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Abstract. Conventionally, the parameters of a sliding mode controller (SMC) are
selected so as to reduce the time spent in the reaching mode. Although, an upper
bound on the time to reach (reaching time) the sliding surface is easily derived, per-
formance guarantee in the state/error space needs more consideration. This paper
addresses the design of constant plus proportional rate reaching law-based SMC for
second-order nonlinear systems. It is shown that this controller imposes a bound-
ing second-order error-dynamics, and thus guarantees robust performance during
the reaching phase. The choice of the controller parameters based on the time to
reach a desirable level of output tracking error (OTE), rather than on the reaching
time is proposed. Using the Lyapunov theory, it is shown that parameter selec-
tions, based on the reaching time criterion, may need substantially larger time to
achieve the OTE. Simulation results are presented for a nonlinear spring-mass-
damper system. It is seen that parameter selections based on the proposed OTE cri-
terion, result in substantially quicker tracking, while using similar levels of control
effort.

Keywords. Reaching mode; sliding mode controlled systems; output tracking
error; Lyapunov theory.

1. Introduction

Sliding mode control (SMC) originated in the Soviet literature (Utkin 1978). Some sur-
vey/review on this topic can be found in the references, Utkin (1977), DeCarloet al (1988),
Hunget al(1993), and more recently by Younget al(1997). The SMC design method involves
two steps, (i) the selection of a stable hyperplane in the state/error space on which motion
should be restricted, called the sliding surface (SS), and (ii) the synthesis of a control law
which makes the selected surface attractive. In this method a trajectory, starting from a non-
zero initial condition, evolves in two phases:
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• A reaching phase, in which it reaches the SS, and
• A sliding phase, in which the trajectory on reaching the SS, remains there for all further

times and thus evolves according to the dynamics specified by the SS.

Invariance to matched external disturbances and uncertainties is guaranteed (Drazenovic
1969) during the sliding phase. The system evolution in the reaching phase depends on the
system uncertainties and the selected reaching laws. A smaller reaching time would imply
that sliding begins earlier and this has been conventionally used to select the SMC parameters.

Many mechanical systems are modeled as second-order systems e.g. as in the trajectory
following robots, or the angular position control in aircrafts as nose pointing or pitch hold
autopilots. Other examples include the classical inverted pendulum, or the antenna pointing
of satellites among others. The SMC method has been used for many such applications (Gao
& Hang 1993; Hunget al 1993; Younget al 1999). Thus it is of particular interest to study
the effect of the SMC parameters for this class of systems. Gao & Hung (1993) propose a
reaching law method which specifies the error dynamics in the reaching phase. They suggest
three structures – the constant rate reaching, constant plus proportional rate(C + PR), and
the power rate reaching. The time taken to reach the SS is also evaluated. By appropriately
selecting parameters the dynamic quality of the SMC system can be controlled. Choiet al
(1994) suggest the use of a stepwise time-varying SS, in which the SS is shifted and/or rotated
as a function of time. They applied this method to a nonlinear spring mass damper system and
reported a substantial decrease in time to achieve zero tracking error. However, the resulting
controller is cumbersome to implement because the parameters of the SS need to be calculated
at each time instant. Bartoszewicz (1995) proposed a continuously time-varying SS that gives
still faster tracking. The choice of the time varying SS is extended by Bartoszewicz (1995) so
as to minimize the integral of the absolute error. However, the parameter selection is dependent
on the initial error conditions. A similar approach is reported by Yilmaz & Hurmuzlu (2000) to
eliminate the reaching phase from SMC. Mantzet al(2001) used trajectory planning strategy
for evolution during the reaching phase for differentially flat systems.

This paper studies the design of constant plus proportional rate reaching law(C+PR−RL)

for second-order systems. Using Lyapunov theory, it is established in § 3. that C+ PR− RL
imposes a bounding second-order dynamics on the error variables and thus guarantees a
robust performance in the reaching phase also. It is shown that the selection of controller
parameters based on minimizing the reaching time may not result in smaller times to reach
a desired level of output tracking error (OTE). A new method of selection of the control law
parameters based on the criterion of time to a specified OTE is proposed. To illustrate the
method, it is applied to a nonlinear spring mass problem (Choiet al1994). Simulation results
show that the proposed method of selection of controller parameters results in considerably
faster tracking performances, for similar peak levels of control effort.

2. The reaching law-based SMC design method

Consider a single input, second-order input-affine nonlinear system of the form

ẍ = f (x, ẋ) + g(x, ẋ)u + df , (1)

whereu is the control input, anddf represents the uncertainties and external disturbances
which are assumed to be bounded with|df | < D. Since the uncertainties and/or disturbances
which are in the range space of the input are called matched, it is obvious that any uncertainty



Sliding mode controlled systems 131

entering the scalar system as given above is matched. The arguments off andg are dropped
from now on for brevity. The uncertainty in the input distribution functiong is expressed as
g = ĝ(1 + g̃), whereĝ represents its nominal value, and the uncertaintyg̃ is bounded as
|g̃| < G, with G < 1·0.

Defining the state variables asx1 = x andx2 = ẋ, (1) can be written in the state space
form as (

ẋ1

ẋ2

)
=

(
x2

f + gu + df

)
. (2)

Let the trajectory to be followed (desired trajectory) be given asx1d andx2d = ẋ1d . Then the
error between the actual and the desired trajectories can be expressed ase = x1 − x1d and
ė = x2 − x2d . In vector form,

y =
(

e

ė

)
=

(
x1 − x1d

x2 − x2d

)
. (3)

Taking the time derivative of the above equation and using results of (2) in the following
error-dynamics,

ẏ =
(

ė

ë

)
=

(
ė

f + gu + df − ẍ1d

)
. (4)

The switching functions for second-order systems is conventionally defined as a combination
of the error variables (defined in (3)) (Slotine & Li 1991; Gao & Hung 1993) as

s = ė + αe, (5)

where,α > 0 sets the dynamics in the sliding phase (s = 0). The SS selected above should be
made attractive so that trajectories starting from a non-zero value ofs approach the SS, and
then stay ons = 0 for all future time instants. For this, usingë from (4), the time derivative
ṡ is obtained from (5) as

ṡ = ë + αė, or

= f + gu + df − ẍ1d + αė,

= f + ĝ(1 + g̃)u + df − ẍ1d + αė. (6)

The inputu remains to be chosen so as to makes go to zero for sliding. The normal procedure
for its selection (Slotine & Li 1991) is to express the inputu as a sum of two terms. The first
term is chosen, using the nominal plant parameters, so as to makeṡ = 0, whens = 0. This
is called the equivalent control and is seen to beĝ−1(ẍ1d − f − αė). The second term is then
chosen to tackle the uncertainties in the system and introduce a reaching law. The constant
plus proportional rate reaching law (Gao & Hung 1993) is imposed by selecting the second
term asĝ−1(−εs − Ksgn[s]). The completeu thus becomes

u = ĝ−1(ẍ1d − f − αė − εs − Ksgn[s]), (7)

where,ε, K > 0 are positive real numbers to be selected, and sgn[·] is the signumfunction.
Note that theu in the above equation may be simplified by using the definition ofs in (5)

and defininga andb as

a = αε, and

b = α + ε, (8)
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both of which are obviously positive real numbers. Thusu becomes

u = ĝ−1(ẍ1d − f − ae − bė − K sgn[s]). (9)

The positive scalarK should be chosen such that the time evolution ofs satisfies the C+
PR− RL as,

ṡ = −εs − η sgn[s], (10)

where,η is a positive real number to be selected later. Thus,K may be selected (Slotine &
Li 1991) as

K = G|R| + D + η

1 − G
. (11)

where,

R = ẍ1d − f − ae − bė. (12)

With K as selected above, the switching function (s) evolves as,

ṡ = −εs − η′ sgn[s], (13)

whereη′ ≥ η. Note thatη′ as defined above can be shown to be bounded with a maximum
possible value ofηM = η + 2K.

Furthermore, the reaching time, i.e. the time taken to arrive ats = 0 starting froms0 for
thes dynamics (10) is bounded (Gao & Hung 1993) as

treach≤ 1

ε
ln

(
ε|s0| + η

η

)
, (14)

This has been conventionaly used to select the SMC parameters, since it gives an upper bound
on the time the system (1) spends in the reaching phase. Note thatK specifies the magnitude
of the discontinuity in the control law in (9). The value ofK increases withη. For a given
value ofε, a higher value ofη leads to smaller reaching times as seen from the above equation,
it also results in more chattering (Gao & Hung 1993). There have been efforts to reduce the
chattering problem by either applying a boundary layer technique (Slotine & Li 1991) or by
adaptively estimating the upper bounds on the uncertainties (Wheeleret al 1998). This is
however not in the scope of the current study. The effect of the controller parameters, namely
the positive scalarsα, ε andη are studied in the following section.

3. Robustness in reaching phase

It is a commonly held belief that the conventional reaching laws impose conditions on the
time evolution of the switching function, rather than on the state/error dynamics (Mantzet al
2001). A Lyapunov approach is used in this section to show that robust performance can be
guaranteed during the reaching mode also.

The dynamics in the error space are given in (4). Note that,ë = ṡ−αė from (6). Substituting
ṡ from (13),

ë = −ae − bė − η′sgn[s], (15)
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with a andb as defined in (8). Thus, the error dynamicsy, may be written as

ẏ = Ay + q̄, (16)

where,

A =
[

0 1
−a −b

]
, (17)

and,

q̄ =
(

0
−η′sgn[s]

)
. (18)

With a andb defined as in (8), theA matrix above is seen to have its eigenvalues at−α and
−ε. These poles govern the response of the linear homogeneous part (i.e. theA-dynamics).

A Lyapunov approach is adopted to evaluate the effect ofα andε parameters on the tracking
performance. A candidate Lyapunov functionV for the y dynamics as specified in (16) is
selected as

V (y) = yTPy, (19)

whereP is a positive definite symmetric matrix and is taken as

P =
[

α2 + β α

α 1

]
, (20)

andβ > 0 guarantees the positive definiteness of theP matrix. The time derivative ofV may
be obtained as

V̇ = yT[ATP + PA]y + 2yTP q̄. (21)

SinceA in (17) is a Hurwitz matrix, it satisfies the Lyapunov equation

ATP + PA = −Q, (22)

whereQ can be derived from (22) usingA andP as given in (17) and (20) as

Q =
[

2α2ε 2αε − β

2αε − β 2ε

]
. (23)

Note that positive definiteness ofQ is guaranteed if

β < 4αε. (24)

From q̄ andP as defined in (18) and (20) respectively, theyTP q̄ is seen to be equal to
−sη′sgn[s]. Using this andQ as obtained above in (23),̇V in (21) may be simplified to

V̇ = −yTQy − 2sη′sgn[s], or

= −yTQy − 2η′|s|, (25)

which is seen to be always negative definite. Thus, the stability ofe dynamics in (16) or
equivalently in (15) is guaranteed. To study the time decay performance ofV in the above
equation, the following result is required.



134 G K Singh and K E Holé

Claim 1. For the second-order error dynamics as given in (15), a Lyapunov function may be
selected as in (19). For theQ matrix in (23), as obtained from the Lyapunov equation (22),
there exists a positive real numberδ > 0 such that

Q = δP + H, (26)

whereH is at least a positive semi-definite matrix.

Proof. It can be easily shown by a constructive proof that for the system under consideration,
there is always a range of values thatδ can take. The detailed proof is presented by Singh
(1999). In particular, it is established that permissible range of values ofδ lies in an open set
and is given byδ ∈ (0, min[2α, 2ε]), where min[·,·] gives the minimum of its arguments.2

Using the decomposition ofQ as in (26), theV̇ in (25) may be rewritten as

V̇ = −δV − yTHy − 2η′|s|. (27)

It follows that theV decay response of the above system will be better than the response of
the system described by

V̇ = −δV . (28)

It is interesting to find out theAb matrix with the dynamics specified as

ẏ = Aby, (29)

that satisfies (28). TheAb should thus satisfy the Lyapunov equation (22) with theP as
selected in (20), i.e.AT

bP + PAb = −δP , for some feasible choice ofδ > 0 as in (28). For
this, the general form of theAb matrix is taken as

Ab =
[

0 c′
−a′ −b′

]
, (30)

where,a′, b′, c′ are to be determined. The Lyapunov equation forAb matrix as given above
is solved for these unknowns for a general value ofδ. These may be easily obtained by the
solution of a set of simultaneous linear equations ina′, b′, c′ as

a′ = δ(α2 + β)/2α

b′ = δ

c′ = δ/2α. (31)

It is known from claim 1 thatδ ∈ (0, min[2α, 2ε]). If α < ε , theAb matrix is obtained by
usingδ = 2α as

Ab =
[

0 1
−(α2 + β) −2α

]
, (32)

and is seen to have both of its eigenvalues at−α, for β → 0. Alternately, ifα > ε, then the
Ab matrix is obtained by usingδ = 2ε, as

Ab =
[

0 ε/α

−(εα + εβ/α) −2ε

]
, (33)
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and forβ → 0, both the eigenvalues of the aboveAb matrix are easily seen to lie at−ε. It
follows that the decay of the Lyapunov function (19) for the dynamics in (16) with theA

matrix in (17) having its eigenvalues as−α and−ε, is guaranteed to be better than the decay
response in (28), which is achievable by aAb matrix as given in (32) or (33) which has both
of its eigenvalues at− min[α, ε]. This implies that the error dynamics in (16) in the reaching
phase is bounded by the response of the second-orderAb dynamics in (29) and a robust
performance in the presence of the matched uncertainties and disturbances is achievable in
the reaching mode even before the onset of sliding. Estimates of the guaranteed times to reach
the OTE may be obtained using theAb dynamics. It is obvious that shorter times to the OTE
are expected as bothα andε are increased. However, the control law in (9) will also require
larger control magnitudes asa andb will also increase as can be seen from (8). Next the effect
of the relative values of these parameters is considered.

3.1 Selection ofα andε

Let the eigenvalues of the A matrix in (17) be selected as−p and−q, wherep andq are
positive real numbers satisfyingp > q. This could be achieved in the following two ways:

• CaseCP : α = p andε = q. This would result in the SS beinġe + pe, saySp.
• CaseCQ: α = q andε = p, with which the SS becomeṡe + qe, saySq .

It follows from (8) thata = pq andb = p + q remain the same in both the cases resulting
in the sameA matrix in (17). Witha andb being the same,R in (12) and thusK in (11)
are expected to have comparable magnitudes for both the cases. Thus the peak values of the
control effortu in (9) should also be nearly equal. The performance obtained in the two cases
is compared next. For this, a common Lyapunov function is first constructed as follows.

Claim 2. LetP andQ be symmetric positive definite matrices as specified in (20) and (23)
respectively, for the caseCP , i.e. α = p andε = q. Then, there exists a sufficiently large
positive scalarM such that

V (y) = yTPy + M|Sp| + M|Sq | (34)

where,y = (e, ė)T, is a valid common Lyapunov function for casesCP andCQ.

Proof. Note that this candidate function is not differentiable on the planesSp = 0 and
Sq = 0. However, it is possible to use the generalized Lyapunov theorem, which allows non-
differentiability of the Lyapunov function in a set of measure zero (Singh 1989; Chiacchiarini
et al1995). ForV to be a valid common Lyapunov function, at least negative semi-definiteness
(n.s.d.) of its time derivative must be established for the two cases. The detailed proof is
presented by Singh (1999). 2

Let V̇i , i = p, q represent the time derivativėV of the Lyapunov function in (34) for the
cases denoted by the subscript ‘i’. Further, for the caseCQ, it may be shown that there exists
a 0< δq < q (< p, by selection), using whicḣVq may be written as

V̇q ≤ −yTQy − δqM[|Sq | + |Sp|] − (p − δq)M|Sq |. (35)

From claim 1, it is known that theQ matrix may be decomposed as given in (26) asQ =
δqP + Hq , whereHq is a positive definite matrix, sinceδq < q < min[2q, 2p]. Using this
decomposition, thėVq above may be expressed as

V̇q ≤ −δqVq − (p − δq)M|Sq |, (36)
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using the definition ofV in (34) where the subscript ‘q ’ represents the caseCQ. As p > q >

δq , the(p − δq)M|Sq | term in the above equation is always non-negative. Thus, theVq decay
response of this system will be better than the exponential decay response offered by

V̇q = −δqVq, whereδq ∈ (0, q). (37)

Note thatδq can assume a maximum value ofδ̄q = q in the limit.
For the caseCP , V̇p may be obtained as

V̇p ≤ −yT Qy − M[q|Sp| + p|Sq |] − 2η′|Sp|. (38)

TheQ matrix in this case is decomposable asδpP +Hp, where 0< δp < 2q = min[2q, 2p]
has to be found out. Following the steps as for the caseCQ, it may be shown that theδp may
be selected to be smaller than min[p,2q]. It thus follows that theVp decay response of the
above system is better than the response of the system given by

V̇p = −δpVp, whereδp ∈ (0, min[p, 2q]). (39)

Thus the upper limiting value ofδp is seen to be given bȳδp = min[p, 2q]. Thus it is obvious
that δ̄p > δ̄q .

With the guaranteed decay responses ofVq andVp being given as in (37) and (39) respec-
tively, it is clear that caseCP guarantees a faster exponential decay of the Lyapunov function
(34) as compared to caseCQ. These guaranteed decay performances may be used to develop
an estimate of the time to reach a specified level of OTE in terms of the Lyapunov function.
Thus, given an initial valueV (0) at t = 0, the timetf required forVi, i =q, p dynamics, in
(37) and (39) respectively, to decay to a final value ofVf may be evaluated as

tf = (1/δ̄i) ln
[
V (0)/Vf

]
, (40)

where, i =q, p, and δ̄i are as defined earlier and represent the maximum limiting value of
δi for the δq and δp as given in (37) and (39) respectively. For the sameV (0)/Vf , it is
obvious thattf in the caseCP ill be smaller than in the caseCQ, asδ̄p > δ̄q . Thetf in (40)
gives conservative estimates for the decay of the Lyapunov function. The actual timestOT E

required, for theV decay responses in (36) and (38) for the casesCQ andCP respectively,
to reach theVf are expected to be smaller than thetf , i.e. tOT E ≤ tf . Thus theα andε

parameters should be selected as in the caseCP to have a smaller value oftf , i.e. for a given
choice of the eigenvalues of theA matrix in (17),ε should be selected as the magnitude of the
dominant pole, andα as the magnitude of the other, or simplyα > ε. This is summarized as
follows.

Lemma1. The choice ofα andε parameters, for the constant plus proportional rate reaching
SMC law as in (9), witha andb selected as in (8) and the sliding surface as in (5), such that

α > ε. (41)

guarantees a faster decay of the Lyapunov function (34).

Note that the above lemma indicates that the choice ofα andε as in (41) only ensures thattf is
smaller. It however does not guarantee that thetOT E for the caseCP is smaller than caseCQ,
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although it is so expected and can actually be seen from the simulation results presented in
the next section. There may however be parameter combinations where this would not hold.

A smaller value ofV implies a smaller tracking error in the sense of the norm (as defined
by the Lyapunov function). Thus, since caseCP has a faster guaranteed decay performance,
it is expected to take lesser time as compared to caseCQ to reach an acceptably small OTE.
As discussed earlier, the control effort is expected to be almost the same for both theCP and
CQ cases. Note that lower reaching times are obtained for the case ofε > α (caseCQ) as
can be seen from the results in the next section. However, the above theoretical developments
show that shorter times to a desired OTE are expected for the cases whereα > ε (caseCP ).
The estimates of the time to the OTE using (40) showing the effect of the relative choices of
α andε as suggested in lemma 1 are verified by applying the design method to a nonlinear
spring mass damper system in the next section.

4. Simulation results

For the illustration of the proposed SMC design method, the results presented in the previous
section have been used to design controllers for two practical problems. The numerical results
of these examples ascertain the validity of lemma 1.

4.1 Nonlinear spring mass damper system

The first example concerns a nonlinear mass-spring-damper system from Choiet al (1994).
The governing differential equation is

mẍ + ν(ẋ, t) + µ(x, t) = u(t) + d(t), (42)

where,x, ẋ represent the position and the velocity of the massm, u(.) represents the applied
input force, andd(.) the disturbance signal.ν(., .) andµ(., .) represent the damping and
spring force term respectively. The system parameters and functions are given asm = 1,
f = f1 + f2 + f3 + f4, which are given asf1 = µ0x, f2 = −µ1x

3, f3 = −ν0ẋ, and
f4 = −ν1ẋ|ẋ| with µ0 = 0·5, µ1 = 0·5, ν0 = 0·3, andν1 = 0·3. The system also has
uncertainties expressed asa1f1 + a2f2 + a3f3 + a4f4 with a1 = −·05 + 0·25 sin(5πt),
a2 = −·05 + 0·25 sin(5πt), a3 = −·05 + 0·15 sin(7πt), anda4 = −·05 + 0·15 sin(7πt)

and disturbanced = 0·05 + 0·25 cos(3πt). The signal to be tracked is given byx1d =
−0·5 cos(πt/5). The above system in (42) may be expressed in standard form as in (1). The
initial conditions are taken as 0·5 and 0 for the two states respectively.

Simulation was done using the fourth order Runge–Kutta method with a time step of 2·5ms.
The remaining parameters were selected asβ = 1 andη = 1. Several combinations ofα and
ε were used.

• Case1: α = 2 andε = 6
• Case2: α = 6 andε = 2
• Case3: α = 3 andε = 4
• Case4: α = 4 andε = 3
• Case5: α = 4 andε = 5
• Case6: α = 5 andε = 4

The time to OTE (defined as the time after which the error is less than 1·0 × 10−3) obtained
for the boundingAb dynamics in (29), the actual tracking times, the reaching times calculated
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Table 1. Comparison of time for OTE and reaching: example 1.

Time to OTE (<1 × 10−3) in (s)
tf (s) (40)

Case Bound obtained Reaching time (s) for
no. α ε from Ab dynamics (29) Actual (14) V0/Vf = 104

1 2 6 4·24 3·30 0·183 4·605
2 6 2 4·24 2·00 1·472 2·302
3 3 4 2·83 2·35 0·426 3·070
4 4 3 2·83 2·00 0·732 2·302
5 4 5 2·13 1·80 0·439 2·302
6 5 4 2·13 1·65 0·650 1·842

from (14) and thetf for V0/Vf = 1·0 × 104 as evaluated from (40) for all the cases are
presented in table 1. It can be seen from the table that the actual time to achieve the OTE
is appreciably smaller for case 2 as compared to case 1. Table 1 also shows that similar
results are obtained for cases 4 and 6. In all these casesα > ε, thus verifying lemma 1.
It is noticed from table 1 that, for all of these cases, the reaching time is greater than the
corresponding cases 1, 3 and 5. Although cases 1, 3 and 5 have smaller reaching times, they
require about 65%, 17·5%, and 9·1% more time to OTE than the time required by cases 2, 4,
and 6 respectively. Thus, from the table it is clearly evident that parameter selections giving
lower reaching times actually take longer times to reach the specified OTE. Moreover, the
time boundstf calculated from (40) are seen to be better than those obtained from theAb

dynamics (29) in the sense of being able to bring out the effect of the relative values ofα

andε.
Choi et al (1994) reported a time of 2·58 s to achieve a zero tracking error (OTE). It can

be observed from table 1 that in almost all the cases under consideration, shorter tracking
time is achieved by this approach. In fact the best tracking time achieved is 1·65 s for case 6.
In all of the cases the actual time to reach OTE is smaller than the bound given by theAb

dynamics andtf . As qualitatively similar responses are obtained, the responses obtained for
the parameter combination in cases 1 and 2 are presented in figures 1, 2, and 3 respectively.
The responses are indexed by the case numbers in these figures. Note that case 1 corresponds

Figure 1. Tracking responses for
case 1 (C1) and case 2 (C2).
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Figure 2. Thes responses for cases
1 and 2.

to caseCQ, and case 2 to caseCP . Figure 1 shows the tracking response obtained in the
two cases. It is evident from the figure that the C2 (satisfying lemma 1) trajectory approaches
the OTE in appreciably lower time as compared to the C1 trajectory. Figure 2 shows the
s response in the two cases. The C1 response has a lower reaching time (see also table 1)
as compared to C2. Figure 3 shows the error decay with time for both the cases and also
for the solution of theAb dynamics in (29), labeled aseA. Although, only a better decay of
the Lyapunov function in (19) is guaranteed for the control law in (9), the figure shows that
the decay ofe obtained in the two cases are better than the solution of theAb dynamics in
(29).

The required control effort in the two cases are shown in figure 4. As discussed in the
previous section, sincea = 12 andb = 8 from (8) are the same for the cases C1 and C2,
the control efforts in these cases should be of about the same magnitude. This can indeed be
seen from figure 4, which verifies that that the proposed method uses about the same control
effort to achieve the same tracking accuracy much faster. However as the reaching time in C1
is smaller, the input in case C1 begins chattering earlier as can be seen from the figure. Thus
the selection of the parameters can be easily done drawing on the experience of the initial
condition responses of linear second-order systems. If theα andε are chosen so as to satisfy
lemma 1, better results are expected.

Figure 3. The error dynamics for
cases 1 and 2 and that given by the
A-dynamics (eA).
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Figure 4. The control effortu
required for cases 1 and 2.

5. Conclusions

In this paper the design of the constant plus proportional rate reaching SMC for second-order
nonlinear systems has been studied. Investigation of the effect of the choice of the controller
parameters has been done. Using a Lyapunov approach it has been shown that the design
method imposes a bounding second-order dynamics on the error variables, and thus a robust
performance in the reaching phase is guaranteed. A new method of selection of the SMC
parameters which results in smaller times to reach a given level of OTE, while using almost
similar levels of maximum control effort, is proposed. It is seen that for the class of systems
under study, a small reaching time does not guarantee a fast tracking response. The method of
parameter selection should thus be based on the time to OTE, rather than on the criterion of
the reaching time. The design technique has been applied to a nonlinear spring-mass-damper
system under matched uncertainties and exogenous disturbances. From the simulations done
it is seen that the control laws based on the lower reaching times require approximately 10–
60% more time as compared to the proposed control laws to reach the same level of OTE,
while using the same levels of control magnitudes. The method developed for a single input
system has been extended to a two-input two-link robotic arm problem. Results of numerical
simulation for the parameters used show that significantly faster tracking is obtained with
the proposed control law, thus establishing the utility of the method. However, more work is
required to develop better estimates of the time to OTE.
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