounded with a maximum
possible value ofj; = n + 2K.

Furthermore, the reaching time, i.e. the time taken to arrive=atO starting fromsq for
thes dynamics (10) is bounded (Gao & Hung 1993) as

1 [elsol+n
freach=< — In <— s (14)
€ n

This has been conventionaly used to select the SMC parameters, since it gives an upper bound
on the time the system (1) spends in the reaching phase. NotE zcifies the magnitude

of the discontinuity in the control law in (9). The value Kfincreases withy. For a given

value ofe, a higher value of leads to smaller reaching times as seen from the above equation,

it also results in more chattering (Gao & Hung 1993). There have been efforts to reduce the
chattering problem by either applying a boundary layer technique (Slotine & Li 1991) or by
adaptively estimating the upper bounds on the uncertainties (Wheted#1998). This is
however not in the scope of the current study. The effect of the controller parameters, namely
the positive scalarg, ¢ andn are studied in the following section.

3. Robustness in reaching phase

It is a commonly held belief that the conventional reaching laws impose conditions on the
time evolution of the switching function, rather than on the state/error dynamics (Mdiaitz
2001). A Lyapunov approach is used in this section to show that robust performance can be
guaranteed during the reaching mode also.

The dynamics inthe error space are given in (4). Note éhats —aé from (6). Substituting
s from (13),

¢ = —ae — be — n'sgn[4], (15)
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with ¢ andb as defined in (8). Thus, the error dynamjcsnay be written as

y=Ay+gq, (16)
where,

A= [ ° _H, (17)
and,

_ 0

= ( —n'sgnld ) ' (18)

With a andb defined as in (8), thd matrix above is seen to have its eigenvaluesatand
—e. These poles govern the response of the linear homogeneous part (dedyimamics).

A Lyapunov approach is adopted to evaluate the effegtanfde parameters on the tracking
performance. A candidate Lyapunov functinfor the y dynamics as specified in (16) is
selected as

V(y) =y'Py, (19)
whereP is a positive definite symmetric matrix and is taken as
a’+ B «
P [ Fhal (20)

andg > 0 guarantees the positive definiteness ofRmatrix. The time derivative o¥ may
be obtained as

V=y[ATP + PA]ly +2y"Pg. (21)
SinceA in (17) is a Hurwitz matrix, it satisfies the Lyapunov equation

ATP+PA=-0Q, (22)
whereQ can be derived from (22) usingand P as given in (17) and (20) as

[ 20%¢ 2ae—p
Q_[Zae—ﬁ 2¢ } 23)
Note that positive definiteness ¢f is guaranteed if
B < dae. (24)

Fromg and P as defined in (18) and (20) respectively, thePg is seen to be equal to
—sn’sgnls]. Using this andQ as obtained above in (23Y, in (21) may be simplified to
V =—y"Qy — 2sn'sgn[4, or
= —y'Qy—27ls|, (25)
which is seen to be always negative definite. Thus, the stability ddfnamics in (16) or

equivalently in (15) is guaranteed. To study the time decay performanEeiothe above
equation, the following result is required.
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Claim1. For the second-order error dynamics as given in (15), a Lyapunov function may be
selected as in (19). For th@ matrix in (23), as obtained from the Lyapunov equation (22),
there exists a positive real numbger 0 such that

Q=40P+H, (26)
whereH is at least a positive semi-definite matrix.

Proof. It can be easily shown by a constructive proof that for the system under consideration,
there is always a range of values tldatan take. The detailed proof is presented by Singh
(1999). In particular, it is established that permissible range of valuéfied in an open set
and is given by € (0, min[2«, 2¢]), where min[-,-] gives the minimum of its arguments]

Using the decomposition @b as in (26), theV in (25) may be rewritten as

V =—8V—y'Hy—29]s| (27)

It follows that theV decay response of the above system will be better than the response of
the system described by

V =-8V. (28)
It is interesting to find out thd, matrix with the dynamics specified as
y = Apy, (29)

that satisfies (28). Thd, should thus satisfy the Lyapunov equation (22) with thes
selected in (20), i.eA] P + PA, = —§ P, for some feasible choice éf> 0 as in (28). For
this, the general form of tha, matrix is taken as

O /
Ap = |:_a/ _Cb/i|7 (30)

where,a’, b, ¢’ are to be determined. The Lyapunov equationAgmatrix as given above
is solved for these unknowns for a general valué.ofFhese may be easily obtained by the
solution of a set of simultaneous linear equationg’iv’, ¢’ as

a =8?+ B)/2a
b =35
¢ =68/2a. (31)

It is known from claim 1 that < (0, min[2«, 2¢]). If @ < €, the A, matrix is obtained by
usingd = 2« as

0 1
Ap = |: —(Ol2 + IB) —2q :| b (32)

and is seen to have both of its eigenvalues-at for 8 — 0. Alternately, ifa > ¢, then the
A, matrix is obtained by usind = 2¢, as

_ 0 €/a
Ap = |: —(ea +€B/a) —2¢ ] ’ (33)
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and forg — 0, both the eigenvalues of the abadg matrix are easily seen to lie ate. It

follows that the decay of the Lyapunov function (19) for the dynamics in (16) withAthe
matrix in (17) having its eigenvalues asx and—e, is guaranteed to be better than the decay
response in (28), which is achievable byiamatrix as given in (32) or (33) which has both

of its eigenvalues at min[a, €]. This implies that the error dynamics in (16) in the reaching
phase is bounded by the response of the second-argerynamics in (29) and a robust
performance in the presence of the matched uncertainties and disturbances is achievable in
the reaching mode even before the onset of sliding. Estimates of the guaranteed times to reach
the OTE may be obtained using thg dynamics. It is obvious that shorter times to the OTE

are expected as bothande are increased. However, the control law in (9) will also require
larger control magnitudes asandb will also increase as can be seen from (8). Next the effect

of the relative values of these parameters is considered.

3.1 Selection ofr ande

Let the eigenvalues of the A matrix in (17) be selected-asand —¢g, wherep andq are
positive real numbers satisfying > ¢. This could be achieved in the following two ways:

e CaseCP: a = p ande = g. This would result in the SS beirgt+ pe, says,.
e CaseCQ: a = g ande = p, with which the SS becomes+ ge, says, .

It follows from (8) thata = pg andb = p + g remain the same in both the cases resulting

in the sameA matrix in (17). Witha andb being the sameR in (12) and thusK in (11)

are expected to have comparable magnitudes for both the cases. Thus the peak values of the
control effortu in (9) should also be nearly equal. The performance obtained in the two cases

is compared next. For this, a common Lyapunov function is first constructed as follows.

Claim2. Let P and Q be symmetric positive definite matrices as specified in (20) and (23)
respectively, for the caséP, i.e.a = p ande = ¢g. Then, there exists a sufficiently large
positive scalai/ such that

V(y) = y" Py + MIS,| + M|S,| (34)
where,y = (e, ¢)T, is a valid common Lyapunov function for casé® andC Q.

Proof. Note that this candidate function is not differentiable on the plafes= 0 and
S, = 0. However, it is possible to use the generalized Lyapunov theorem, which allows non-
differentiability of the Lyapunov function in a set of measure zero (Singh 1989; Chiacchiarini
etal1995). ForV to be avalid common Lyapunov function, at least negative semi-definiteness
(n.s.d.) of its time derivative must be established for the two cases. The detailed proof is
presented by Singh (1999). O

Let V;, i = p, q represent the time derivativié of the Lyapunov function in (34) for the
cases denoted by the subscript ‘i’. Further, for the €a@g it may be shown that there exists
a0< 4, < g (< p, by selection), using whiclti(q may be written as

Vy, < =yT0y — 8, M[IS;| + 1S,11 = (p — 8,)M|S,I. (35)

From claim 1, it is known that th@ matrix may be decomposed as given in (26)as=
8,P + H,, whereH, is a positive definite matrix, sindg < ¢ < min[2g, 2p]. Using this
decomposition, th&, above may be expressed as

Vq S _(quq - (P - 8(])M|Sq|7 (36)



136 G K Singh and K E Holé

using the definition o¥ in (34) where the subscrips’ represents the caseQ. As p > g >
84, the(p —8,)M|S,| term in the above equation is always non-negative. Thus/thiecay
response of this system will be better than the exponential decay response offered by

vV, = —8,V,, wheres, € (0, q). (37)

Note thats, can assume a maximum valuesgf= g in the limit.
For the cas& P, vV, may be obtained as

V, < =" 0y — M[qlS,| + pIS,1] — 21| S, . (38)

The Q matrix in this case is decomposable’g® + H,,, where 0< §, < 29 = min[2q, 2p]
has to be found out. Following the steps as for the €a@eit may be shown that thg, may
be selected to be smaller than minpg)]. It thus follows that theV,, decay response of the
above system is better than the response of the system given by

V, = —8,V,, wheres, € (0, min[p, 2]). (39)

Thus the upper limiting value @, is seen to be given by, = min[p, 2¢]. Thusitis obvious
thats, > §,.

With the guaranteed decay response¥,p0andV,, being given as in (37) and (39) respec-
tively, it is clear that cas€ P guarantees a faster exponential decay of the Lyapunov function
(34) as compared to cag®). These guaranteed decay performances may be used to develop
an estimate of the time to reach a specified level of OTE in terms of the Lyapunov function.
Thus, given an initial valu& (0) atr = 0O, the timer, required forV;, i =g, p dynamics, in
(37) and (39) respectively, to decay to a final valué/gfmay be evaluated as

tr=1/5)In[V(0)/V/], (40)

where, i =¢, p and$§; are as defined earlier and represent the maximum limiting value of
8; for the §, andé, as given in (37) and (39) respectively. For the saW@®)/Vy, it is
obvious that  in the caseC P ill be smaller than in the caseQ, ass, > §,. Thet in (40)
gives conservative estimates for the decay of the Lyapunov function. The actuatifpes
required, for theV decay responses in (36) and (38) for the cas@sandC P respectively,

to reach theV, are expected to be smaller than thei.e.zorr < t;. Thus thea ande
parameters should be selected as in the Ca3¢o have a smaller value of, i.e. for a given
choice of the eigenvalues of tiematrix in (17),¢ should be selected as the magnitude of the
dominant pole, and as the magnitude of the other, or simply> €. This is summarized as
follows.

Lemmal. The choice of ande parameters, for the constant plus proportional rate reaching
SMC law as in (9), witlu andb selected as in (8) and the sliding surface as in (5), such that

a > €. (41)
guarantees a faster decay of the Lyapunov function (34).

Note that the above lemma indicates that the choieeasfde as in (41) only ensures thatis
smaller. It however does not guarantee thatthe: for the case” P is smaller than cas€Q,
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although it is so expected and can actually be seen from the simulation results presented in

the next section. There may however be parameter combinations where this would not hold.
A smaller value ofV implies a smaller tracking error in the sense of the norm (as defined

by the Lyapunov function). Thus, since ca3® has a faster guaranteed decay performance,

it is expected to take lesser time as compared to €g3¢o reach an acceptably small OTE.

As discussed earlier, the control effort is expected to be almost the same for b6tk ted

C Q cases. Note that lower reaching times are obtained for the case af (caseC Q) as

can be seen from the results in the next section. However, the above theoretical developments

show that shorter times to a desired OTE are expected for the casesawherécaseC P).

The estimates of the time to the OTE using (40) showing the effect of the relative choices of

a ande as suggested in lemma 1 are verified by applying the design method to a nonlinear

spring mass damper system in the next section.

4. Simulation results

For the illustration of the proposed SMC design method, the results presented in the previous
section have been used to design controllers for two practical problems. The numerical results
of these examples ascertain the validity of lemma 1.

4.1 Nonlinear spring mass damper system

The first example concerns a nonlinear mass-spring-damper system frorat@h(io94).
The governing differential equation is

mi + v, 1)+ ux, 1) = u@) +d@), (42)

where,x, x represent the position and the velocity of the mass(.) represents the applied
input force, andi(.) the disturbance signai.(.,.) and u(.,.) represent the damping and
spring force term respectively. The system parameters and functions are given-as,
f = fi+ f2+ fa+ fa, Which are given agy = puox, fo = —p1x®, fs = —vox, and
fa = —vix|x| with wg = 0.5, u3 = 0.5, v = 0.3, andv; = 0-3. The system also has
uncertainties expressed asgf1 + axf2 + azfs + asfq with a3 = —05+ 0-25sin5x1),
ap = —-054 0-25sin57x¢), az = —-05+ 0-15sin7xt), andas = —-05+ 0-15sin7xt)
and disturbance = 0.05+ 0-25cos(3xt) The signal to be tracked is given hy, =
—0-5cos(rt/5). The above system in (42) may be expressed in standard form as in (1). The
initial conditions are taken as®and 0 for the two states respectively.

Simulation was done using the fourth order Runge—Kutta method with a time st .2
The remaining parameters were selected as1 andny = 1. Several combinations efand
€ were used.

Casel:ax =2 ande =6
Case2:a =6 ande = 2
Case3.a =3 ande =4
Cased:a =4 ande = 3
Cases:a =4 ande =5
Caseb:a =5ande =4

The time to OTE (defined as the time after which the error is less titar 10~%) obtained
for the boundingd, dynamics in (29), the actual tracking times, the reaching times calculated
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Table 1. Comparison of time for OTE and reaching: example 1.

Time to OTE (<1 x 10-3)in (s)

tr (s) (40)

Case Bound obtained Reaching time (s) for
no. a« € fromA,dynamics (29) Actual (14) Vo/Vy = 10¢
1 2 6 424 3-30 0-183 4.605
2 6 2 424 2-00 1.472 2-302
3 3 4 283 2.35 0-426 3-070
4 4 3 283 2-00 0-732 2-302
5 4 5 213 1.80 0-439 2302
6 5 4 213 1.65 0-650 1.842

from (14) and the, for Vo/V; = 1.0 x 10* as evaluated from (40) for all the cases are
presented in table 1. It can be seen from the table that the actual time to achieve the OTE
is appreciably smaller for case 2 as compared to case 1. Table 1 also shows that similar
results are obtained for cases 4 and 6. In all these easese, thus verifying lemma 1.
It is noticed from table 1 that, for all of these cases, the reaching time is greater than the
corresponding cases 1, 3 and 5. Although cases 1, 3 and 5 have smaller reaching times, they
require about 65%, 17-5%, and 9-1% more time to OTE than the time required by cases 2, 4,
and 6 respectively. Thus, from the table it is clearly evident that parameter selections giving
lower reaching times actually take longer times to reach the specified OTE. Moreover, the
time bounds calculated from (40) are seen to be better than those obtained fror, the
dynamics (29) in the sense of being able to bring out the effect of the relative valaes of
ande.

Choiet al (1994) reported a time of-28 s to achieve a zero tracking error (OTE). It can
be observed from table 1 that in almost all the cases under consideration, shorter tracking
time is achieved by this approach. In fact the best tracking time achievebis for case 6.
In all of the cases the actual time to reach OTE is smaller than the bound given Ry the
dynamics and;. As qualitatively similar responses are obtained, the responses obtained for
the parameter combination in cases 1 and 2 are presented in figures 1, 2, and 3 respectively.
The responses are indexed by the case numbers in these figures. Note that case 1 corresponds

0.6
0.3

x 0.0

. Figure 1. Tracking responses for
time (s) case 1 (C1) and case 2 (C2).
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) Figure 2. Thes responses for cases
time (s) 1and 2.

to caseC Q, and case 2 to cageP. Figure 1 shows the tracking response obtained in the
two cases. It is evident from the figure that the C2 (satisfying lemma 1) trajectory approaches
the OTE in appreciably lower time as compared to the C1 trajectory. Figure 2 shows the
s response in the two cases. The C1 response has a lower reaching time (see also table 1)
as compared to C2. Figure 3 shows the error decay with time for both the cases and also
for the solution of thed,, dynamics in (29), labeled as . Although, only a better decay of
the Lyapunov function in (19) is guaranteed for the control law in (9), the figure shows that
the decay ok obtained in the two cases are better than the solution ofAthégynamics in
(29).

The required control effort in the two cases are shown in figure 4. As discussed in the
previous section, since = 12 andb = 8 from (8) are the same for the cases C1 and C2,
the control efforts in these cases should be of about the same magnitude. This can indeed be
seen from figure 4, which verifies that that the proposed method uses about the same control
effort to achieve the same tracking accuracy much faster. However as the reaching time in C1
is smaller, the input in case C1 begins chattering earlier as can be seen from the figure. Thus
the selection of the parameters can be easily done drawing on the experience of the initial
condition responses of linear second-order systems. U trede are chosen so as to satisfy
lemma 1, better results are expected.

0.6

-0.2 . 1 . 1 . 1 . 1 . Figure 3. The error dynamics for
0 1 2 3 4 5 cases 1 and 2 and that given by the
time (s) A-dynamics (q).
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Figure 4. The control effortu
required for cases 1 and 2.

5. Conclusions

In this paper the design of the constant plus proportional rate reaching SMC for second-order
nonlinear systems has been studied. Investigation of the effect of the choice of the controller
parameters has been done. Using a Lyapunov approach it has been shown that the design
method imposes a bounding second-order dynamics on the error variables, and thus a robust
performance in the reaching phase is guaranteed. A new method of selection of the SMC
parameters which results in smaller times to reach a given level of OTE, while using almost
similar levels of maximum control effort, is proposed. It is seen that for the class of systems
under study, a small reaching time does not guarantee a fast tracking response. The method of
parameter selection should thus be based on the time to OTE, rather than on the criterion of
the reaching time. The design technique has been applied to a nonlinear spring-mass-damper
system under matched uncertainties and exogenous disturbances. From the simulations done
it is seen that the control laws based on the lower reaching times require approximately 10—
60% more time as compared to the proposed control laws to reach the same level of OTE,
while using the same levels of control magnitudes. The method developed for a single input
system has been extended to a two-input two-link robotic arm problem. Results of numerical
simulation for the parameters used show that significantly faster tracking is obtained with
the proposed control law, thus establishing the utility of the method. However, more work is
required to develop better estimates of the time to OTE.
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