
Guaranteed-Quality Delaunay Meshing in 3D

(Short Version)

L. Paul Chew *

Department of Computer Science

Cornell University

Ithaca, NY 14853

1 Introduction

The main contribution of this paper is a new mesh gener-
ation technique for producing 3D tetrahedral meshes. Like
many existing techniques, this one is based on the Delaunay
triangulation (DT). Unlike existing techniques, thk is the
first Delaunay-based method that is mathematically guaran-
teed to avoid slivers. A sliver is a tetrahedral mesh-element
that is almost completely flat. For example, imagine the
tetrahedron created as the (3D) convex hull of the four cor-
ners of a square; th~ tetrahedron has nicely shaped faces —
all faces are 45 degree right-triangles — but the tetrahedron
has zero volume. Slivers in the mesh generally lead to poor
numerical accuracy in a finite element analysis.

The Delaunay triangulation (DT) has been widely used
for mesh generation. In 21), the DT maximizes the minimum
angle for a given point set; thus, small angles are avoided.
There is no analogous property involving angles in 3D. We
make use of the Empty Circle Property for the DT of a set
of point sites: the circumcircle of each triangle is empty of
all other sites. In 3D, the analogous property holds: the
circumsphere of each tetrahedron is empty of all other sites.
The Empty Circle Property can be used as the definition of
the DT.

There is a vsst literature on mesh generation with most of
the material emanating from the various applications com-
munities. We refer the reader to the excellent survey by
Bern and Eppstein [BE92]. We consider here only work re-
lated to the topic of mesh generation with mathematical
quality guarantees. Chew [Che89] showed how to use the
DT to triangulate any 2D region with smooth boundaries
and no sharp corners to attain a mesh of uniform density in
which all angles are greater than 30 degrees. An optimality
theorem for meshes of nonuniform density was developed by
Bern, Eppstein and Gilbert [BEG94] using a quadtree-based
approach. Ruppert [Ru93] later showed that a modification
of Chew’s algorithm could also attain the same strong results

*This work wassupported by DARPA under contract Nooo14-
96-1-0699 and by the-Cornell Theory Center which receivesfund-
ing from its its Corporate Research Institute, NSF, New York
State, DARPA, NIH, and IBM Corporation.

Permission to make digit:lbhwd C,JPICS,>1’:111or p;III o!’thi> nu]terial tbr
personal or clzwroom use IS gr;mlcd wi(lwut l~c prow[luxl 11101tlle coptcs
are not nmlc or distributed Ihr prt,Iil or conmmm.laI :III! :Intage. Ihe copy-
right ImlIcc, lhe title ot’lhc puhli culton 21NI IIS lMc dppcar. Jnel mlice is

given IIMI copyright is hy punmsj,m of[hc ,\cil. IIIC “l’,) copy OIIICIWISC.

to republish. to post on Stmcrs or !0 r.xiisl}-lhulc l,) Iisls. requires sptcit’,c

permission and/or fee

(-omptitol{orrol (“;eOItw/I:j 9- N icc I‘w ncc
Copyright 1997 ACNt (J-X97° I -X7X-() ‘07J(J6 $’350

as Bern, Eppstein and Gilbert. More recently, Chew [Che93]
extended his own work to non-uniform density meshes for
2D curved surfaces embedded in 3D. Mitchell and Vavssis
[MV92] used octrees to extend the Bern-Eppstein-Gilbert
ideas to 3D.

There are several rewons why the Delaunay-bssed tech-
nique presented here might be preferred over the oct ree tech-
nique. For instance, the Delaunay-baaed technique produces
a known bound on the aspect ratio of the tetrahedral while
the mathematical theory of Mitchell and Vavssis proves the
existence of such a bound for their octree-based technique
without actually determining its numerical value. In addi-
tion, octree-based algorithms tend to produce meshes with
some features that are undesirable in practice: the worst el-
ements are along the boundary of the domain — typically,
this is where the user would like to have the highest qual-
ity elements — and the mesh has a clear orientation in the
sense that one can usually determine the orientation of the
octree axes by examining the resulting mesh.

Due to space limitations, most of the proofs in this paper
have been either condensed or eliminated. A more complete
version of this paper is available as a tech report.

2 A Simple 2D Technique

We start with a simple 2D meshing technique to illustrate
some of the ideas and to motivate the development of the 3D
meshing algorithm. This technique is similar to that used in
[Che89, Che93], although for ease of presentation, the ver-
sion used here makes several simplifying assumptions about
the region to be meshed. These simplifying assumptions are
not strictly necessary and will be dropped in later sections.
We assume that

1. the region to be meshed is convex,

2. the goal is to create a mesh with constant density, and

3. the boundary of the region has already been subdi-
vided in such a way that sll boundary edges have
lengths between 1 and W units and no two vertices
are closer than 1 unit.

The size of the unit here controls the size of the elements
in the resulting mesh, The first assumption can easily be
dropped, but by restricting ourselves to convex regions we
avoid having to discuss Delaunay edges that occur outside
the region.

The assumptions about the boundary subdivision im-
ply something about the shape of the region to be meshed.

391

Figure 1: The minimum angle is 30 degrees.

In particular, such a subdivision cannot be obtained if the
region-t~be-meshed hae a boundary angle of less than 30
degrees. In practice, boundary angles less than 30 degrees
can be removed from the problem region and triangulated in
a postprocessing step; this type of “lopping off” technique
is used in [BEG94, Ru93].

Algorithm A:
Form the DT of the boundary points
rihile there 1s a triangle with circuraradius > 1 do

Add the triangle’s circurncenter to
the set of sites and update the DT

Theoreml Algorithm Ahalts, producing amesh in which
all triangles have angles between 30 and 120 degrees.

Proof First, note that no two vertices are ever closer than
1 unit; this holds initially and continues to hold throughout
the algorithm. Second, note that Algorithm A must halt:
the region has to fill up after some finite time since the
vertices are all 1 unit apart. When the algorithm halts, each
triangle has acircumcircle with radius less than 1 and each
edge has length ~ 1. It’s easy to see that the smallest angle
occurs when the shortest possible edge is used in the largest
possible circumcircle (see Figure 1). Inthiscese, the central
angle is easily seen to be 60 degrees and the corresponding
angle of the triangle is 30 degrees. The 30 degree bound
for the minimum angle immediately implies the 120 degree
bound for the maximum angle. ❑

The2D algorithm, Algorithm A,can be generalized in a
fsirly straightforward way to produce a 3D algorithm: Al-
gorithm B.

Theorem 2 Algorithm Bproducesa meshin which alltri-
angular faces of tetmhedm have angles between 30 and 120
degrees.

Proof The proof requires some some fairly strong assump
tions about the boundary and is fundamentally similar to
the proof for Algorithm A. ❑

Unfortunately, knowing that a tetrahedron has nicely-
shaped faces is not enough to know that it’s not a sliver. The
tetrahedron created from the (3D) convex hull of a square
haa faces that are very nicely-shaped, but the tetrahedron
is the worst possible kind of sliver, with no volume at all.

3 Randomness and Approximate Circumventers

Let us reconsider the 2D technique. Suppose we don’t com-
pute exact circumventers. Instead, we’ll choose a point ran-
domly within a ball of radius $< 1 about the true circum-
venter. If we do this, it’s easy to see that the minimum edge
length is 1 – ~. Some simple geometry shows that a chord
of length 1 — ~ in a circle of radius 1 has an opposite angle
of arcsin (~). This is the minimum angle that occurs in
a 2D mesh when we approximate circumventers with points
within f of the true circumventer. Thus, ~ = 0 gives us a

minimum angle of 30 degrees, as expected; j = ~ gives us a
minimum angle of about 14.5 degrees.

This technique gives us some hope for 3D. In Algorithm
B, we had no choice in where to place each new vertex; if
some new vertex created a sliver, we were stuck with it. But
by choosing a new vertex from somewhere within an inte
rior bail, we might be able to position the vertex in such
a way that all slivers are avoided. Ideally, one might hope
to calculate exactly where the new vertex should be placed
within this interior ball, but this approach has not been suc-
cessful, since the correct placement depends on the positions
of potentially many surrounding vertices. Fortunately, ran-
domness comes to our rescue: we don’t need to determine
exact placement as long as we can estimate the probability
of finding a good placement when choosing random positions
within the interior ball.

As a concrete baais for calculations, we take ~ = ~; this is
not necessarily the best value for ~. Note that, with f = ~,
we expect that no two vertices will be closer that 0.5.

As before, we make some fairly strong assumptions about
the region to be meshed. We assume that

1.

2.

3.

the region to be meshed is a convex polyhedron,

the goal is to create a mesh with constant density, and

the boundary of the region has already been subdi-
vided into triangles in such a way that all circumcir-
cles of boundary triangles have diameter ~. fi/2 units
and no two vertices are closer than 0.5 umts.

Algorithm C:
Form the 3D DT of the boundary points
while there is a tetrahedron with circumradius > 1 do

Randomly pick a point within 0.5 units of the
circumventer, repeat ing unt 11 we find one that
does not form a sliver

Add this point to the set of sites and update
the DT

The exact definition of sliver as used in Algorithm C is
determined by the requirements of the proof of the following
theorem.

Theorem 3 Algorithm C halts, producing a mesh in which
all trianguiar~aces of tetmhedm have angies between arcsin(~)
(about 14.5 degrees) and about 151 degrees. There are no
slivers in the resulting mesh ezcept possibly for tetmhedm
that have all their vertices on the boundary.

Proof Assuming that the algorithm halts, it’s easy to see
that the bound on the face angles holds and that the only
possible slivers are those that appear due to the initial bound-
ary subdivision. The bound on face angles follows from the
maximum circumsphere size of 1 and the minimum edge size
of 1/2. The only remaining part of the proof is to show that
the algorithm halts. In other words, we need to show that,

392

...........phocdtrimgkkat

Momof slab

Figure 2: The fourth point of the sliver must lie in the grey
region near the circumcircle of the base triangle.

when we randomly pick a point within 0.5 units of the cir-
cumventer, we will eventually find one that forms no slivers.

First, observe that there are some slivers that we don’t
have to worry about. Any sliver that has a large circum-
sphere (with radius > 1) is caught later in the algorithm
and the corresponding tetrahedron is destroyed. With this
observation, we define a sliver as used in Algont hm C to be
a tetrahedron that haa a unit-radius circumsphere and that
has height less than e where e is a value to be determined
later in the proof. Note that new tetrahedral all use our
new near-circumventer point as their apex. We refer to the
remaining three vertices of a new tetrahedron as the lnwe
triangle for for that tetrahedron. Height is measured from
the plane of this base triangle.

The remainder of the proof is based on the observation
that slivers have a very special shape. Given a base triangle,
the apex vertex of a sliver can’t be just anywhere. To be a
sliver, the apex vertex must lie almost within the plane of
the base triangle. Thus, a base triangle determines a slab
(i.e., a thickened plane) of thickness 2e with the property
that an apex vertex chosen outside the slab cannot possibly
form a sliver with the base triangle. Furthermore, the apex
vertex must lie near the circumcircle of the base triangle.
The exact shape is a ring with an hourglass cross-section;
see Figure 2. Thus each potential base-triangle has just a
small volume of space (called the disallowed region) where a
forth vertex could make a sliver with that base-triangle.

Note that there are just a finite number of potential base
triangles and consider the volume covered by the disallowed
regions of all the potential baas triangles. By choosing c
sufficiently small, we can ensure that all of these disallowed
regions fail to completely cover the picking-sphere (the inner
sphere of radius 0.5 about the true circumventer). We can
force some fraction of the volume within the picking-sphere
to be uncovered; thus, the picking process must halt in con-
stant expected time. ❑

Currently, the value of c needed for the above proof is
about 0.00058. This value is a fairly crude estimate and
follows from a number of rather crude bounds on geometric
quantities. Several of these bounds are multiplied together
and/or cubed; thus any over-estimation can become quite
significant. Rough experimental evidence indicates that a

better estimate is e = 0.1. Better estimates should be avail-
able when the algorithm is fully implemented.

4 Creating a Practical Algorithm

There are three problems that need to be resolved: (1)
as presented in Algorithm C, the boundary is completely
meshed into uery nice triangles during an unspecified (and
possibly impractical) preprocessing step, (2) if initially there
are some slivers whose vertices are all on the boundary then
these slivers can remain in the final mesh, and (3) Algorithm
C produces a constant density mesh while practitioners gen-
erally want control of mesh density, with small tetrahedral
in ‘interesting” areas for sccuracy and large tetrahedral else-
where for computational efficiency. For the third problem,
a relatively small modification of the algorithm allows vary-
ing density, but this leads to large changes in the bounds
used in the proof% We briefly discuss resolutions for the
first two problems. Full explanations, with proofs, would
significantly lengthen this paper.

Boundary preprocessing is unnecessary; the boundary
meshing can be done during the tetrahedral meshing. The
idea is to split a boundary triangle by adding its circumven-
ter whenever it becomes clear that a boundary triangle is
too large.

This leaves the problem of how to get rid of slivers whose
vertices are sll boundary vertices. The idea here is to allow
approximate circumventers of boundary triangles, picking a
random point near the true circumventer. By adjusting e
appropriately one can show that disallowed areas along the
boundary can be avoided using a constant expected number
of picks.

References

[BE92]

[BEG94]

[Che89]

[Che93]

[MV92]

[Ru93]

M. Bern and D. Eppstein, Mesh Generation and
Optimal Triangulation, Computing in Euclidean
Geometry, edited by F. K. Hwang and D.-Z. Du,
World Scientific, 1992. AIao appears as Tech W
port CSL-92-1, Xerox PARC, March 1992,
M. Bern, D. Eppstein, and J. R. Gilbert, Prov-
ably Good Mesh Generation, Journal oj Com-
puter and System Sciences 48,384-409, 1994. An
earlier version appears in Proceedings of the 91st
IEEE Symposium on the Foundations of Com-
puter Science, 231-241, 1990.
L. P. Chew, Guamnterxi-Quality Triangular
Meshes, Department of Computer Science Tech
Report TR 89-983, Cornell University, 1989.
L. P. Chew, Guaranteed-Quality Mesh Gener-
ation for Curved Surfaces, Proceedings of the
Ninth Symposium on Computational Geometry

(1993), ACM Press, 274-280.
S. A. Mitchell and S. A. Vavssis, Quality Mesh
Generation in Three Dimensions, Proceedings of
the Eighth Annual Symposium on Computational
Geometry, 212-221, ACM Press, 1992. Full ver-
sion appears as Department of Computer Sci-
ence Tech Report TR 92-1267, Cornell Univer-
sity, 1992.
J. Ruppert, A new and simple algorithm for
quality 2-dimensional mesh generation, Proceed-
ings of the 4th ACM-SIAM Symposium on Dis-
crete Algorithms, 83–92, 1993.

393

