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Abstract— In this work we present a stability-preserving projection
framework for model reduction of linear systems. Specifically, given one
projection matrix (e.g. a right-projection matrix), we derive a set of
linear constraints for the other projection matrix (e.g. the left-projection
matrix) resulting in a projection framework that is guaranteed to generate
a stable reduced model. Several efficient techniques for solving the
proposed system of constraints are presented, including an optimization
problem formulation for finding the optimal stabilizing projection, and a
formulation with computational complexity independent of the size of the
original system. The resulting algorithms can create accurate stable and
passive models of arbitrary indefinite systems at a significantly cheaper
cost than existing methods such as balanced truncation. Nevertheless,
our algorithms integrate fully and effortlessly with most of the available
standard model order reduction approaches for very large systems
generated in VLSI applications (such as moment-matching methods,
POD, or Poor Man’s TBR), which can guarantee stability and passivity
only in very specialized cases. Our algorithms have been tested on a
large variety of typical VLSI applications, including field-solver-extracted
models of RF inductors for analog applications, power distribution grids
for large VLSI digital integrated circuits, and MEMS devices for sensing
and actuation applications. The results have been successfully compared
to those from existing and much more expensive stabilizing reduction
techniques.

I. INTRODUCTION

System-level modeling of interconnected circuit blocks and com-
ponents producing large VLSI applications (e.g. RF receiver and
transmitter chains, CPUs, DSP units, or sensing and actuation chips)
is highly dependent upon each individual block model being accurate
and stable. A common approach for efficiently handling linear com-
ponents, such as RF inductors and interconnects, is to replace them
with low-order models. If these individual models are not stable, then
the entire system may become inaccurate; for instance, time-domain
simulations of the full system may blow up. The task of reliably
creating stable reduced models is especially difficult considering that
many parasitic extractors and field-solvers today extract models with
unstructured matrices (e.g. indefinite), or even extract models that are
numerically unstable, despite being models of physically stable and
passive systems.

The importance of preserving stability and passivity through model
reduction was recognized long ago. In projection-based methods, it
is common practice to sacrifice accuracy of the reduced model in
order to guarantee stability. For example, Krylov-based methods [1],
[2], [3], which guarantee accuracy by matching transfer function
moments, are typically used only to match moments in one of the
two projection matrices. The other projection matrix is then chosen
to be the same in order to preserve stability and passivity through
a Galerkin projection (i.e. a congruence transform) at the expense
of not being able to match additional moments [4], [3]. It has been
shown that a Galerkin projection is capable of preserving stability
and passivity in stable systems described by sign-definite matrices,

such as the RLC network models extracted by some field solvers [5],
[6].

However, many stable systems are not described by semi-definite
matrices. Such matrices frequently arise when modeling nonlinear
systems or when considering linearizations of nonlinear systems, such
as small-signal analog circuit models created by linearizing around
the DC operating point. Stability-preserving model reduction schemes
for nonlinear systems have recently been proposed that require
computing stability-preserving projection matrices for a collection
of indefinite linear models to obtain a nonlinear projection [7]. There
exist a small number of methods, such as balanced truncation, that
preserve stability [8] and passivity [9] for asymmetric and indefinite
systems, but these techniques are computationally extremely expen-
sive.

Additionally, models of stable passive systems extracted by field
solvers may often be unstable due to error arising from discretization
and from ignoring higher-order physical effects. These errors become
a serious problem when attempting to connect unstable system blocks
into a larger stable system, or when modeling distributed systems with
frequency-dependent matrices, which requires interpolation between
matrices [10]. To our knowledge, no projection method is able
to reliably create accurate stable reduced models from originally
unstable systems.

In this work we attempt to address the issues of efficient stable
reduction of indefinite systems and stable reduction of mildly unstable
systems. Specifically, we present a new approach for computing
projection matrices that are guaranteed to preserve stability (and
passivity). The projection matrices are typically chosen such that the
right projection matrix guarantees accuracy (e.g. matching moments),
and the left-projection matrix guarantees stability. This is achieved
by deriving a set of linear constraints based on the idea of Lyapunov
functions, resulting in a linear matrix inequality (LMI) whose solution
is a stability-preserving projection matrix. Particular attention was
devoted to formulating the LMI problem such that it is independent
of the size of the original system, and only depends on the order of
the reduced model.

In addition, we further define an optimization cost function to
measure the distance between the subspace spanned by all stabilizing
projection matrices and some optimal subspace chosen for accuracy
(e.g. a subspace that enforces additional moment matching). The
solution to the resulting optimization problem is a left-projection
matrix that not only guarantees stability but also enforces a larger
degree of accuracy.

As a final remark, we note that our proposed method could also
be used to compute stabilizing projections for unstable systems.

The remainder of the paper is organized as follows. Section II
presents an overview of linear system stability and projection-based
model reduction. In Section III we derive a set of linear constraints
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for the left projection matrix that guarantees a stabilized reduced
model. In the same section we further formulate an optimization
problem whose solution is a stabilizing projection matrix that is
optimal in terms of accuracy. Section IV considers the problem of ef-
ficiently computing various stabilizing projections, either analytically
or through a low-order LMI. Finally, Section V tests the proposed
stabilizing methods on several examples and compares their speed
and accuracy to traditional methods.

II. BACKGROUND

A. System Stability and Matrix Equations

A linear descriptor system

Eẋ = Ax + Bu, y = CT x (1)

is said to be stable if all solutions to the autonomous system (u = 0)
do not stray arbitrarily far from the origin for some set of bounded
initial conditions. More specifically, the system is stable if, given
ε > 0, there exists δ > 0 such that

||x(t) − x0|| < ε, ∀ t > 0, ||x0|| < δ.

If, in addition to staying bounded, all trajectories eventually converge
to the origin

lim
t→∞

||x(t)|| = 0, ∀ x0,

then the system is said to be asymptotically stable. For linear systems
we have the familiar constraint that the system is asymptotically
stable if the pair (E, A) has all generalized eigenvalues with negative
real part. In this case we say that (E, A) is a stable pair.

The preceding stability properties can be verified through the
existence of Lyapunov functions [11], [12]. System (1) is said to be
stable if there exists a function L(x) which is positive-definite, i.e.
L(x) > 0 for x �= 0 and L(0) = 0, and also satisfies the condition
that ∂L(x)

∂t
≤ 0. For asymptotic stability, the derivative constraint is

slightly stronger: ∂L(x)
∂t

< 0 for x �= 0 and ∂L(0)
∂t

= 0.
A common choice of Lyapunov functions for linear systems are

quadratic functions. If we select the quadratic function L(x) =
xT ET PEx where P is a symmetric positive definite (SPD) matrix,
then the condition on dL(x)

dt
becomes

ET PA + AT PE � 0. (2)

If we define Q = −(ET PA + AT PE), then L is a Lyapunov
function and the system is stable if Q is a symmetric positive semi-
definite (SPSD) matrix, i.e. Q � 0. If the system is asymptotically
stable, then L is a Lyapunov function if Q is an SPD matrix.

More generally, consider the matrix equation

ET PA + AT PE = −Q (3)

where E, A, P, Q ∈ R
N×N . If System (1) is asymptotically stable,

i.e. the matrix pair (E, A) has all eigenvalues with negative real
part, then for any SPD matrix Q there exists a unique SPD matrix
P which solves (3). Conversely, if there exist SPD matrices Q, P
satisfying (3), then the matrix pair (E, A) has all eigenvalues with
negative real part and the system is asymptotically stable [13]. If the
matrix E is singular, then there may not exist an SPD solution P for
some SPD Q, and if there are solutions they may not be unique.

There are several subtle issues regarding the various types of
stability, e.g. conditions under which the system is asymptotically
stable for SPSD Q, but for the sake of simplicity we will not bring up
such issues in this work and present only the more general conditions.

A stronger notion of stability is passivity. Passivity is a property
which guarantees the system does not produce energy, and can be
proven, along with other notions of dissipativity, through the use
of storage functions. A storage function is essentially a generalized
version of the Lyapunov function which incorporates inputs. The
derivation of such matrix equation conditions for dissipative systems
is similar to that of the Lyapunov equation above, so here we directly
introduce the well-known positive-real lemma for passivity. The linear
system with E = I is passive if there exists an SPD solution P to
the following systems of equations [14], [15]

PA + AT P � 0, PB = C.

For the case of descriptor systems where E �= I , this has been
generalized to [16]

ET PA + AT PE � 0 (4)

ET PB = C. (5)

B. Projection-Based Model Reduction

Projection-based approaches to model reduction rely on the as-
sumption that the important dynamics of a system are approximately
confined to a low dimension subspace. In such cases it is possible to
find a right-projection matrix V ∈ R

N×q such that x ≈ V z is a good
approximation to solutions of System (1). Here z ∈ R

q is referred
to as the reduced state vector, and we assume that q << N . After
this approximation, the system can be viewed as an overdetermined
set of equations.

EV ż = AV z + Bu

The number of equations are typically reduced by forcing the residual
of the system to be orthogonal to a space defined by the column span
of a matrix U

UT (EV ż − AV z − Bu) = 0.

We refer to U ∈ R
N×q as the left-projection matrix. The final result

is an order q linear system

Êż = Âz + B̂ y = ĈT z (6)

where Ê = UT EV , Â = UT AV , B̂ = UT B, and Ĉ = V T C are
the reduced system matrices.

One common approach to constructing the projection matrices U
and V is to pick their columns such that their column span enforces
a match between the first moments of the transfer function of the
reduced system and those of the original system. Such approaches
are projection versions of Pade-type approximations to the transfer
function [17], [18]. If we define the kth right Krylov vector vk at
frequency sr and the kth left Krylov vector uk at frequency sl as

vk =
(
(srE − A)−1 E

)k
(srE − A)−1 B, (7)

uk = CT (slE − A)−1 (
E (slE − A)−1)k

, (8)

then projection matrices V and U constructed such that

range(V ) ⊃ vk k = 0 . . . m

range(U) ⊃ uk k = 0 . . . m,

where range(V ) = {x | x = V z}, will guarantee that the transfer
function of the reduced model will match the transfer function of
the original model in exactly m derivatives at frequency points sr

and sl. Other methods such as frequency-domain POD [19] and Poor
Man’s TBR [20] guarantee zeroth-moment transfer function matching
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at multiple frequency points.

C. Stable Model Reduction

Although the projection matrices U and V can be separately chosen
to enforce accuracy in the resulting reduced model, it is also important
to consider stability and passivity. It is common practice to sacrifice
additional accuracy in order to preserve stability.

For stable systems described by sign-definite matrices, a Galerkin
projection (i.e. congruence transform) will preserve stability and
passivity. That is, the reduced model

V T EV ż = V T AV z + V T Bu y = CT V z (9)

is stable and passive. Such systems include models with SPD de-
scriptor matrix E and system matrix such that −(A + AT ) is SPD,
which often arise when modeling RLC networks [3], [6]. Stability and
passivity are preserved in this case because the congruence transform
preserves definiteness of the matrices. That is, the reduced descriptor
matrix Ê = V T EV is SPD and reduced system matrix Â = V T AV
is such that −Â + ÂT is SPD.

The Galerkin projection scheme is convenient for systems de-
scribed by symmetric or definite matrices, but it does not guarantee
stability or passivity for systems described by arbitrary stable matrix
pairs. Such nonsymmetric indefinite systems occur frequently in
VLSI applications as the result of a discretization of PDEs, or when
considering linearizations of a nonlinear system. Stability for such
indefinite systems can be preserved through other projections such
as balanced truncation, but due to the order N3 complexity, such
procedures are not practical for large systems.

III. STABILIZING PROJECTION

A. Stability Conditions

Given a linear descriptor System (1) and a pair of projection
matrices U and V , we wish to find conditions under which the
reduced order model

UT EV ż = UT AV z + UT Bu, y = CT V z (10)

is stable. In this work we are primarily interested in the selection of
the left-projection matrix U . That is, given a right-projection matrix
V (generated by any well known technique in VLSI model order
reduction such as moment matching, POD or Poor-Man’s TBR), we
will propose a routine for automatically generating left-projection
matrices U which preserve stability.

From Section II-A, we know the reduced system will be stable if
there exists an SPD matrix P̂ such that

ÊT P̂ Â + ÂT P̂ Ê = −Q2 ≺ 0, (11)

for some SPD matrix Q2. Recall that this equation is the result of

the condition ˙̂
L(z) < 0, corresponding to the Lyapunov function

L̂(z) = zT ÊT P̂ Êz. That is, if there exists an SPD solution P̂ to
condition (11), then L̂(z) is a Lyapunov function for System (10), and
thus System (10) is asymptotically stable. Condition (11), however,
is not desirable from a computational point of view, because it is
quadratic in U

V T ET UP̂UT AV + V T AT UP̂UT EV = −Q2 ≺ 0, (12)

making it an extremely difficult system of equations to solve.
Without a loss of generality, we can transform condition (12) into a

pair of linear constraints by defining Ũ = UP̂UT EV . The resulting
stability condition becomes

ŨT AV + V T AT Ũ = −Q2 ≺ 0,

which corresponds to the Lyapunov function L̂(z) = zT ŨT EV z. In
order for L̂ to be a Lyapunov function, we also require L̂(z) > 0.
Thus, we must enforce the additional constraint that ŨT EV = Q1 is
an SPD matrix. Note that we have now replaced the single quadratic
constraint in U with a pair of linear constraints in Ũ

ŨT AV + V T AT Ũ = −Q2 ≺ 0, ŨT EV = Q1 � 0. (13)

Prop. 3.1 (Equality of Stability Constraints): The stability condi-
tions (12) and (13) are equivalent, provided the reduced matrix
UT EV has full rank.

Proof: Assume U, P̂ , Q2 solve (12). We may then choose
Ũ = UP̂UT EV as a solution to (13) for Q2, and we find that
Q1 = V T ET UP̂UT EV , which is SPD because it is a congruence
transform of an SPD matrix P̂ with a full rank matrix operator
UT EV . On the other hand, assume Ũ , Q1, Q2 solves (13). We
may then choose U = Ũ as a solution to (12) for Q2 and for
P̂ = (ŨT EV )−1 = Q−1

1 , which is an SPD matrix because Q1

is an SPD matrix. Thus, the two sets of constraints are equivalent.
As a result of this equivalence between stability conditions, we shall
drop the tilde notation from here on and consider only the set of
linear constraints (13), now denoted as

UT EV = Q1 � 0 (14)

UT AV + V T AT U = −Q2 ≺ 0. (15)

Any U which satisfies these constraints will create a stable reduced
model. In addition, note that there is no requirement that E be
invertible, so we may handle the case of singular E matrix, provided
UT EV is non-singular.

It is important to note here that if for numerical reasons we
need to further enforce orthogonality between U and EV , then
given a U which solves (14) and (15), we may always redefine
U = U(V T ET U)−1 to ensure that UT EV = I . This redefinition
does not affect the stability or accuracy of the reduced model because
it does not change the column span of U . Such a redefinition can be
thought of as multiplying both sides of the reduced model by Ê−1,
which we know is invertible because we have forced it to be an SPD
matrix (Q1). Additionally, we point out that instead of fixing the
right-projection matrix U and finding a stabilizing left-projection V ,
it is also possible to do the opposite and fix the left-projection U
while finding a stabilizing right-projection V .

In this section and for the remainder of the paper we consider the
asymptotic stability constraint that Q2 is an SPD matrix. It is also of
course possible to consider the looser constraint that Q2 is an SPSD
matrix without changing any of the results presented in this paper.

B. Feasible Stabilizing Solutions

In the previous section we derived a set of linear constraints for
a stabilizing projection matrix U . In this section we examine the
conditions guaranteeing that solutions to the system of constraints
exist.

First, note that it is possible to transform the matrix equations into
a single linear system. We may rewrite equation (15) as a single
matrix linear in U and concatenate the result with equation (14) to
obtain

MT U = BT , M = [Ve, Va], B = [Q1, − Q2]. (16)

where Ve = EV and Va is a rearrangement (15) such that UT Va =
UT AV + V T AT U .

Since U ∈ R
N×q and M ∈ R

N×2q , this is an underdetermined
system of equations with q2 equations and Nq unknowns. If the
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columns of the constraint matrix M are linearly independent, then
there exist an infinite number of stabilizing solutions for any SPD
matrices Q1, Q2. Note that there is no dependence on the eigenvalues
of (E, A). In fact, there exist stabilizing solutions even if the original
large-order system is unstable. Thus, not only can we preserve
stability, but we also have the option of enforcing stability when
needed.

We would like to point out here that creating stable reduced models
of unstable original systems may in general result in inaccurate
reduced systems. Ideally the large-order extracted systems would
be stable and the projection framework would simply preserve
stability, but unfortunately this is not the case in the vast majority
(if not complete totality) of field solvers and parasitic extractors
used in current VLSI design flows to extract the original large
order systems. We have found that in most cases the numerically
unstable modes in such extracted linear systems correspond to very
small eigenvalues and are typically not excited by inputs of interest.
Explicitly truncating, or stabilizing, these unstable modes in the large-
order system would therefore likely yield accurate stable models.
However, this operation is computationally infeasible since it would
require the preliminary eigendecomposition of the original large order
system. Nevertheless, unstable modes must be eliminated, because a
poorly-chosen projection could amplify the unstable modes and cause
major instabilities in the reduced model. The approach presented
in this paper may be used to eliminate such parasitic-extraction-
generated artificial numerical instabilities, avoiding the expensive
eigendecomposition of the original large-order system.

A second important observation is that not only are there an infinite
number of stabilizing solutions U to the underdetermined System
(16), but there are also an infinite number of subspaces spanned by the
set of stabilizing solutions U . That is, if we define T = range(U) to
be the space spanned by the columns of U , then there exist an infinite
number of stabilizing spaces T . This is an important distinction
to make, as there exist many different representations for a single
subspace which will produce reduced models all identical up to an
invertible change of coordinates.

If the constraint matrix M in (16) has linearly dependent columns
and the original system is stable, then there exist stabilizing solutions
only for certain SPD matrices Q1, Q2.

Prop. 3.2 (Existence of Stabilizing Projection): If (E, A) is an
asymptotically stable pair, then for any orthogonal right-projection
matrix V and any SPD matrix Q2, there exists at least one SPD
matrix Q1 such that the linear constraints (14) and (15) are consistent
(i.e. a solution exists).

Proof: By assumption, (E, A) is an asymptotically stable pair,
and therefore given any SPD matrix Q̃ there exists an SPD matrix
P such that

ET PA + AT PE = −Q̃. (17)

Furthermore, given any right-projection matrix V , it is also true that

V T ET PAV + V T AT PEV = −V T Q̃V, (18)

and that V T Q̃V is also SPD because congruence transforms preserve
definiteness. Thus, we select U = PEV and Q2 = V T Q̃V to satisfy
constraint (15), and find that UT EV = V T ET PEV � 0 satisfies
constraint (14). Lastly, we need to show that there exists such a Q̃
for any Q2. Since Q2 is SPD, we may factor it such that qT q = Q2,
where q ∈ R

q×q . Now define q̃T = [X, N (V )] where N (V ) is
the null space of V T , and X ∈ R

N×q is the solution to XT V = q
(which exists because it is an underdetermined system of equations

and V has linearly independent columns by assumption). Finally,
define Q̃ = q̃T q̃, resulting in Q2 = V T Q̃V .

If the constraint matrix M has linearly dependent columns and
the original system (E, A) is not stable, then there may or may not
exist a stabilizing projection. It is possible to construct systems where
there does not exist a stabilizing projection, e.g. take E = A = I
as identity matrices. However, if the number of unstable modes is
smaller than the order of the reduced model, then there always exists
a stabilizing projection pair U, V that is equivalent to truncating the
unstable modes.

The unstable systems we are trying to address here are the ones
generated by parasitic extractors discretizing PDEs, hence they typi-
cally contain a very small number of numerically generated positive
eigenvalues. For those systems we are often able to find stabilizing
projections for unstable models. We will consider this problem in
more detail in section IV-B.

C. Optimal Stabilizing Projection

Given the large number of stabilizing left projection matrices U,
it might be beneficial to spend more computation in an attempt to
increase the reduced model accuracy by searching for a stable and
accurate projection. Consider Figure 1, which compares six different
reduced models, all chosen to match exactly two moments at each of
the frequencies 0.1, 1 and 10 GHz, resulting in a sixth-order model.
All models match exactly the same moments at the expansion points,
but some models are more accurate than others far away from the
expansion points as a result of the different left-projection matrices.
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Fig. 1. Six different sixth-order reduced models (dashed red lines) created
with the same right-projection matrix V matching moments at 0.1, 1, 10 GHz
and four different left-projection matrices U . The solid blue line indicates the
response of the original transmission line model. The curves represent quality
factors of an RF inductor model.

Given a matrix U0 that was constructed to ensure accuracy, we
wish to find a stabilizing projection U that is “close” to U0 in some
sense. Formally speaking, given U0, the optimal solution U solves
the optimization problem

min
U,Q1,Q2

||U − U0||s (19)

UT EV = Q1 � 0

UT AV + V T AT U = −Q2 ≺ 0

In this setup our measure of optimality || · ||s should quantify
the distance between the subspaces spanned by U and U0. There
are many possible norms one can use here to measure this distance.
One possible choice is to use the familiar and more computationally
affordable L2 norm. The problem with this choice is that it does not
necessarily measure the distance between the subspaces, as ||U−U0||
could be large while ||U − Ũ0|| could be small when U and Ũ
have the same column span. It is important to note that although
optimization problem (19) is likely to produce an accurate stabilizing
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projection, the optimization procedure is extremely expensive because
the number of variables is order Nq, and the cost of LMI solutions
is quadratic in the number of decision variables. An efficient subop-
timal problem will be introduced in Section IV-C as an alternative
approach.

D. Extension to Passivity

Until now we have only considered preserving (or creating)
stability. In general, passivity is a more desirable system property,
since besides implying stability it also guarantees the system will
not produce energy.

If, as was done for stability, we consider the storage function
L̂(x, u) = zT Êz, then the passivity condition for the reduced model
becomes

Â + ÂT = −Q2 ≺ 0

B̂ = Ĉ

provided Ê � 0. Since B̂ �= Ĉ in general even if B = C, because
B̂ = UT B while Ĉ = V T C, we must enforce this as an additional
constraint

UT EV = Q1 � 0 (20)

UT AV + V T AT U = −Q2 ≺ 0 (21)

UT B = V T C. (22)

Thus, passivity is preserved by adding one additional linear con-
straint. In the remainder of the paper, in order to keep the explanation
simple, we will refer only to stability and consider only the first
two linear constraints; however, it is always possible and a trivial
extension to add the third linear constraint to ensure passivity when
needed.

IV. EFFICIENT COMPUTATION OF STABILIZING PROJECTIONS

A. Analytic Solutions for Independent Constraints

Now that we know stabilizing solutions exist, we wish to efficiently
compute such solutions U , where U satisifes

UT Ve = Q1 � 0, UT Va + V T
a U = −Q2 ≺ 0, (23)

and we have defined Ve = EV and Va = AV . It is possible to
solve this system directly using Kronecker identities to transform the
matrix equation into one large linear system, but this would be very
expensive with a computational cost on the order of (Nq)3, where
N and q are the sizes of the large-order and reduced-order systems
respectively. Our goal is to eliminate dependence of the complexity
on N .

As stated previously, we can transform the matrix equation into a
linear system. Consider factoring the matrix Va into two matrices
Qa and Ra such that Va = QaRa, where Qa ∈ R

N×q and
Ra ∈ R

q×q . One approach is to use a modified Graham Schmidt
orthogonalization for Qa. This is cheap computationally because only
the first q orthogonal columns are needed. For the sake of consistency
we may do the same for the other constraint, factoring Ve into Qe

and Re. We now define a new pair of variables Ya = UT Qa and
Ye = UT Qe. The result is the linear system

[Qe Qa]T U = [Ye Ya]T (24)

where Ye, Ya ∈ R
q×q are the solutions to the order q matrix equations

RT
e Ye = Q1, RT

a Ya + Y T
a Ra = −Q2,

Algorithm 1 Linear Constraint Transformation
1: Given matrices Q1, Q2 � 0, and E, A, V
2: Define Ve = EV , Va = AV , and then factor into matrices

Qe, Qa ∈ R
N×q , Re, Ra ∈ R

q×q such that

Ve = QeRe Va = QaRa

3: Solve order q matrix equations separately for Ye and Ya

Y T
e Re = Q1 YaRa + RT

a Ya = −Q2

4: Solve underdetermined linear system for U

[Qe Qa]T U = [Ye Ya]T

which can be solved in at worst O(q3) operations. Note that since
Ve and Va are linearly independent, then Qe and Qa are linearly in-
dependent, [Qe Qa]T has 2q linearly independent columns, and thus
there always exists a solution to linear system (24). This procedure
is summarized in Algorithm 1, and the resulting underdetermined
system can be solved efficiently using any standard technique.

B. Efficient Solutions for Dependent Constraints

The more interesting case is when the constraint matrix is either
redundant or extremely ill-conditioned. In this case there only exist
stabilizing solutions U for certain right-hand-sides Q1, Q2. This is a
more difficult problem because we also must enforce the positivity
constraints on Q1, Q2.

Since, from Proposition 3.2, we know there exist stabilizing
solutions for any SPD matrices Q1, Q2, we may formulate the linear
system as a feasibility problem

min
U,Q1,Q2

0 (25)

UT Ve = Q1 � 0

UT Va + V T
a U = −Q2 ≺ 0.

Here min 0 simply searches for a triplet (U, Q1, Q2) which satisfies
all of the constraints. If desired, we may also fix Q2 and only vary
the constraint Q1, as this does not affect the existence of the solution
(shown in Proposition 3.2). Feasibility problem (25) can be solved
efficiently using an LMI solver. Note that for the feasibility problem
we can leave the second constraint in matrix equation form.

As stated, the feasibility problem is still computationally N -
dependent because U has size N × q. Since the system is under-
determined, we may fix N − 2q variables and solve instead a size
2q square system. Consider partitioning U , Va, and Ve such that Uq ,
Vaq , and Veq are the first 2q rows of each respectively. Now the size
N × q system

[
V T

eq V T
e2

] [
Uq

U2

]
= Q1

is equivalent to the size 2q × 2q system

V T
eqUq = Q1 − (V T

e2U2),

where U2 is a predetermined size (N − 2q) × q matrix. We may
partition the remaining constraint in a similar manner, resulting in a
pair of square size 2q constraints and a new feasibility problem

min
U,Q1�0,Q2�0

0 (26)

UT
q Veq = Q1 − ΔQ1

UT
q Vaq + V T

aqUq = −Q2 − ΔQ2
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where we have defined ΔQ1 = V T
e2U2 and ΔQ2 = (V T

a2U2 +
UT

2 Va2). This new problem has O(q2) constraints and unknowns,
resulting in a cost of O(q4). A feasible solution to the original
problem can then be chosen as U = [UT

q UT
2 ]T . Thus we may now

compute the stabilizing solution by solving an order-q LMI that has
no dependence on N, the order of the original system.

There remains one important detail not to be overlooked. We are
assuming that the new order 2q system has a solution, but this is not
necessarily true for all Vaq, Veq . For example, it is possible to choose
2q rows from Va and Ve such that Vaq and Veq are all zeroes, resulting
in no solution. However, by simply selecting the 2q rows such that
there are no zero rows in either truncated matrix, we have not found
this to be a problem in practice. It is also possible to increase the
number of rows in Uq to some number p such that 2q < p < N if
a stabilizing solution is not found when considering only 2q rows.

C. Efficient Suboptimal Solutions

We finally consider the problem of efficient computation of optimal
stabilizing projections. That is, we present a method for efficiently
solving the optimization problem posed in Section III-C. One possible
approach is to combine the ideas in Sections III-C and IV-B.
Specifically, we will fix some of the elements of U and optimize
over a smaller block of unknowns.

Consider defining U = U0 + ΔU , where U0 is a left-projection
matrix chosen for accuracy and ΔU is the matrix to be solved for.
We define Uδ as p rows of ΔU , where 2q ≤ p ≤ N , and set the
remaining N − p rows to zero. Similarly, we define Vep and Vap as
the same p rows of Ve and Va respectively. Finally, defining the new
terms ΔQ1 and ΔQ2 as

ΔQ1 = V T
e U0 ΔQ2 = V T

a U0 + UT
0 Va (27)

yields the following modified constraints

V T
epUδ = Q1 − ΔQ1 (28)

V T
apUδ + UT

δ Vap = −Q2 − ΔQ2. (29)

We may now attempt to solve the optimization problem Uδ =
argmin ||Uδ|| over constraints (28), (29) and Q1, Q2 � 0. Note that
if we consider the possibility that the original projection U0 does
preserve stability, then we must change the constraints on Q1, Q2

from SPD to SPSD, to allow for the possibility that Uδ = 0. A
sample procedure is presented in Algorithm 2.

What we are essentially doing here is searching for a minimal
perturbation to the matrix U0, which was constructed for accuracy,
such that the resulting matrix U = U0 + ΔU is accurate and
guarantees stability. The cost of this algorithm is p2q2 due to the LMI
solve. Thus if p = 2q, the total cost will be order q4. The larger p is,
the more accurate the solution will be. If we allow p to be order

√
N ,

the total cost will be order Nq2. Typically q2 << N . We have found
this approach to be particularly effective when considering unstable
extracted models of RF components that should be stabilizable via a
Galerkin projection (U0 = V ).

V. EXAMPLES

A. Implementation

The proposed methods were tested on several linear system exam-
ples. All of the following results were generated using Algorithm 2,
the LMIs were solved using SeDuMi [21] with YALMIP [22], and
we have chosen U0 = V , where V was constructed to match input
moments.

When dealing with large q, it is possible to reduce the total number
of decision variables in the LMI from 6q2 to 2q2 by fixing Q2 and

Algorithm 2 Efficient Suboptimal Stabilizing Projection
1: Given E, A, V, U0, define

Ve = EV, Va = AV,

ΔQ1 = V T
e U0, ΔQ2 = V T

a U0 + UT
0 Va

2: Select p nonzero rows from Ve and Va and denote them Vep and
Vap respectively

3: Solve the optimization problem for Uδ

min
Uδ,Q1�0,Q2�0

||Uδ||
UT

δ Vep = Q1 − ΔQ1

UT
δ Vap + V T

apUδ = −Q2 − ΔQ2.

4: Define U = U0 + ΔU , where ΔU is zeroes except for the p
rows corresponding to the rows of Uδ

solving for half of the unknowns analytically. That is possible because
although the entire constraint system is linearly dependent, neither the
matrix Ve nor the matrix Va will have linearly dependent columns,
provided the matrices E and A are nonsingular.

As a last note, we have found that due to the extreme ill-
conditioning of the constraint system, one must normalize the con-
straints such that Ve and Va are of the same order. This is equivalent
to simply scaling the right hand side matrices Q1, Q2. This operation
is allowed because the matrices would still be SPD.

B. Inductor Model

The first examples considered are two-turn RF inductor mod-
els. The inductor models were created using a public domain
electro-magneto-quasi-static (EMQS) mixed-potential integral equa-
tion solver [23], [24]. All of the selected extracted large order models
are numerically unstable, despite modeling passive physical systems.

As a result of instability, the traditional Galerkin projection U =
V is not guaranteed to create a stable model. Results from several
different inductor models and stable reduced models generated using
Algorithm 2 are plotted in Figure 2. All reduced models have order
q = 8, and were each constructed in under 2 seconds. The original
large order systems all have order N = 647 and are all unstable.
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Fig. 2. Quality factor of two-turn inductor models corresponding to various
wire width and wire separation parameter values. The original models (blue
solid lines) are unstable and all have order N = 647, while the reduced
models (red plusses) are stable and all have order q = 8.
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For these inductor models we cannot compare the computational
time required to compute the stabilizing projection to other similar
methods, because to our knowledge no other available method is
guaranteed to create a stabilizing left-projection matrix U for unstable
systems when given a right-projection matrix V . However, it is
possible to first stabilize the large-order model, e.g. truncate the
unstable modes in the large model via eigendecomposition, and then
compute a stabilizing left-projection matrix corresponding to the
given right-projection matrix V . Doing so by solving a Lyapunov
equation for the large model was 10 times slower than our proposed
method for this example, and this does not include the time required
to stabilize the large-order model via eigendecomposition. When
factoring in the cost of the eigendecomposition, our proposed method
is 15 times faster.

C. Power Grid

The second example is a 3× 3 power grid in free space. The grid
consists of copper wires with width 2μm and thickness 2μm, and
resulted in an order N = 1566 unstable model, created using the
same EMQS solver . Using Algorithm 2 we were able to create an
order q = 10 stable reduced model by constructing V to match
moments and selecting U0 = V . For this example the Galerkin
projection U = V resulted in an unstable model. Figure 3 plots
the real part of the impedance of the original system, the stabilized
reduced model, and an unstable reduced model created using a
Galerkin projection.
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Fig. 3. Real part of the impedance for a 3 × 3 power grid. The original
model (solid blue line) is unstable and has order N = 1566. An unstable
reduced model created through Galerkin projection (green crosses) of order
q = 10 is comparable in accuracy to a stable reduced model (red circles) of
order q = 10 created by our proposed method.

As a reminder we would like to point out that although the
frequency-domain results of the unstable reduced models in Figure 3
look nice, it is possible that certain inputs, or simply numerical
noise in the simulator, could excite the unstable modes in the model
resulting in unphysical behavior. For instance a non-zero initial
condition could cause the solution to explode, which cannot happen
for a passive system such as a power grid.

D. Linearized Systems

The final example considered is a nonlinear Microelectromechan-
ical System (MEMS) switch [25]. The need to efficiently construct
stabilizing projections for indefinite linearized models arises in small-
signal analysis of analog circuits, and when using nonlinear projection

functions to create stable nonlinear reduced models of nonlinear
systems [7]. The nonlinear model is obtained from the discretization
of a pair of nonlinear PDEs, and the linear model is obtained by
linearizing at the equilibrium state. For this system the matrices
are neither symmetric nor definite. The original model has order
N = 1680, and we were able to create an accurate stable reduced
model with order q = 12.
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Fig. 4. Real and imaginary transfer function parts of a linearized model of a
nonlinear MEMS device. The original stable model (solid blue line) has order
N = 1680, while the reduced stable model (red crosses) has order q = 12.
A Galerkin projection on this indefinite system does not preserve stability.

For this example a Galerkin projection does not preserve stability,
and constructing a stability-preserving projection by solving a Lya-
punov equation for the full system was 10 times slower than our
proposed algorithm.

VI. CONCLUSION

In this work we have presented a new technique for efficiently
generating stable reduced models from indefinite or unstable systems.
This was achieved by formulating a system of linear matrix inequal-
ities whose solution is a stabilizing projection matrix. Typically we
have chosen the right-projection matrix to guarantee accuracy by
matching moments, and solved for a left-projection matrix which en-
sures stability, enabling the proposed algorithms to integrate smoothly
with an existing moment-matching framework. With the addition of
one extra linear constraint the proposed method can also guarantee
passivity. Additionally, we have proposed in Algorithm 2 a method
for generating stabilizing projection matrices with a computational
complexity dependent only on the order of the reduced-order system,
and completely independent of the size of the original large-order
system. Our proposed method has also been shown to generate stable
reduced models reliably from unstable models that describe stable
physical systems, and creates reduced models that are as accurate
as models created with traditional projection approaches such as
Galerkin projection.
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